Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elevated CO2 levels promote both carbon and nitrogen cycling in global forests

Abstract

Forests provide vital ecosystem services, particularly as carbon sinks for nature-based climate solutions. However, the impact of elevated atmospheric carbon dioxide (CO2) levels on carbon and nitrogen interactions of forests remains poorly quantified. We integrate experimental observations and biogeochemical models to elucidate the synergies between enhanced nitrogen and carbon cycling in global forests under elevated CO2. Elevated CO2 alone increases net primary productivity (+27%; 95% CI: 23–31%) and leaf C/N ratio (+26%; 95% CI: 16–39%), while stimulating biological nitrogen fixation (+25%; 95% CI: 0–56%) and nitrogen use efficiency (+32%; 95% CI: 5–65%) according to a global meta-analysis. Under the elevated CO2 middle-road scenario for 2050, the forest carbon sink is projected to increase by 0.28 billion tonnes (PgC yr−1), with reactive nitrogen loss decreasing by 8 Tg yr−1 relative to the baseline. The monetary impact assessment of the elevated CO2 impact on forests represents a societal value of US$271 billion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global eCO2 experimental sites and eCO2 impact on carbon and nitrogen variables in global forests.
Fig. 2: Carbon sink and nitrogen budgets of global forests and their changes between eCO2 SSP2–4.5 middle-road scenario and baseline scenario in 2050.
Fig. 3: Nitrogen flows in global forests and changes due to elevated CO2 relative to baseline for 2050.
Fig. 4: Time series of carbon and nitrogen budgets in global forests over the period 2000–2050 under baseline and elevated CO2 scenarios.
Fig. 5: Impact assessment of elevated atmospheric CO2 levels as a single factor on forests under the elevated CO2 middle-road scenario (SSP2–4.5) relative to the baseline in 2050.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are openly available, and their sources are detailed in the Methods and Supplementary Information. A global database of elevated CO2 simulation experiments was established by extracting data from site-based manipulation studies. Climate data for our study sites were sourced from the WorldClim database (https://worldclim.org/data/index.html#). Soil data were obtained primarily from publications or supplemented with data from the Global Land Data Assimilation System (GLDAS) (https://ldas.gsfc.nasa.gov/gldas/soils). Future forest areas under different socioeconomic pathways were projected using the Global Change Analysis Model. National carbon prices were obtained from a World Carbon Pricing Database, while fertilizer price data were sourced from the UN Comtrade Database (https://comtrade.un.org/). Source data are provided with this paper and are available via Zenodo at https://doi.org/10.5281/zenodo.10731367 (ref. 73).

Code availability

The code used in the analysis is available online and can be accessed in the Zenodo repository73.

References

  1. Global Forest Resources Assessment 2020 (FAO, 2020).

  2. The Global Forest Goals Report 2021 (DESA, 2021).

  3. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  Google Scholar 

  4. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  5. Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).

    Article  Google Scholar 

  6. Walker, W. S. et al. The global potential for increased storage of carbon on land. Proc. Natl Acad. Sci. USA 119, e2111312119 (2022).

    Article  CAS  Google Scholar 

  7. Chen, C., Riley, W. J., Prentice, I. C. & Keenan, T. F. CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc. Natl Acad. Sci. USA 119, e2115627119 (2022).

    Article  CAS  Google Scholar 

  8. Ruehr, S. et al. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 4, 518–534 (2023).

    Article  CAS  Google Scholar 

  9. Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).

    Article  Google Scholar 

  10. Lu, X. et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl Acad. Sci. USA 118, e2020790118 (2021).

    Article  CAS  Google Scholar 

  11. Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    Article  CAS  Google Scholar 

  12. McCarthy, H. R. et al. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. N. Phytol. 185, 514–528 (2010).

    Article  CAS  Google Scholar 

  13. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

    Article  CAS  Google Scholar 

  14. Talhelm, A. F. et al. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Glob. Change Biol. 20, 2492–2504 (2014).

    Article  Google Scholar 

  15. Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).

    Article  CAS  Google Scholar 

  16. Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).

    Article  CAS  Google Scholar 

  17. Moscatelli, M. C., Lagomarsino, A., De Angelis, P. & Grego, S. Seasonality of soil biological properties in a poplar plantation growing under elevated atmospheric CO2. Appl. Soil Ecol. 30, 162–173 (2005).

    Article  Google Scholar 

  18. Hagedorn, F. et al. Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities. Soil Biol. Biochem. 57, 390–400 (2013).

    Article  CAS  Google Scholar 

  19. Schleppi, P., Bucher-Wallin, I., Hagedorn, F. & Körner, C. Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Glob. Change Biol. 18, 757–768 (2012).

    Article  Google Scholar 

  20. Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).

    Article  CAS  Google Scholar 

  21. Feng, Z. et al. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. Change Biol. 21, 3152–3168 (2015).

    Article  Google Scholar 

  22. Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article  CAS  Google Scholar 

  23. Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    Article  CAS  Google Scholar 

  24. Du, E., Fenn, M. E., de Vries, W. & Ok, Y. S. Atmospheric nitrogen deposition to global forests: status, impacts and management options. Environ. Pollut. 250, 1044–1048 (2019).

    Article  CAS  Google Scholar 

  25. Du, E. & de Vries, W. Atmospheric Nitrogen Deposition to Global Forests: Spatial Variation, Impacts, and Management Implications (Elsevier, 2023).

  26. Feng, M. et al. Overestimated nitrogen loss from denitrification for natural terrestrial ecosystems in CMIP6 Earth system models. Nat. Commun. 14, 3065 (2023).

    Article  CAS  Google Scholar 

  27. Koch, A. & Kaplan, J. O. Tropical forest restoration under future climate change. Nat. Clim. Change 12, 279–283 (2022).

    Article  Google Scholar 

  28. Norby, R. J. et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl Acad. Sci. USA 102, 18052–18056 (2005).

    Article  CAS  Google Scholar 

  29. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. N. Phytol. 165, 351–372 (2005).

    Article  Google Scholar 

  30. Rütting, T. Nitrogen mineralization, not N2 fixation, alleviates progressive nitrogen limitation—comment on ‘Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis’ by Liang et al. (2016). Biogeosciences 14, 751–754 (2017).

    Article  Google Scholar 

  31. Guo, Y. et al. Enhanced leaf turnover and nitrogen recycling sustain CO2 fertilization effect on tree-ring growth. Nat. Ecol. Evol. 6, 1271–1278 (2022).

    Article  Google Scholar 

  32. Tian, H. et al. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. Ecol. Manage. 259, 1311–1327 (2010).

    Article  Google Scholar 

  33. You, Y. et al. Incorporating dynamic crop growth processes and management practices into a terrestrial biosphere model for simulating crop production in the United States: toward a unified modeling framework. Agric. For. Meteorol. 325, 109144 (2022).

    Article  Google Scholar 

  34. Gu, B. et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613, 77–84 (2023).

    Article  CAS  Google Scholar 

  35. Gu, B. et al. Toward a generic analytical framework for sustainable nitrogen management: application for China. Environ. Sci. Technol. 53, 1109–1118 (2019).

    Article  CAS  Google Scholar 

  36. Cheng, W. et al. Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios. Sci. Data 9, 83 (2022).

    Article  CAS  Google Scholar 

  37. Roebroek, C. T. J., Duveiller, G., Seneviratne, S. I., Davin, E. L. & Cescatti, A. Releasing global forests from human management: how much more carbon could be stored? Science 380, 749–753 (2023).

    Article  CAS  Google Scholar 

  38. Liu, Y. et al. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nat. Geosci. 12, 809–814 (2019).

    Article  CAS  Google Scholar 

  39. Hume, A. M., Chen, H. Y. H. & Taylor, A. R. Intensive forest harvesting increases susceptibility of northern forest soils to carbon, nitrogen and phosphorus loss. J. Appl. Ecol. 55, 246–255 (2018).

    Article  CAS  Google Scholar 

  40. Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).

    Article  Google Scholar 

  41. Zhang, J., Fu, B., Stafford-Smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet sustainable development goal 15. Nat. Ecol. Evol. 5, 10–13 (2021).

    Article  CAS  Google Scholar 

  42. Shah, N. W. et al. The effects of forest management on water quality. For. Ecol. Manage. 522, 120397 (2022).

    Article  Google Scholar 

  43. Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    Article  CAS  Google Scholar 

  44. Ben Keane, J. et al. Grassland responses to elevated CO2 determined by plant–microbe competition for phosphorus. Nat. Geosci. 16, 704–709 (2023).

    Article  Google Scholar 

  45. Reich, P. B. et al. Even modest climate change may lead to major transitions in boreal forests. Nature 608, 540–545 (2022).

    Article  CAS  Google Scholar 

  46. Wu, Q. et al. Contrasting effects of altered precipitation regimes on soil nitrogen cycling at the global scale. Glob. Change Biol. 28, 6679–6695 (2022).

    Article  CAS  Google Scholar 

  47. Wang, J. et al. Precipitation manipulation and terrestrial carbon cycling: the roles of treatment magnitude, experimental duration and local climate. Glob. Ecol. Biogeogr. 30, 1909–1921 (2021).

    Article  Google Scholar 

  48. Van Sundert, K. et al. When things get MESI: the Manipulation Experiments Synthesis Initiative—a coordinated effort to synthesize terrestrial global change experiments. Glob. Change Biol. 29, 1922–1938 (2023).

    Article  Google Scholar 

  49. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Brit. Med. J. 372, n71 (2021).

    Article  Google Scholar 

  50. WebPlotDigitizer 4.4 WebPlotDigitizer https://apps.automeris.io/wpd/ (2022).

  51. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  52. Global Land Data Assimilation System. NASA https://ldas.gsfc.nasa.gov/gldas/soils (2022).

  53. Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    Article  Google Scholar 

  54. Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150 (1999).

    Article  Google Scholar 

  55. Amrhein, V., Greenland, S. & McShane, B. Scientists rise up against statistical significance. Nature 567, 305–307 (2019).

    Article  CAS  Google Scholar 

  56. Viechtbauer, W. Conducting meta-analyses in R with the metafor. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  57. Kou-Giesbrecht, S. et al. Evaluating nitrogen cycling in terrestrial biosphere models: a disconnect between the carbon and nitrogen cycles. Earth Syst. Dyn. 14, 767–795 (2023).

    Article  Google Scholar 

  58. Chapin, F. S., Matson, P. A. & Mooney, H. A. Principles of Terrestrial Ecosystem Ecology (Springer Science, 2002).

  59. Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article  CAS  Google Scholar 

  60. Collatz, G. J., Ball, J. T., Grivet, C. & Berry, J. A. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric. For. Meteorol. 54, 107–136 (1991).

    Article  Google Scholar 

  61. Bonan, G. B. The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model. J. Clim 11, 1307–1326 (1998).

    Article  Google Scholar 

  62. Sellers, P. J. et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J. Clim. 9, 676–705 (1996).

    Article  Google Scholar 

  63. Landsberg, J. J., Waring, R. H. & Williams, M. The assessment of NPP/GPP ratio. Tree Physiol. 40, 695–699 (2020).

    Article  Google Scholar 

  64. Luyssaert, S. et al. Toward a consistency cross-check of eddy covariance flux-based and biometric estimates of ecosystem carbon balance. Glob. Biogeochem. Cycles 23, GB3009 (2009).

    Article  Google Scholar 

  65. Rayan, M. G. Effects of climate change on plant respiration. Ecol. Appl. 1, 157–167 (1991).

    Article  Google Scholar 

  66. Cui, J. et al. Nitrogen cycles in global croplands altered by elevated CO2. Nat. Sustain. 6, 1166–1176 (2023).

    Article  Google Scholar 

  67. Kristal, S. L., Randall-Kristal, K. A. & Thompson, B. M. The society for academic emergency medicine’s 2004–2005 emergency medicine faculty salary and benefit survey. Acad. Emerg. Med. 13, 548–558 (2006).

    Article  Google Scholar 

  68. Sobota, D. J., Compton, J. E., McCrackin, M. L. & Singh, S. Cost of reactive nitrogen release from human activities to the environment in the United States. Environ. Res. Lett. 10, 025006 (2015).

    Article  Google Scholar 

  69. Zhang, X. et al. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nat. Commun. 11, 4357 (2020).

    Article  Google Scholar 

  70. Dolphin, G. & Xiahou, Q. World carbon pricing database: sources and methods. Sci. Data 9, 573 (2022).

    Article  Google Scholar 

  71. UN Comtrade Database. United Nations https://comtrade.un.org/ (2023).

  72. FAO Database. FOA https://www.fao.org/faostat/en/#data/FO (2022).

  73. Cui, J., & Gu, B. Database of eCO2 experiments in forests and global analysis (v1.0). Zenodo https://doi.org/10.5281/zenodo.10731367 (2024).

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (42325707 and 42261144001, B.G.), National Key Research and Development Project of China (2022YFE0138200, B.G.) and Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF) (GZC20232311, J.C.). We thank H. Chen for assistance in meta-data collection.

Author information

Authors and Affiliations

Authors

Contributions

B.G. and J.C. designed the study. J.C. analysed the data and wrote the first draft of the paper. All authors contributed to the discussion and revision of the paper. M.Z. provided support for meta-data collection and visualization. Z.B., N.P. and H.T. provided modelling support for DLEM. X.Z. provided support for CHANS model and impact assessment. Z.Q. provided support for meta-data collection. J.X. contributed to the discussion of the study.

Corresponding author

Correspondence to Baojing Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks César Terrer, Kevin Van Sundert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Modelling framework.

We establish a database of elevated atmospheric CO2 (eCO2) experiments conducted across forest sites. A global synthesis is then performed to quantify the impacts of eCO2 on nitrogen and carbon cycles. We utilize the Dynamic Land Ecosystem Model (DLEM) and the Coupled Human and Natural Systems (CHANS) model to simulate global forest carbon and nitrogen budgets under multiple scenarios. Finally, the carbon and nitrogen budgets are fed into the impact assessment module, facilitating the monetization of elevated CO2 impacts on forest assets.

Extended Data Fig. 2 Relationship between the response ratio to eCO2 for selected variables and moderators.

(a) Response ratio of NPP against the squared mean annual precipitation (MAP) in FACE Experiments. (b) Response ratio of BNF against soil C:N ratio. (c) Response ratio of DOC against MAP. (d) Response ratio of Rs against MAP in FACE Experiments. The regression lines illustrate the mean response of observations using mixed-effects meta-regression models. The gray shading denotes the 95% confidence intervals for the mean. The sizes of bubbles in the scatter plots are proportional to the weights of response ratios for each individual observation.

Source data

Extended Data Fig. 3 Relationship between the response ratio to eCO2 of selected variables and manipulation magnitude (ΔCO2).

Regressions between NUE (a), WUE (b), N2O (c) against ΔCO2. The regression lines illustrate the mean response of observations using mixed-effects meta-regression models. The gray shading denotes the 95% confidence intervals for the mean. The sizes of bubbles in the scatter plots are proportional to the weights of response ratios for each individual observation.

Source data

Extended Data Fig. 4 The nitrogen accumulation of global forests and the changes between eCO2 SSP2-4.5 middle-road scenario and baseline scenario in 2050.

Nitrogen accumulation in baseline scenario (a), eCO2 scenario (b), and Δaccumulation (eCO2-induced change) (c). NUE in baseline scenario (d), eCO2 scenario (e), and ΔNUE (eCO2-induced change) (f). Values in the legend reflect the average annual N budget from forests within a grid cell (0.5° × 0.5°). The base map is from GADM data.

Source data

Extended Data Fig. 5 The eCO2 impact on carbon sink and uncertainties in global forests under eCO2 SSP2-4.5 middle-road scenario for 2050.

(a) The eCO2–induced changes in carbon sink per square meter of forest area. (b) The absolute uncertainties of ΔC sink in Fig. 2 based on the standard deviations of the model ensembles derived from Monte Carlo simulations. Values of uncertainties in the legend reflect the annual values from forests within one grid cell (0.5° × 0.5°). The base map is from GADM data.

Source data

Extended Data Fig. 6 The nitrogen input of global forests and the changes between eCO2 SSP2-4.5 middle-road scenario and baseline scenario in 2050.

Biological nitrogen fixation (BNF) in baseline scenario (a), eCO2 scenario (b), and ΔBNF (eCO2-induced change) (c); nitrogen deposition in baseline scenario (d), eCO2 scenario (e), and ΔDeposition (f); nitrogen fertilizer in baseline scenario (g), eCO2 scenario (h), and Δfertilizer (i). Values in the legend reflect the average annual nitrogen budget from forests within a grid cell (0.5° × 0.5°). The base map is from GADM data.

Source data

Extended Data Fig. 7 Uncertainties of eCO2–induced changes in nitrogen budgets in global forests under eCO2 SSP2-4.5 middle-road scenario for 2050.

(a) ΔN input; (b) ΔN products; (c) ΔNr loss. The absolute uncertainties are based on the standard deviations of the model ensembles derived from Monte Carlo simulations. Values in the legend reflect the annual values from forest within a grid cell (0.5° × 0.5°). The base map is from GADM data.

Source data

Extended Data Fig. 8 The reactive nitrogen loss of global forests and the changes due to elevated CO2 under eCO2 middle road scenario (SSP2-4.5) relative to baseline scenario in 2050.

NH3 emissions in baseline scenario (a), eCO2 scenario (b), and ΔNH3 (eCO2-induced change) (c); N2O emissions in baseline scenario (d), eCO2 scenario (e), and ΔN2O (f); NOx emissions in baseline scenario (g), eCO2 scenario (h), and ΔNOx (i); NO3 in baseline scenario (j), eCO2 scenario (k), and ΔNO3 (l). Values in the legend reflect the average annual nitrogen budget from forest within a grid cell (0.5° × 0.5°). The base map is from GADM data.

Source data

Extended Data Fig. 9 A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of our meta-analysis.

It delineates the flow of information, indicating the number of relevant publications at various stages of the meta-analysis process, encompassing ‘Identification’, ‘Screening & Eligibility’, and ‘Included’.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1–3, Discussion, Terminology used in the study and references.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 2

Statistical Source Data

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Zheng, M., Bian, Z. et al. Elevated CO2 levels promote both carbon and nitrogen cycling in global forests. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-01973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41558-024-01973-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology