Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The generation of large earthquakes

A Publisher Correction to this article was published on 29 January 2021

This article has been updated

Abstract

Despite decades of observational, laboratory and theoretical studies, the processes leading to large earthquake generation remain enigmatic. However, recent observations provide new promising perspectives that advance knowledge. Here, we review data on the initiation processes of large earthquakes and show that they are multiscale and diverse, involving localization of deformation, fault heterogeneities and variable local loading rate effects. Analyses of seismic and geodetic data reveal evidence for regional weakening by earthquake-induced rock damage and progressive localization of deformation around the eventual rupture zones a few years before some large earthquakes. The final phase of deformation localization includes, depending on conditions, a mixture of slow slip transients and foreshocks at multiple spatial and temporal scales. The evolution of slip on large, localized faults shows a step-like increase that might reflect stress loading by previous failures, which can produce larger dynamic slip, in contrast to the smooth acceleration expected for a growing aseismic nucleation phase. We propose an integrated model to explain the diversity of large earthquake generation from progressive volumetric deformation to localized slip, which motivates future near-fault seismic and geodetic studies with dense sensor networks and improved analysis techniques that can resolve multiscale processes.

Key points

  • Progressive localization of shear deformation was observed before several Mw > 7 shallow crustal earthquakes. Some mainshocks were also preceded by immediate foreshock sequences or slow slip.

  • A step-like increase in fault slip driven by a combination of migrating slow slip transients and foreshocks occurred before some megathrust earthquakes in subduction zones. The intermittent increase in fault slip loads nearby locked regions, increasing the likelihood of subsequent large earthquakes.

  • The initiation processes of large, natural earthquakes are diverse and include localization of deformation and complexities of subsequent slip, owing to strength heterogeneity, fault roughness and variable local loading-rate effects.

  • Integrated, high-resolution seismic and geodetic observations, including additional near-fault sensors and advanced analysis techniques, are needed to improve the knowledge on the combination of aseismic slip and seismic sequences that lead to the occurrence of large, natural earthquakes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of rock damage by background events around rupture zones of future large earthquakes.
Fig. 2: Localization of background events in eastern Southern California before Mw > 7 earthquakes.
Fig. 3: Step-like increase in fault slip before the 2011 Mw 9.0 Tohoku-Oki earthquake.
Fig. 4: Step-like increase in fault slip before the 2014 Iquique, Chile Mw 8.2 earthquake.
Fig. 5: The 2013–2014 Boso slow slip event.
Fig. 6: Characteristics of the nucleation phase for individual ruptures under different background loading rates in laboratory experiments.
Fig. 7: Schematic illustrations of generation processes of large earthquakes.

Similar content being viewed by others

Change history

References

  1. Fukao, Y. & Furumoto, M. Hierarchy in earthquake size distribution. Phys. Earth Planet. Inter. 37, 149–168 (1985).

    Google Scholar 

  2. Reches, Z. & Lockner, D. A. Nucleation and growth of faults in brittle rocks. J. Geophys. Res. 99, 18159–18173 (1994).

    Google Scholar 

  3. Ben-Zion, Y. Collective behavior of earthquakes and faults. Rev. Geophys. 46, RG4006 (2008).

    Google Scholar 

  4. Gomberg, J. Unsettled earthquake nucleation. Nat. Geosci. 11, 463–464 (2018).

    Google Scholar 

  5. Abercrombie, R. E. Similar starts for small and large earthquakes. Nature 573, 42–43 (2019).

    Google Scholar 

  6. Ben-Zion, Y. & Zaliapin, I. Localization and coalescence of seismicity before large earthquakes. Geophys. J. Int. 223, 561–583 (2020).

    Google Scholar 

  7. Ben-Zion, Y. Stress, slip, and earthquakes in models of complex single-fault systems incorporating brittle and creep deformations. J. Geophys. Res. Solid Earth 101, 5677–5706 (1996).

    Google Scholar 

  8. Sammis, C. G. & Smith, S. W. Seismic cycles and the evolution of stress correlation in cellular automaton models of finite fault networks. Pure Appl. Geophys. 155, 307–334 (1999).

    Google Scholar 

  9. Ben-Zion, Y., Eneva, M. & Liu, Y. Large earthquake cycles and intermittent criticality on heterogeneous faults due to evolving stress and seismicity. J. Geophys. Res. Solid Earth 108, 2307 (2003).

    Google Scholar 

  10. Ellsworth, W. L. & Bulut, F. Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nat. Geosci. 11, 531–535 (2018).

    Google Scholar 

  11. Ide, S. Frequent observations of identical onsets of large and small earthquakes. Nature 573, 112–116 (2019).

    Google Scholar 

  12. Yoon, C. E., Yoshimitsu, N., Ellsworth, W. L. & Beroza, G. C. Foreshocks and mainshock nucleation of the 1999 Mw 7.1 Hector Mine, California, earthquake. J. Geophys. Res. Solid Earth 124, 1569–1582 (2019).

    Google Scholar 

  13. Dieterich, J. H. Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics 211, 115–134 (1992).

    Google Scholar 

  14. Ohnaka, M. Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture: A physical model of earthquake generation processes. Proc. Natl Acad. Sci. USA 93, 3795–3802 (1996).

    Google Scholar 

  15. Tape, C. et al. Earthquake nucleation and fault slip complexity in the lower crust of central Alaska. Nat. Geosci. 11, 536–541 (2018).

    Google Scholar 

  16. Lockner, D. A., Byerlee, J. D., Kuksenkot, V., Ponomarev, A. & Sidorin, A. Quasi-static fault growth and shear fracture energy in granite. Nature 350, 39–42 (1991).

    Google Scholar 

  17. Lyakhovsky, V., Ben-Zion, Y. & Agnon, A. Distributed damage, faulting, and friction. J. Geophys. Res. Solid Earth 102, 27635–27649 (1997).

    Google Scholar 

  18. Renard, F. et al. Volumetric and shear processes in crystalline rock approaching faulting. Proc. Natl Acad. Sci. USA 116, 16234–16239 (2019).

    Google Scholar 

  19. Zaliapin, I. & Ben-Zion, Y. Earthquake clusters in southern California I: Identification and stability. J. Geophys. Res. Solid Earth 118, 2847–2864 (2013).

    Google Scholar 

  20. Zaliapin, I. & Ben-Zion, Y. A global classification and characterization of earthquake clusters. Geophys. J. Int. 207, 608–634 (2016).

    Google Scholar 

  21. Dodge, D. A., Beroza, G. C. & Ellsworth, W. L. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. J. Geophys. Res. Solid Earth 101, 22371–22392 (1996).

    Google Scholar 

  22. Bouchon, M., Durand, V., Marsan, D., Karabulut, H. & Schmittbuhl, J. The long precursory phase of most large interplate earthquakes. Nat. Geosci. 6, 299–302 (2013).

    Google Scholar 

  23. Wu, C., Meng, X., Peng, Z. & Ben-Zion, Y. Lack of spatiotemporal localization of foreshocks before the 1999 Mw 7.1 Düzce, Turkey, earthquake. Bull. Seismol. Soc. Am. 104, 560–566 (2014).

    Google Scholar 

  24. Tamaribuchi, K., Yagi, Y., Enescu, B. & Hirano, S. Characteristics of foreshock activity inferred from the JMA earthquake catalog. Earth Planets Space 70, 90 (2018).

    Google Scholar 

  25. Abercrombie, R. E. & Mori, J. Occurrence patterns of foreshocks to large earthquakes in the western United States. Nature 381, 303–307 (1996).

    Google Scholar 

  26. Mignan, A. The debate on the prognostic value of earthquake foreshocks: A meta-analysis. Sci. Rep. 4, 4099 (2014).

    Google Scholar 

  27. Wesnousky, S. G. Seismological and structural evolution of strike-slip faults. Nature 335, 22–25 (1988).

    Google Scholar 

  28. Ben-Zion, Y. & Sammis, C. G. Characterization of fault zones. Pure Appl. Geophys. 160, 677–715 (2003).

    Google Scholar 

  29. Peng, S. & Johnson, A. M. Crack growth and faulting in cylindrical specimens of Chelmsford granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 9, 37–86 (1972).

    Google Scholar 

  30. Kato, A. & Ueda, T. Source fault model of the 2018 Mw 5.6 northern Osaka earthquake, Japan, inferred from the aftershock sequence. Earth Planets Space 71, 11 (2019).

    Google Scholar 

  31. Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 2019).

  32. Schrank, C. E., Boutelier, D. A. & Cruden, A. R. The analogue shear zone: From rheology to associated geometry. J. Struct. Geol. 30, 177–193 (2008).

    Google Scholar 

  33. Ritter, M. C., Santimano, T., Rosenau, M., Leever, K. & Oncken, O. Sandbox rheometry: Co-evolution of stress and strain in Riedel– and Critical Wedge–experiments. Tectonophysics 722, 400–409 (2018).

    Google Scholar 

  34. Stanchits, S., Vinciguerra, S. & Dresen, G. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. Pure Appl. Geophys. 163, 974–993 (2006).

    Google Scholar 

  35. Aben, F. M., Brantut, N., Mitchell, T. M. & David, E. C. Rupture energetics in crustal rock from laboratory-scale seismic tomography. Geophys. Res. Lett. 46, 7337–7344 (2019).

    Google Scholar 

  36. Lyakhovsky, V., Ben-Zion, Y. & Agnon, A. Earthquake cycle, fault zones, and seismicity patterns in a rheologically layered lithosphere. J. Geophys. Res. Solid Earth 106, 4103–4120 (2001).

    Google Scholar 

  37. Lyakhovsky, V. & Ben-Zion, Y. Evolving geometrical and material properties of fault zones in a damage rheology model. Geochem. Geophys. Geosyst. 10, Q11011 (2009).

    Google Scholar 

  38. Zeng, Y., Petersen, M. D. & Shen, Z. K. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity. Geophys. Res. Lett. 45, 1778–1785 (2018).

    Google Scholar 

  39. Nishimura, T. Strain concentration zones in the Japanese Islands clarified from GNSS data and its relation with active faults and inland earthquakes. Active Fault Res. 2017, 33–39 (2017).

    Google Scholar 

  40. Ben-Zion, Y. & Zaliapin, I. Spatial variations of rock damage production by earthquakes in southern California. Earth Planet. Sci. Lett. 512, 184–193 (2019).

    Google Scholar 

  41. Hauksson, E., Yang, W. & Shearer, P. M. Waveform relocated earthquake catalog for Southern California (1981 to June 2011). Bull. Seismol. Soc. Am. 102, 2239–2244 (2012).

    Google Scholar 

  42. Reches, Z. Mechanisms of slip nucleation during earthquakes. Earth Planet. Sci. Lett. 170, 475–486 (1999).

    Google Scholar 

  43. Nakatani, M. & Scholz, C. H. Frictional healing of quartz gouge under hydrothermal conditions: 1. Experimental evidence for solution transfer healing mechanism. J. Geophys. Res. Solid Earth 109, B07201 (2004).

    Google Scholar 

  44. Aben, F. M., Doan, M. L., Gratier, J. P. & Renard, F. Experimental postseismic recovery of fractured rocks assisted by calcite sealing. Geophys. Res. Lett. 44, 7228–7238 (2017).

    Google Scholar 

  45. Craig, T. J., Chanard, K. & Calais, E. Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone. Nat. Commun. 8, 2143 (2017).

    Google Scholar 

  46. Chen, X. & Shearer, P. M. California foreshock sequences suggest aseismic triggering process. Geophys. Res. Lett. 40, 2602–2607 (2013).

    Google Scholar 

  47. Shelly, D. R. A high-resolution seismic catalog for the initial 2019 Ridgecrest earthquake sequence: Foreshocks, aftershocks, and faulting complexity. Seismol. Res. Lett. 91, 1971–1978 (2020).

    Google Scholar 

  48. Imanishi, K. & Uchide, T. Non-self-similar source property for microforeshocks of the 2014 Mw 6.2 Northern Nagano, central Japan, earthquake. Geophys. Res. Lett. 44, 5401–5410 (2017).

    Google Scholar 

  49. Hayashida, Y., Matsumoto, S., Iio, Y., Sakai, S. & Kato, A. Non-double-couple microearthquakes in the focal area of the 2000 Western Tottori earthquake (M 7.3) via hyperdense seismic observations. Geophys. Res. Lett. 47, e2019GL084841 (2020).

    Google Scholar 

  50. Kato, A., Fukuda, J., Nakagawa, S. & Obara, K. Foreshock migration preceding the 2016 Mw7.0 Kumamoto earthquake, Japan. Geophys. Res. Lett. 43, 8945–8953 (2016).

    Google Scholar 

  51. Ito, Y., Obara, K., Shiomi, K., Sekine, S. & Hirose, H. Slow earthquakes coincident with episodic tremors and slow slip events. Science 315, 503–506 (2007).

    Google Scholar 

  52. Matsuzawa, T., Asano, Y. & Obara, K. Very low frequency earthquakes off the Pacific coast of Tohoku, Japan. Geophys. Res. Lett. 42, 4318–4325 (2015).

    Google Scholar 

  53. Kaneko, Y., Nielsen, S. B. & Carpenter, B. M. The onset of laboratory earthquakes explained by nucleating rupture on a rate-and-state fault. J. Geophys. Res. Solid Earth 121, 6071–6091 (2016).

    Google Scholar 

  54. Peng, Z. & Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 3, 599–607 (2010).

    Google Scholar 

  55. Obara, K. & Kato, A. Connecting slow earthquakes to huge earthquakes. Science 353, 253–257 (2016).

    Google Scholar 

  56. Bürgmann, R. The geophysics, geology and mechanics of slow fault slip. Earth Planet. Sci. Lett. 495, 112–134 (2018).

    Google Scholar 

  57. Veedu, D. M. & Barbot, S. The Parkfield tremors reveal slow and fast ruptures on the same asperity. Nature 532, 361–365 (2016).

    Google Scholar 

  58. Kato, A. et al. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 335, 705–708 (2012).

    Google Scholar 

  59. Miyazaki, S., McGuire, J. J. & Segall, P. Seismic and aseismic fault slip before and during the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63, 637–642 (2011).

    Google Scholar 

  60. Ito, Y. et al. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics 600, 14–26 (2013).

    Google Scholar 

  61. Bedford, J. R. et al. Months-long thousand-kilometre-scale wobbling before great subduction earthquakes. Nature 580, 628–635 (2020).

    Google Scholar 

  62. Ozawa, S. et al. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. J. Geophys. Res. Solid Earth 117, B07404 (2012).

    Google Scholar 

  63. Panet, I., Bonvalot, S., Narteau, C., Remy, D. & Lemoine, J. M. Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data. Nat. Geosci. 11, 367–373 (2018).

    Google Scholar 

  64. Ando, R. & Imanishi, K. Possibility of Mw 9.0 mainshock triggered by diffusional propagation of after-slip from Mw 7.3 foreshock. Earth Planets Space 63, 767–771 (2011).

    Google Scholar 

  65. Obara, K. Phenomenology of deep slow earthquake family in southwest Japan: Spatiotemporal characteristics and segmentation. J. Geophys. Res. Solid Earth 115, B00A25 (2010).

    Google Scholar 

  66. Igarashi, T. Spatial changes of inter-plate coupling inferred from sequences of small repeating earthquakes in Japan. Geophys. Res. Lett. 37, L20304 (2010).

    Google Scholar 

  67. Chen, T. & Lapusta, N. Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model. J. Geophys. Res. Solid Earth 114, B01311 (2009).

    Google Scholar 

  68. Uchida, N. & Bürgmann, R. Repeating earthquakes. Annu. Rev. Earth Planet. Sci. 47, 305–332 (2019).

    Google Scholar 

  69. Ohta, Y. et al. Geodetic constraints on afterslip characteristics following the March 9, 2011, Sanriku-oki earthquake, Japan. Geophys. Res. Lett. 39, L16304 (2012).

    Google Scholar 

  70. Hino, R. et al. Was the 2011 Tohoku-Oki earthquake preceded by aseismic preslip? Examination of seafloor vertical deformation data near the epicenter. Mar. Geophys. Res. 35, 181–190 (2014).

    Google Scholar 

  71. Katakami, S. et al. Spatiotemporal variation of tectonic tremor activity before the Tohoku-Oki earthquake. J. Geophys. Res. Solid Earth 123, 9676–9688 (2018).

    Google Scholar 

  72. Wang, L. & Burgmann, R. Statistical significance of precursory gravity changes before the 2011 Mw 9.0 Tohoku-Oki earthquake. Geophys. Res. Lett. 46, 7323–7332 (2019).

    Google Scholar 

  73. Bouchon, M. et al. Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nat. Geosci. 9, 380–383 (2016).

    Google Scholar 

  74. Mavrommatis, A. P., Segall, P., Uchida, N. & Johnson, K. M. Long-term acceleration of aseismic slip preceding the Mw 9 Tohoku-oki earthquake: Constraints from repeating earthquakes. Geophys. Res. Lett. 42, 9717–9725 (2015).

    Google Scholar 

  75. Yokota, Y. & Koketsu, K. A very long-term transient event preceding the 2011 Tohoku earthquake. Nat. Commun. 6, 5934 (2015).

    Google Scholar 

  76. Uchida, N. & Matsuzawa, T. Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture. Earth Planet. Sci. Lett. 374, 81–91 (2013).

    Google Scholar 

  77. Baba, S., Takeo, A., Obara, K., Matsuzawa, T. & Maeda, T. Comprehensive detection of very low frequency earthquakes off the Hokkaido and Tohoku Pacific coasts, northeastern Japan. J. Geophys. Res. Solid Earth 125, e2019JB017988 (2020).

    Google Scholar 

  78. Sato, T., Hiratsuka, S. & Mori, J. Precursory seismic activity surrounding the high-slip patches of the 2011 Mw 9.0 Tohoku-Oki earthquake. Bull. Seismol. Soc. Am. 103, 3104–3114 (2013).

    Google Scholar 

  79. Kato, A. & Nakagawa, S. Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophys. Res. Lett. 41, 5420–5427 (2014).

    Google Scholar 

  80. Ruiz, S. et al. Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw8.1 earthquake. Science 1165, 1165–1169 (2014).

    Google Scholar 

  81. Schurr, B. et al. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 512, 299–302 (2014).

    Google Scholar 

  82. Meng, L., Huang, H., Bürgmann, R., Ampuero, J. P. & Strader, A. Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence. Earth Planet. Sci. Lett. 411, 177–187 (2015).

    Google Scholar 

  83. Kato, A., Fukuda, J., Kumazawa, T. & Nakagawa, S. Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 earthquake. Sci. Rep. 6, 24792 (2016).

    Google Scholar 

  84. Bedford, J., Moreno, M., Schurr, B., Bartsch, M. & Oncken, O. Investigating the final seismic swarm before the Iquique-Pisagua 2014 Mw 8.1 by comparison of continuous GPS and seismic foreshock data. Geophys. Res. Lett. 42, 3820–3828 (2015).

    Google Scholar 

  85. Herman, M. W., Furlong, K. P., Hayes, G. P. & Benz, H. M. Foreshock triggering of the 1 April 2014 Mw 8.2 Iquique, Chile, earthquake. Earth Planet. Sci. Lett. 447, 119–129 (2016).

    Google Scholar 

  86. Jara, J., Socquet, A., Marsan, D. & Bouchon, M. Long-term interactions between intermediate depth and shallow seismicity in North Chile subduction zone. Geophys. Res. Lett. 44, 9283–9292 (2017).

    Google Scholar 

  87. Socquet, A. et al. An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophys. Res. Lett. 44, 4046–4053 (2017).

    Google Scholar 

  88. Ruiz, S. et al. Nucleation phase and dynamic inversion of the Mw 6.9 Valparaíso 2017 earthquake in Central Chile. Geophys. Res. Lett. 44, 10,290–10,297 (2017).

    Google Scholar 

  89. Nishikawa, T. & Ide, S. Recurring slow slip events and earthquake nucleation in the source region of the M 7 Ibaraki-Oki earthquakes revealed by earthquake swarm and foreshock activity. J. Geophys. Res. Solid Earth 123, 7950–7968 (2018).

    Google Scholar 

  90. Reches, Z., Zu, X. & Carpenter, B. M. Energy-flux control of the steady-state, creep, and dynamic slip modes of faults. Sci. Rep. 9, 10627 (2019).

    Google Scholar 

  91. Frank, W. B., Rousset, B., Lasserre, C. & Campillo, M. Revealing the cluster of slow transients behind a large slow slip event. Sci. Adv. 4, eaat0661 (2018).

    Google Scholar 

  92. Bartlow, N. M. A long-term view of episodic tremor and slip in Cascadia. Geophys. Res. Lett. 47, e2019GL085303 (2020).

    Google Scholar 

  93. Wallace, L. M. Slow slip events in New Zealand. Annu. Rev. Earth Planet. Sci. 48, 175–203 (2020).

    Google Scholar 

  94. Yokota, Y. & Ishikawa, T. Shallow slow slip events along the Nankai Trough detected by GNSS-A. Sci. Adv. 6, eaay5786 (2020).

    Google Scholar 

  95. Kano, M. & Kato, A. Detailed spatial slip distribution for short-term slow slip events along the Nankai subduction zone, southwest Japan. J. Geophys. Res. Solid Earth 125, e2020JB019613 (2020).

    Google Scholar 

  96. Mazzotti, S. & Adams, J. Variability of near-term probability for the next great earthquake on the Cascadia subduction zone. Bull. Seismol. Soc. Am. 94, 1954–1959 (2004).

    Google Scholar 

  97. Kano, M., Kato, A. & Obara, K. Episodic tremor and slip silently invades strongly locked megathrust in the Nankai Trough. Sci. Rep. 9, 9270 (2019).

    Google Scholar 

  98. Dixon, T. H. et al. Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture. Proc. Natl Acad. Sci. USA 111, 17039–17044 (2014).

    Google Scholar 

  99. Graham, S. E. et al. GPS constraints on the 2011–2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake, southern Mexico. Geophys. J. Int. 197, 1593–1607 (2014).

    Google Scholar 

  100. Radiguet, M. et al. Triggering of the 2014 Mw7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nat. Geosci. 9, 829–833 (2016).

    Google Scholar 

  101. Hirose, H., Kimura, H., Enescu, B. & Aoi, S. Recurrent slow slip event likely hastened by the 2011 Tohoku earthquake. Proc. Natl Acad. Sci. USA 109, 15157–15161 (2012).

    Google Scholar 

  102. Vallée, M. et al. Intense interface seismicity triggered by a shallow slow slip event in the Central Ecuador subduction zone. J. Geophys. Res. Solid Earth 118, 2965–2981 (2013).

    Google Scholar 

  103. Bartlow, N. M., Wallace, L. M., Beavan, R. J., Bannister, S. & Segall, P. Time-dependent modeling of slow slip events and associated seismicity and tremor at the Hikurangi subduction zone, New Zealand. J. Geophys. Res. Solid Earth 119, 734–753 (2014).

    Google Scholar 

  104. Hirose, H., Matsuzawa, T., Kimura, T. & Kimura, H. The Boso slow slip events in 2007 and 2011 as a driving process for the accompanying earthquake swarm. Geophys. Res. Lett. 41, 2778–2785 (2014).

    Google Scholar 

  105. Fukuda, J. Variability of the space-time evolution of slow slip events off the Boso Peninsula, Central Japan, from 1996 to 2014. J. Geophys. Res. Solid Earth 123, 732–760 (2018).

    Google Scholar 

  106. Fukuda, J., Kato, A., Obara, K., Miura, S. & Kato, T. Imaging of the early acceleration phase of the 2013–2014 Boso slow slip event. Geophys. Res. Lett. 41, 7493–7500 (2014).

    Google Scholar 

  107. Kato, A., Igarashi, T. & Obara, K. Detection of a hidden Boso slow slip event immediately after the 2011 Mw 9.0 Tohoku-Oki earthquake, Japan. Geophys. Res. Lett. 41, 5868–5874 (2014).

    Google Scholar 

  108. Fukuda, J., Kato, A., Kato, N. & Aoki, Y. Are the frictional properties of creeping faults persistent? Evidence from rapid afterslip following the 2011 Tohoku-oki earthquake. Geophys. Res. Lett. 40, 3613–3617 (2013).

    Google Scholar 

  109. Hatakeyama, N., Uchida, N., Matsuzawa, T. & Nakamura, W. Emergence and disappearance of interplate repeating earthquakes following the 2011 M9.0 Tohoku-oki earthquake: Slip behavior transition between seismic and aseismic depending on the loading rate. J. Geophys. Res. Solid Earth 122, 5160–5180 (2017).

    Google Scholar 

  110. Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Google Scholar 

  111. Lay, T. et al. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. Solid Earth 117, B04311 (2012).

    Google Scholar 

  112. Guérin-Marthe, S., Nielsen, S., Bird, R., Giani, S. & Di Toro, G. Earthquake nucleation size: Evidence of loading rate dependence in laboratory faults. J. Geophys. Res. Solid Earth 124, 689–708 (2019).

    Google Scholar 

  113. Rolandone, F., Bürgmann, R. & Nadeau, R. M. The evolution of the seismic-aseismic transition during the earthquake cycle: Constraints from the time-dependent depth distribution of aftershocks. Geophys. Res. Lett. 31, L23610 (2004).

    Google Scholar 

  114. Ben-Zion, Y. & Lyakhovsky, V. Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology. Geophys. J. Int. 165, 197–210 (2006).

    Google Scholar 

  115. Cheng, Y. & Ben-Zion, Y. Transient brittle-ductile transition depth induced by moderate-large earthquakes in southern and Baja California. Geophys. Res. Lett. 46, 11109–11117 (2019).

    Google Scholar 

  116. Jamtveit, B., Ben-Zion, Y., Renard, F. & Austrheim, H. Earthquake-induced transformation of the lower crust. Nature 556, 487–491 (2018).

    Google Scholar 

  117. Kato, N., Yamamoto, K., Yamamoto, H. & Hirasawa, T. Strain-rate effect on frictional strength and the slip nucleation process. Tectonophysics 211, 269–282 (1992).

    Google Scholar 

  118. Mclaskey, G. C. & Yamashita, F. Slow and fast ruptures on a laboratory fault controlled by loading characteristics. J. Geophys. Res. Solid Earth 122, 3719–3738 (2017).

    Google Scholar 

  119. Xu, S. et al. Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments. Tectonophysics 733, 209–231 (2018).

    Google Scholar 

  120. McLaskey, G. C. Earthquake initiation from laboratory observations and implications for foreshocks. J. Geophys. Res. Solid Earth 124, 12882–12904 (2019).

    Google Scholar 

  121. Okubo, P. G. & Dieterich, J. H. Effects of physical fault properties on frictional instabilities produced on simulated faults. J. Geophys. Res. 89, 5817–5827 (1984).

    Google Scholar 

  122. Ohnaka, M. & Shen, L. Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. J. Geophys. Res. Solid Earth 104, 817–844 (1999).

    Google Scholar 

  123. Marone, C. & Kilgore, B. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones. Nature 362, 618–621 (1993).

    Google Scholar 

  124. Harbord, C. W. A., Nielsen, S. B., De Paola, N. & Holdsworth, R. E. Earthquake nucleation on rough faults. Geology 45, 931–934 (2017).

    Google Scholar 

  125. McLaskey, G. C. & Kilgore, B. D. Foreshocks during the nucleation of stick-slip instability. J. Geophys. Res. Solid Earth 118, 2982–2997 (2013).

    Google Scholar 

  126. Shibazaki, B. & Matsu’ura, M. Foreshocks and pre-events associated with the nucleation of large earthquakes. Geophys. Res. Lett. 22, 1305–1308 (1995).

    Google Scholar 

  127. Ben-Zion, Y. & Rice, J. R. Dynamic simulations of slip on a smooth fault in an elastic solid. J. Geophys. Res. Solid Earth 102, 17771–17784 (1997).

    Google Scholar 

  128. Uenishi, K. & Rice, J. R. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. J. Geophys. Res. Solid Earth 108, 2042 (2003).

    Google Scholar 

  129. Acosta, M., Passelègue, F. X., Schubnel, A., Madariaga, R. & Violay, M. Can precursory moment release scale with earthquake magnitude? A view from the laboratory. Geophys. Res. Lett. 46, 12927–12937 (2019).

    Google Scholar 

  130. Mclaskey, G. C. & Lockner, D. Preslip and cascade processes initiating laboratory stick slip. J. Geophys. Res. Solid Earth 119, 6323–6336 (2014).

    Google Scholar 

  131. Passelègue, F. X. et al. in Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture Ch. 12 (eds Thomas, M. Y., Mitchell, T. M. & Bhat, H. S.) (Wiley, 2017).

  132. Chu, R. et al. Initiation of the great Mw 9.0 Tohoku–Oki earthquake. Earth Planet. Sci. Lett. 308, 277–283 (2011).

    Google Scholar 

  133. Ohnaka, M. A physical scaling relation between the size of an earthquake and its nucleation zone size. Pure Appl. Geophys. 157, 2259–2282 (2000).

    Google Scholar 

  134. Ide, S. & Aochi, H. Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy. J. Geophys. Res. Solid Earth 110, B11303 (2005).

    Google Scholar 

  135. Hori, T. & Miyazaki, S. A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7~8 earthquakes surrounded by aseismic sliding. Earth Planets Space 63, 773–777 (2011).

    Google Scholar 

  136. Noda, H., Nakatani, M. & Hori, T. Large nucleation before large earthquakes is sometimes skipped due to cascade-up—Implications from a rate and state simulation of faults with hierarchical asperities. J. Geophys. Res. Solid Earth 118, 2924–2952 (2013).

    Google Scholar 

  137. Okubo, K. et al. Dynamics, radiation, and overall energy budget of earthquake rupture with coseismic off-fault damage. J. Geophys. Res. Solid Earth 124, 11771–11801 (2019).

    Google Scholar 

  138. Kurzon, I., Lyakhovsky, V. & Ben-Zion, Y. Dynamic rupture and seismic radiation in a damage–breakage rheology model. Pure Appl. Geophys. 176, 1003–1020 (2019).

    Google Scholar 

  139. Dieterich, J. H. & Kilgore, B. D. Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256, 219–239 (1996).

    Google Scholar 

  140. Muhuri, S. K., Dewers, T. A., Scott, T. E. Jr & Reches, Z. Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? Geology 31, 881–884 (2003).

    Google Scholar 

  141. Yu, W. C., Song, T. R. A. & Silver, P. G. Temporal velocity changes in the crust associated with the great Sumatra earthquakes. Bull. Seismol. Soc. Am. 103, 2797–2809 (2013).

    Google Scholar 

  142. Pei, S. et al. Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault. Nat. Geosci. 12, 387–392 (2019).

    Google Scholar 

  143. Qiu, H., Hillers, G. & Ben-Zion, Y. Temporal changes of seismic velocities in the San Jacinto Fault zone associated with the 2016 Mw 5.2 Borrego Springs earthquake. Geophys. J. Int. 220, 1536–1554 (2020).

    Google Scholar 

  144. Ben-Zion, Y. A critical data gap in earthquake physics. Seismol. Res. Lett. 90, 1721–1722 (2019).

    Google Scholar 

  145. Kong, Q. et al. Machine learning in seismology: Turning data into insights. Seismol. Res. Lett. 90, 3–14 (2019).

    Google Scholar 

  146. Bergen, K. J., Johnson, P. A., De Hoop, M. V. & Beroza, G. C. Machine learning for data-driven discovery in solid Earth geoscience. Science 363, eaau0323 (2019).

    Google Scholar 

  147. McBeck, J., Aiken, J. M., Ben-Zion, Y. & Renard, F. Predicting the proximity to macroscopic failure using local strain populations from dynamic in situ X-ray tomography triaxial compression experiments on rocks. Earth Planet. Sci. Lett. 543, 116344 (2020).

    Google Scholar 

  148. Zaliapin, I. & Ben-Zion, Y. Earthquake declustering using the nearest-neighbor approach in space-time-magnitude domain. J. Geophys. Res. Solid Earth 125, e2018JB017120 (2020).

    Google Scholar 

  149. Hayes, G. P. et al. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature 512, 295–298 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to I. Zaliapin for helping to produce Figs 1,2, R. Hino for providing seafloor-level data, J. Fukuda for contributing Fig. 5 and S. Guérin-Marthe for contributing Fig. 6. They acknowledge support by JSPS KAKENHI grant number JP16H06473, JST CREST grant number JPMJCR1763, Earthquake and Volcano Hazards Observation and Research Program in MEXT, the US National Science Foundation (grant EAR-1722561) and the Southern California Earthquake Center (based on NSF Cooperative Agreement EAR-1600087 and USGS Cooperative Agreement G17AC00047).

Author information

Authors and Affiliations

Authors

Contributions

A.K. and Y.B.-Z. both discussed the outline of the Review and wrote the article together.

Corresponding author

Correspondence to Aitaro Kato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Ze’ev Reches and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, A., Ben-Zion, Y. The generation of large earthquakes. Nat Rev Earth Environ 2, 26–39 (2021). https://doi.org/10.1038/s43017-020-00108-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-020-00108-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing