Abstract
Earth System Science (ESS) is a rapidly emerging transdisciplinary endeavour aimed at understanding the structure and functioning of the Earth as a complex, adaptive system. Here, we discuss the emergence and evolution of ESS, outlining the importance of these developments in advancing our understanding of global change. Inspired by early work on biosphere–geosphere interactions and by novel perspectives such as the Gaia hypothesis, ESS emerged in the 1980s following demands for a new ‘science of the Earth’. The International Geosphere-Biosphere Programme soon followed, leading to an unprecedented level of international commitment and disciplinary integration. ESS has produced new concepts and frameworks central to the global-change discourse, including the Anthropocene, tipping elements and planetary boundaries. Moving forward, the grand challenge for ESS is to achieve a deep integration of biophysical processes and human dynamics to build a truly unified understanding of the Earth System.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Change history
03 September 2020
A Correction to this paper has been published: https://doi.org/10.1038/s43017-020-0100-8
References
Vernadsky, V. I. La Géochimie (Librairie Félix Acan, 1924)
Vernadsky, V. I. The Biosphere (complete annotated edition: Foreword by Margulis, L. et al., Introduction by Grinevald, J., translated by Langmuir, D. B., revised and annotated by McMenamin, M. A. S.) (Springer, 1998)
Lovelock, J. Gaia: A New Look at Life on Earth (Oxford Univ. Press, 1979).
National Research Council. Earth System Science. Overview: A Program for Global Change (National Academies Press, 1986).
Dutreuil, S. Gaïa: Hypothèse, Programme de Recherche pour le Système Terre, ou Philosophie de la Nature? Thesis, Univ. Paris 1 Panthéon-Sorbonne (2016).
Lenton, T. M. Earth System Science. A Very Short Introduction (Oxford Univ. Press, 2016).
Grinevald, J. La Biosphère de l’Anthropocène: Climat et Pétrole, la Double Menace. Repères Transdisciplinaires (1824–2007) (Georg Editeur, 2007).
Oreskes, N. & Krige, J. Science and Technology in the Global Cold War (MIT Press, 2014).
Doel, R. E. Constituting the postwar earth sciences: the military’s influence on the environmental sciences in the USA after 1945. Soc. Stud. Sci. 33, 635–666 (2003).
Turchetti, S. & Roberts, P. The Surveillance Imperative: Geosciences During the Cold War and Beyond (Palgrave MacMillan, 2014)
Hamblin, J. D. Arming Mother Nature: The Birth of Catastrophic Environmentalism (Oxford Univ. Press, 2013).
Beynon, W. J. G. (ed.) Annals of the International Geophysical Year (Pergamon Press, 1970).
Oreskes, N. & Doel, R. E. in The Cambridge History of Science. Volume 5, The Modern Physical and Mathematical Sciences (ed. Nye, M. J.) 538–557 (Cambridge Univ. Press, 2008).
Edwards, P. N. A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (MIT Press, 2010).
Oreskes, N. The Rejection of Continental Drift: Theory and Method in American Earth Science (Oxford Univ. Press, 1999).
Warde, P., Robin, L. & Sörlin, S. The Environment. A History of the Idea (Johns Hopkins Univ. Press, 2018)
Aronova, E., Baker, K. S. & Oreskes, N. Big science and big data in biology: from the International Geophysical Year through the International Biological Program to the Long Term Ecological Research (LTER) network, 1957–present. Hist. Stud. Nat. Sci. 40, 183–224 (2010).
Grinevald, J. in Gaia in Action: Science of the Living Earth (ed. Bunyard, P.) 34–53 (Floris Books, 1996).
Grinevald, J. in The Biosphere (ed. Vernadsky V. I.) 20–32 (Springer, 1998).
Kwa, C. Representations of nature mediating between ecology and science policy: the case of the International Biological Programme. Soc. Stud. Sci. 17, 413–442 (1987).
Kwa, C. Modeling the grasslands. Hist. Stud. Phys. Biol. Sci. 24, 125–155 (1993).
Carson, R. Silent Spring (Houghton Mifflin, 1962).
Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of total ozone in Antarctica reveal seasonal interaction. Nature 315, 207–210 (1985).
Besel, R. D. Accommodating climate change science: James Hansen and the rhetorical/political emergence of global warming. Sci. Cont. 26, 137–152 (2013).
Meadows, D. H., Meadows, D. L., Randers, J. & Behrens III, W. W. Limits to Growth (Universe Books, 1972).
Vieille Blanchard, E. Les Limites à la Croissance dans un Monde Global: Modélisations, Prospectives, Refutations. Thesis, Ecole Hautes Etudes Sci. Soc. (2011).
Poole, R. Earthrise: How Man First Saw the Earth (Yale Univ. Press, 2008).
Grevsmühl, S. V. Images, imagination and the global environment: towards an interdisciplinary research agenda on global environmental images. Geo 3, e00020 (2016).
Höhler, S. Spaceship Earth in the Environmental Age, 1960–1990 (Routledge, 2015).
Lovelock, J. & Margulis, L. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26, 2–10 (1974).
Doolittle, F. W. Is nature really motherly? Coevol. Q. 29, 58–63 (1982).
Kirchner, J. The Gaia hypothesis: can it be tested? Rev. Geophys. 27, 223–235 (1989).
Lovelock, J. & Whitfield, M. Life span of the biosphere. Nature 296, 561–563 (1982).
Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).
Dutreuil, S. in Dreamers, Visionaries and Revolutionaries in the Life Sciences (eds Dietrich, M. R. & Harman, O.) (Univ. Chicago Press, 2017).
Latour, B. Facing Gaia. Eight Lectures on the New Climatic Regime (Polity Press, 2017).
Waldrop, M. M. (1986) Washington embraces global earth sciences. Science 233, 1040–1042 (1986).
Edelson, E. Laying the foundation. MOSAIC 19, 4–11 (1988).
Conway, E. M. Atmospheric Science at NASA: a History (John Hopkins Univ. Press, 2008).
Bretherton, F. P. Earth system science and remote sensing. Proc. IEEE 73, 1118–1127 (1985).
Kwa, C. Local ecologies and global science: discourses and strategies of the International Geosphere-Biosphere Programme. Soc. Stud. Sci. 35, 923–950 (2005).
Kwa, C. The programming of interdisciplinary research through informal science-policy interactions. Sci. Public Policy 33, 457–467 (2006).
Uhrqvist, O. Seeing and Knowing the Earth as a System: An Effective History of Global Environmental Change Research as Scientific and Political Practice. Thesis, Linköping Univ. (2014).
Richardson, K. & Steffen, W. in Handbook of Science and Technology Convergence (Springer, 2014).
Brundtland Commission. Our Common Future: Report of the World Commission on Environment and Development (Oxford Univ. Press, 1987).
Roederer, J. G. ICSU gives green light to IGBP. Eos Trans. Am. Geophys. Union 67, 777–781 (1986).
Lubchenco, J. et al. The sustainable biosphere initiative: an ecological research agenda. Ecology 72, 371–412 (1991).
Huntley, B. J. et al. A sustainable biosphere: the global imperative. The International Sustainable Biosphere Initiative. Ecol. Int. 20, 1–14 (1991).
Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
Clark, W. C. & Munn, R. E. Sustainable Development of the Biosphere (Cambridge Univ. Press, 1986).
Kates, R. W. et al. Sustainability science. Science 292, 641–642 (2001).
Schellnhuber, H. J. in Earth System Analysis. Integrating Science for Sustainability (eds Schellnhuber, H. J. & Wentzel, V.) 3–195 (Springer, 1998).
Schellnhuber, H. J. ‘Earth system’ analysis and the second Copernican revolution. Nature 402, C19–C23 (1999).
Crutzen, P. J. M. in Nobel Lectures, Chemistry 1991–1995 (ed. Malmström, B. G.) 189–244 (World Scientific Publishing, 1997).
Steffen, W. et al. Global Change and the Earth System: A Planet Under Pressure (Springer, 2004).
Leemans, R. et al. Developing a common strategy for integrative global environmental change research and outreach: the Earth System Science Partnership (ESSP). Curr. Opin. Environ. Sust. 1, 4–13 (2009).
Seitzinger, S. et al. International Geosphere–Biosphere Programme and Earth system science: three decades of co-evolution. Anthropocene 12, 3–16 (2015).
Harris, D. C. Charles David Keeling and the story of atmospheric CO2 measurements. Anal. Chem. 82, 7865–7870 (2010).
Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
Conway, E. M. Drowning in data: Satellite oceanography and information overload in the Earth sciences. Hist. Stud. Phys. Biol. Sci. 37, 127–151 (2006).
Toth, C. & Jóźków, G. Remote sensing platforms and sensors: a survey. ISPRS J. Photogr. Remote Sens. 115, 22–36 (2016).
Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: A net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).
Yang, Y., Donohue, R. J. & McVicar, T. R. Global estimation of effective plant rooting depth: Implications for hydrological modeling. Water Resour. Res. 52, 8260–8276 (2016).
Ramanathan, V., Crutzen, P. J., Mitra, A. P. & Sikka, D. The Indian Ocean experiment and the Asian brown cloud. Curr. Sci. 83, 947–955 (2002).
Broecker, W. S., Takahashi, T., Simpson, H. J. & Peng, T.-H. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409–418 (1979).
Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).
PAGES (Past Interglacial Working Group of Past Global Changes). Interglacials of the last 800,000 years. Rev. Geophys. 54, 162–219 (2016).
Summerhayes, C. P. Earth’s Climate Evolution (Wiley, 2015).
McInerney, F. A. & Wing, S. L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Ann. Rev. Earth Planet. Sci. 39, 489–516 (2011).
Williamson, P. et al. Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance. Process Saf. Environ. Prot. 90, 475–488 (2012).
Norby, R. J. & Zak, D. R. Ecological lessons from Free-Air CO2 Enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).
Aronson, E. & McNulty, S. G. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agric. For. Meteorol. 149, 1791–1799 (2009).
Levin, S. Fragile Dominion: Complexity and The Commons (Helix Books, 1999).
Lenton, T. M. et al. Tipping elements in Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).
Budyko, M. I. The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969).
Sellers, W. A climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. 8, 392–400 (1969).
Watson, A. & Lovelock, J. Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B 35, 284–289 (1983).
Dahan, A. Putting the Earth System in a numerical box? The evolution from climate modeling toward global change. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 41, 282–292 (2010).
Flato, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Kiehl, J. T. & Shields, C. A. Sensitivity of the Palaeocene–Eocene Thermal Maximum climate to cloud properties. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 371, 20130093 (2013).
Kump, L. R. & Pollard, D. Amplification of Cretaceous warmth by biological cloud feedbacks. Science 320, 195 (2008).
Heymann, M. & Dahan Dalmedico, A. Epistemology and politics in Earth system modelling: historical perspectives. J. Adv. Model. Earth Syst. 11, 1139–1152 (2019).
van Vuuren, D. P. et al. How well do integrated assessment models simulate climate change? Clim. Change 104, 255–285 (2011).
Shaman, J., Solomon, S., Colwell, R. R. & Field, C. B. Fostering advances in interdisciplinary climate science. Proc. Natl Acad. Sci. USA 110, 3653–3656 (2013).
The Royal Society & National Academy of Sciences. Modeling Earth’s future: integrated assessments of linked human-natural systems (Royal Society, 2019).
Intergovernmental Panel on Climate Change. AR5 Climate Change 2014: mitigation of climate change (IPCC, 2014).
Prinn, R. et al. Integrated global system model for climate model assessment: feedbacks and sensitivity studies. Clim. Change 41, 469–546 (1999).
Prinn, R. Development and application of earth system models. Proc. Natl Acad. Sci. USA 110, 3673–3680 (2012).
Claussen, M. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim. Dyn. 18, 579–586 (2002).
Ganopolski, A., Winkelmann, R. & Schellnhuber, H. J. Critical insolation–CO2 relation for diagnosing past and future glacial inception. Nature 529, 200–203 (2016).
Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).
IPCC (Intergovernmental Panel on Climate Change) Special Report on Global Warming of 1.5 °C. http://ipcc.ch/report/sr15/ (2018).
Intergovernmental Panel on Climate Change. Special report on the ocean and cryosphere in a changing climate (IPCC, 2019).
Hoegh-Guldberg, O., Northrop, E. & Lubchenco, J. The ocean is key to achieving climate and societal goals. Science 365, 1372–1374 (2019).
Reid, W. V. & Mooney, H. A. The millennium ecosystem assessment: testing the limits of interdisciplinary and multi-scale science. Curr. Opin. Environ. Sust. 19, 40–46 (2016).
Walker, B., Steffen, W., Canadell, J. & Ingram, J. The Terrestrial Biosphere and Global Change (Cambridge Univ. Press, 1999).
Crossland, C. J. et al. (eds) Coastal Fluxes in the Anthropocene (Springer, 2005).
Fasham, M. J. R. Ocean Biogeochemistry (Springer, 2003).
Kabat, P. et al. (eds) Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System (Springer, 2004).
Alverson, K. D., Bradley, R. S. & Pedersen, T. F. Paleoclimate, Global Change and the Future (Springer, 2003).
Brasseur, G. P., Prinn, R. G. & Pszenny, A. A. P. Atmospheric Chemistry in a Changing World (Springer, 2003).
Lambin, E. F. & Geist, H. J. Land-Use and Land-Cover Change (Springer, 2006).
Brondizio, E. S. et al. Re-conceptualizing the Anthropocene: a call for collaboration. Glob. Environ. Change 39, 318–327 (2016).
Dube, O. P. & Sivakumar, M. Global environmental change and vulnerability of Least Developed Countries to extreme events: Editorial on the special issue. Weather Clim. Extremes 7, 2–7 (2015).
Palsson, G. et al. Reconceptualizing the ‘Anthropos’ in the Anthropocene: Integrating the social sciences and humanities in global environmental change research. Environ. Sci. Policy 28, 3–13 (2013).
Biermann, F. et al. Down to Earth: contextualizing the Anthropocene. Glob. Environ. Change 39, 341–350 (2015).
Malm, A. & Hornborg, A. The geology of mankind? A critique of the Anthropocene narrative. Anthrop. Rev. 1, 62–69 (2014).
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthrop. Rev. 2, 81–98 (2015).
Lövbrand, E., Stripple, J. & Wiman, B. Earth system governmentality: reflections on science in the Anthropocene. Glob. Environ. Change 19, 7–13 (2009).
Steffen, W. et al. The Anthropocene: from global change to planetary stewardship. Ambio 40, 739 (2011).
Schellnhuber, H. J. & Held, H. in The Eleventh Linacre Lectures (eds Briden, J. C. & Downing, T.) (Oxford Univ. Press, 2002).
Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).
Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6, 649–653 (2016).
Cai, Y., Lenton, T. M. & Lontzek, T. S. Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nat. Clim. Change 6, 520–525 (2016).
Hansen, J. et al. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming could be dangerous. Atmos. Chem. Phys. 16, 3761–3812 (2016).
Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).
Aykut, S. Les “limites” du changement climatique. Cités 63, 193–236 (2015).
Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).
Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).
Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 592–595 (2019).
Alvaredo, F., Chancel, L., Piketty, T., Saez, E. & Zucman, G. World Inequality Report 2018 (Belknap Press, 2018).
Levin, S. et al. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).
Lubchenco, J., Cerny-Chipman, E. B., Reimer, J. N. & Levin, S. A. The right incentives enable ocean sustainability successes and provide hope for the future. Proc. Natl Acad. Sci. USA 113, 14507–14514 (2016).
Folke, C., Biggs, R., Norström, A. V., Reyers, B. & Rockström, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21, 41 (2016).
Carpenter, S. R., Folke, C., Scheffer, M. & Westley, F. R. Dancing on the volcano: social exploration in times of discontent. Ecol. Soc. 24, 23 (2019).
Haff, P. Humans and technology in the Anthropocene: Six rules. Anthrop. Rev. 1, 126–136 (2014).
Picketty, T. Capital in the Twenty-First Century (Harvard Univ. Press, 2014).
Magalhães, P., Steffen, W., Bosselmann, K., Aragão, A. & Soromenho-Marques, V. The Safe Operating Space Treaty: A New Approach to Managing our Use of the Earth System (Cambridge Scholars Publishing, 2016).
Rockström, J. & Klum, M. Big World, Small Planet: Abundance within Planetary Boundaries (Yale Univ. Press, 2015).
Crutzen, P. J. & Stoermer, E. F. The “Anthropocene”. IGBP Newsl. 41, 17–18 (2000).
Crutzen, P. J. Geology of mankind—the Anthropocene. Nature 415, 23 (2002).
Steffen, W. et al. Stratigraphic and Earth System approaches to defining the Anthropocene. Earths Future 4, 324–345 (2016).
Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of Nature? AMBIO 36, 614–621 (2007).
McNeill, J. R. Something New Under the Sun (W.W. Norton, 2000).
Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).
Zalasiewicz, J. et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int. 383, 196–203 (2015).
Malhi, Y. The concept of the Anthropocene. Annu. Rev. Environ. Resour. 42, 77–99 (2017).
Bonneuil, C. & Fressoz, J. B. The Shock of the Anthropocene: The Earth, History and Us (Verso, 2016).
Bai, X. et al. (2016) Plausible and desirable futures in the Anthropocene: a new research agenda. Glob. Environ. Change 39, 351–362 (2016).
Acknowledgements
JR was supported for this work by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Earth Resilience in the Anthropocene, grant no. ERC-2016-ADG 743080).
Author information
Authors and Affiliations
Contributions
All authors contributed to the design and writing of the article. S.D. provided essential inputs on the history of ESS. T.M.L. helped W.S. to structure the article. W.S. drafted Figure 3.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks Sybil Seitzinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Steffen, W., Richardson, K., Rockström, J. et al. The emergence and evolution of Earth System Science. Nat Rev Earth Environ 1, 54–63 (2020). https://doi.org/10.1038/s43017-019-0005-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-019-0005-6
This article is cited by
-
Big Data in Earth system science and progress towards a digital twin
Nature Reviews Earth & Environment (2023)
-
Deploying digitalisation and artificial intelligence in sustainable development research
Environment, Development and Sustainability (2023)
-
RETRACTED ARTICLE: Integrated approach for ocean data remote sensing with extensive ecological and earth system science learning
Annals of Operations Research (2023)