Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Artificial intelligence-powered electronic skin

Abstract

Skin-interfaced electronics is gradually changing medical practices by enabling continuous and non-invasive tracking of physiological and biochemical information. With the rise of big data and digital medicine, next-generation electronic skin (e-skin) will be able to use artificial intelligence (AI) to optimize its design as well as uncover user-personalized health profiles. Recent multimodal e-skin platforms have already used machine learning algorithms for autonomous data analytics. Unfortunately, there is a lack of appropriate AI protocols and guidelines for e-skin devices, resulting in overly complex models and non-reproducible conclusions for simple applications. This Review aims to present AI technologies in e-skin hardware and assess their potential for new inspired integrated platform solutions. We outline recent breakthroughs in AI strategies and their applications in engineering e-skins as well as understanding health information collected by e-skins, highlighting the transformative deployment of AI in robotics, prosthetics, virtual reality and personalized healthcare. We also discuss the challenges and prospects of AI-powered e-skins as well as predictions for the future trajectory of smart e-skins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of AI-powered e-skin and ML pipelines.
Fig. 2: Emerging sensors in e-skin for health monitoring and robotics.
Fig. 3: ML optimizations for e-skin designs.
Fig. 4: AI-powered e-skin for HMIs.
Fig. 5: AI-powered e-skins for personalized healthcare and predictive disease diagnostics.

Similar content being viewed by others

References

  1. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  Google Scholar 

  2. Yu, Y. et al. All-printed soft human–machine interface for robotic physicochemical sensing. Sci. Robot. 7, eabn0495 (2022).

    Article  Google Scholar 

  3. Shirzaei Sani, E. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).

    Article  Google Scholar 

  4. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  Google Scholar 

  5. Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    Article  Google Scholar 

  6. Lochner, C. M., Khan, Y., Pierre, A. & Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014).

    Article  Google Scholar 

  7. Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    Article  Google Scholar 

  8. Zhang, Z. et al. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. npj Flex. Electron. 4, 1–12 (2020).

    Article  Google Scholar 

  9. Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H. & Bao, Z. The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

    Article  Google Scholar 

  10. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  Google Scholar 

  11. Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article  Google Scholar 

  12. Jung, Y. H. et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5, 374–385 (2022).

    Article  Google Scholar 

  13. Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

    Article  Google Scholar 

  14. Yang, Y. et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 28, 2207–2215 (2022).

    Article  Google Scholar 

  15. Mishra, T. et al. Pre-symptomatic detection of COVID-19 from smartwatch data. Nat. Biomed. Eng. 4, 1208–1220 (2020).

    Article  Google Scholar 

  16. Quer, G. et al. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 27, 73–77 (2021).

    Article  Google Scholar 

  17. Xiao, X., Fang, Y., Xiao, X., Xu, J. & Chen, J. Machine-learning-aided self-powered assistive physical therapy devices. ACS Nano 15, 18633–18646 (2021).

    Article  Google Scholar 

  18. Ngiam, K. Y. & Khor, I. W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 20, e262–e273 (2019).

    Article  Google Scholar 

  19. Elmarakeby, H. A. et al. Biologically informed deep neural network for prostate cancer discovery. Nature 598, 348–352 (2021).

    Article  Google Scholar 

  20. Haug, C. J. & Drazen, J. M. Artificial intelligence and machine learning in clinical medicine, 2023. N. Engl. J. Med. 388, 1201–1208 (2023).

    Article  Google Scholar 

  21. Brownstein, J. S., Rader, B., Astley, C. M. & Tian, H. Advances in artificial intelligence for infectious-disease surveillance. N. Engl. J. Med. 388, 1597–1607 (2023).

    Article  Google Scholar 

  22. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    Article  Google Scholar 

  23. Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).

    Article  Google Scholar 

  24. Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011).

    Article  Google Scholar 

  25. You, I. et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 370, 961–965 (2020).

    Article  Google Scholar 

  26. Lee, S. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 472–478 (2016).

    Article  Google Scholar 

  27. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  Google Scholar 

  28. Wang, C. et al. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12, 899–904 (2013).

    Article  Google Scholar 

  29. Sun, H., Kuchenbecker, K. J. & Martius, G. A soft thumb-sized vision-based sensor with accurate all-round force perception. Nat. Mach. Intell. 4, 135–145 (2022).

    Article  Google Scholar 

  30. Tee, B. C.-K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    Article  Google Scholar 

  31. Chun, S. et al. An artificial neural tactile sensing system. Nat. Electron. 4, 429–438 (2021).

    Article  Google Scholar 

  32. Huang, Y.-C. et al. Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 3, 59–69 (2020).

    Article  Google Scholar 

  33. Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article  Google Scholar 

  34. Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article  Google Scholar 

  35. Gao, X. et al. A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat. Commun. 13, 7757 (2022).

    Article  Google Scholar 

  36. Han, S. et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med. 10, eaan4950 (2018).

    Article  Google Scholar 

  37. Eggenberger, P. et al. Prediction of core body temperature based on skin temperature, heat flux, and heart rate under different exercise and clothing conditions in the heat in young adult males. Front. Physiol. 9, 1780 (2018).

    Article  Google Scholar 

  38. Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020).

    Article  MathSciNet  Google Scholar 

  39. Sugiyama, M. et al. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat. Electron. 2, 351–360 (2019).

    Article  Google Scholar 

  40. Kim, M. K. et al. Flexible submental sensor patch with remote monitoring controls for management of oropharyngeal swallowing disorders. Sci. Adv. 5, eaay3210 (2019).

    Article  Google Scholar 

  41. Kwon, Y.-T. et al. Printed, wireless, soft bioelectronics and deep learning algorithm for smart human–machine interfaces. ACS Appl. Mater. Interfaces 12, 49398–49406 (2020).

    Article  Google Scholar 

  42. Tian, L. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3, 194–205 (2019).

    Article  Google Scholar 

  43. Mahmood, M. et al. Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm. Nat. Mach. Intell. 1, 412–422 (2019).

    Article  Google Scholar 

  44. Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    Article  Google Scholar 

  45. Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  Google Scholar 

  46. Tu, J. et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 7, 1293–1306 (2023).

  47. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article  Google Scholar 

  48. Arakawa, T. et al. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: a novel cavitas sensor. Biosens. Bioelectron. 84, 106–111 (2016).

    Article  Google Scholar 

  49. Chen, Y. et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 3, e1701629 (2017).

    Article  Google Scholar 

  50. Min, J. et al. Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023).

    Article  Google Scholar 

  51. Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).

    Article  Google Scholar 

  52. Teymourian, H. et al. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 5, 2679–2700 (2020).

    Article  Google Scholar 

  53. Lin, S. et al. Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 8, eabq4539 (2022).

    Article  Google Scholar 

  54. Tai, L.-C. et al. Wearable sweat band for noninvasive levodopa monitoring. Nano Lett. 19, 6346–6351 (2019).

    Article  Google Scholar 

  55. Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    Article  Google Scholar 

  56. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    Article  Google Scholar 

  57. Song, Y. et al. 3D-printed epifluidic electronic skin for machine learning–powered multimodal health surveillance. Sci. Adv. 9, eadi6492 (2023).

    Article  Google Scholar 

  58. Tai, L.-C. et al. Methylxanthine drug monitoring with wearable sweat sensors. Adv. Mater. 30, 1707442 (2018).

    Article  Google Scholar 

  59. Gao, W. et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens. 1, 866–874 (2016).

    Article  Google Scholar 

  60. Kintz, P., Tracqui, A., Mangin, P. & Edel, Y. Sweat testing in opioid users with a sweat patch. J. Anal. Toxicol. 20, 393–397 (1996).

    Article  Google Scholar 

  61. Tai, L.-C. et al. Nicotine monitoring with a wearable sweat band. ACS Sens. 5, 1831–1837 (2020).

    Article  Google Scholar 

  62. Shirasu, M. & Touhara, K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J. Biochem. 150, 257–266 (2011).

    Article  Google Scholar 

  63. Saasa, V., Beukes, M., Lemmer, Y. & Mwakikunga, B. Blood ketone bodies and breath acetone analysis and their correlations in type 2 diabetes mellitus. Diagnostics 9, 224 (2019).

    Article  Google Scholar 

  64. Risby, T. H. & Solga, S. F. Current status of clinical breath analysis. Appl. Phys. B 85, 421–426 (2006).

    Article  Google Scholar 

  65. Jalal, A. H. et al. Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 3, 1246–1263 (2018).

    Article  Google Scholar 

  66. Capman, N. S. S. et al. Machine learning-based rapid detection of volatile organic compounds in a graphene electronic nose. ACS Nano 16, 19567–19583 (2022).

    Article  Google Scholar 

  67. Ozer, E. et al. A hardwired machine learning processing engine fabricated with submicron metal-oxide thin-film transistors on a flexible substrate. Nat. Electron. 3, 419–425 (2020).

    Article  Google Scholar 

  68. Jirayupat, C. et al. Breath odor-based individual authentication by an artificial olfactory sensor system and machine learning. Chem. Commun. 58, 6377–6380 (2022).

    Article  Google Scholar 

  69. Grell, M. et al. Point-of-use sensors and machine learning enable low-cost determination of soil nitrogen. Nat. Food 2, 981–989 (2021).

    Article  Google Scholar 

  70. Guo, L. et al. Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks. Adv. Mater. 32, 2004805 (2020).

    Article  Google Scholar 

  71. Hippalgaonkar, K. et al. Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nat. Rev. Mater. 8, 241–260 (2023).

    Article  Google Scholar 

  72. Batra, R., Song, L. & Ramprasad, R. Emerging materials intelligence ecosystems propelled by machine learning. Nat. Rev. Mater. 6, 655–678 (2021).

    Article  Google Scholar 

  73. Pyun, K. R., Rogers, J. A. & Ko, S. H. Materials and devices for immersive virtual reality. Nat. Rev. Mater. 7, 841–843 (2022).

    Article  Google Scholar 

  74. Libanori, A., Chen, G., Zhao, X., Zhou, Y. & Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 5, 142–156 (2022).

    Article  Google Scholar 

  75. Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).

    Article  Google Scholar 

  76. Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014).

    Article  Google Scholar 

  77. Yuk, H. et al. Dry double-sided tape for adhesion of wet tissues and devices. Nature 575, 169–174 (2019).

    Article  Google Scholar 

  78. Mukasa, D. et al. A computationally assisted approach for designing wearable biosensors toward non-invasive personalized molecular analysis. Adv. Mater. 35, 2212161 (2023).

  79. Hart, G. L. W., Mueller, T., Toher, C. & Curtarolo, S. Machine learning for alloys. Nat. Rev. Mater. 6, 730–755 (2021).

    Article  Google Scholar 

  80. Tao, H. et al. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 6, 701–716 (2021).

    Article  Google Scholar 

  81. Ding, W.-L. et al. Accelerating evaluation of the mobility of ionic liquid-modulated PEDOT flexible electronics using machine learning. J. Mater. Chem. A 9, 25547–25557 (2021).

    Article  Google Scholar 

  82. Kim, E. et al. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem. Mater. 29, 9436–9444 (2017).

    Article  Google Scholar 

  83. Kim, E. et al. Inorganic materials synthesis planning with literature-trained neural networks. J. Chem. Inf. Model. 60, 1194–1201 (2020).

    Article  Google Scholar 

  84. Abbasi Shirsavar, M. et al. Machine learning-assisted e-jet printing for manufacturing of organic flexible electronics. Biosens. Bioelectron. 212, 114418 (2022).

    Article  Google Scholar 

  85. Wang, H. et al. GCN-RL circuit designer: transferable transistor sizing with graph neural networks and reinforcement learning. In 2020 57th ACM/IEEE Design Automation Conference https://doi.org/10.1109/DAC18072.2020.9218757 (IEEE, 2020).

  86. Liu, S. et al. Conformability of flexible sheets on spherical surfaces. Sci. Adv. 9, eadf2709 (2023).

    Article  Google Scholar 

  87. Hanakata, P. Z., Cubuk, E. D., Campbell, D. K. & Park, H. S. Accelerated search and design of stretchable graphene kirigami using machine learning. Phys. Rev. Lett. 121, 255304 (2018).

    Article  Google Scholar 

  88. Forte, A. E. et al. Inverse design of inflatable soft membranes through machine learning. Adv. Funct. Mater. 32, 2111610 (2022).

    Article  Google Scholar 

  89. Irwin, B. W. J., Levell, J. R., Whitehead, T. M., Segall, M. D. & Conduit, G. J. Practical applications of deep learning to impute heterogeneous drug discovery data. J. Chem. Inf. Model. 60, 2848–2857 (2020).

    Article  Google Scholar 

  90. Jia, X. et al. Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis. Nature 573, 251–255 (2019).

    Article  Google Scholar 

  91. Ballard, Z., Brown, C., Madni, A. M. & Ozcan, A. Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 3, 556–565 (2021).

    Article  Google Scholar 

  92. Rasti-Meymandi, A. & Ghaffari, A. A deep learning-based framework for ECG signal denoising based on stacked cardiac cycle tensor. Biomed. Signal Process. Control 71, 103275 (2022).

    Article  Google Scholar 

  93. Holobar, A. & Farina, D. Noninvasive neural interfacing with wearable muscle sensors: combining convolutive blind source separation methods and deep learning techniques for neural decoding. IEEE Signal Process Mag. 38, 103–118 (2021).

    Article  Google Scholar 

  94. Stalin, S. et al. A machine learning-based big EEG data artifact detection and wavelet-based removal: an empirical approach. Math. Probl. Eng. 2021, e2942808 (2021).

    Article  Google Scholar 

  95. Tang, W. et al. Microheater integrated nanotube array gas sensor for parts-per-trillion level gas detection and single sensor-based gas discrimination. ACS Nano 16, 10968–10978 (2022).

    Article  Google Scholar 

  96. Bian, L., Wang, Z., White, D. L. & Star, A. Machine learning-assisted calibration of Hg2+ sensors based on carbon nanotube field-effect transistors. Biosens. Bioelectron. 180, 113085 (2021).

    Article  Google Scholar 

  97. Zhu, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

    Article  Google Scholar 

  98. Song, J.-K. et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat. Nanotechnol. 17, 849–856 (2022).

    Article  Google Scholar 

  99. Shim, H. et al. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat. Electron. 5, 660–671 (2022).

    Article  Google Scholar 

  100. Yu, F. et al. Brain-inspired multimodal hybrid neural network for robot place recognition. Sci. Robot. 8, eabm6996 (2023).

    Article  Google Scholar 

  101. Almalioglu, Y., Turan, M., Trigoni, N. & Markham, A. Deep learning-based robust positioning for all-weather autonomous driving. Nat. Mach. Intell. 4, 749–760 (2022).

    Article  Google Scholar 

  102. Moin, A. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54–63 (2021).

    Article  Google Scholar 

  103. Kim, K. K. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2023).

    Google Scholar 

  104. Li, G., Liu, S., Wang, L. & Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 5, eabc8134 (2020).

    Article  Google Scholar 

  105. Sundaram, S. et al. Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019).

    Article  Google Scholar 

  106. Luo, Y. et al. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4, 193–201 (2021).

    Article  Google Scholar 

  107. Wang, M. et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020).

    Article  Google Scholar 

  108. Yao, H. et al. Near-hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. Proc. Natl Acad. Sci. USA 117, 25352–25359 (2020).

    Article  Google Scholar 

  109. Qu, X. et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 8, eabq2521 (2022).

    Article  Google Scholar 

  110. Gu, G. et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. 7, 589–598 (2021).

    Article  Google Scholar 

  111. Sun, T. et al. Decoding of facial strains via conformable piezoelectric interfaces. Nat. Biomed. Eng. 4, 954–972 (2020).

    Article  Google Scholar 

  112. Zhou, Z. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020).

    Article  Google Scholar 

  113. Slade, P., Kochenderfer, M. J., Delp, S. L. & Collins, S. H. Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022).

    Article  Google Scholar 

  114. Slade, P., Tambe, A. & Kochenderfer, M. J. Multimodal sensing and intuitive steering assistance improve navigation and mobility for people with impaired vision. Sci. Robot. 6, eabg6594 (2021).

    Article  Google Scholar 

  115. Ponnan, S., Theivadas, J. R., Vs, H. & Einarson, D. Driver monitoring and passenger interaction system using wearable device in intelligent vehicle. Comput. Electr. Eng. 103, 108323 (2022).

    Article  Google Scholar 

  116. Shao, H. et al. High-performance voice recognition based on piezoelectric polyacrylonitrile banofibers. Adv. Electron. Mater. 7, 2100206 (2021).

    Article  Google Scholar 

  117. Jeong, H. et al. Closed-loop network of skin-interfaced wireless devices for quantifying vocal fatigue and providing user feedback. Proc. Natl Acad. Sci. USA 120, e2219394120 (2023).

    Article  Google Scholar 

  118. Lin, Z. et al. A personalized acoustic interface for wearable human–machine interaction. Adv. Funct. Mater. 32, 2109430 (2022).

    Article  Google Scholar 

  119. Gong, S. et al. Hierarchically resistive skins as specific and multimetric on-throat wearable biosensors. Nat. Nanotechnol. 18, 889–897 (2023).

    Article  Google Scholar 

  120. Wang, H. S. et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7, eabe5683 (2021).

    Article  Google Scholar 

  121. Yang, Q. et al. Mixed-modality speech recognition and interaction using a wearable artificial throat. Nat. Mach. Intell. 5, 169–180 (2023).

    Article  Google Scholar 

  122. Zhang, Z. et al. Active mechanical haptics with high-fidelity perceptions for immersive virtual reality. Nat. Mach. Intell. 5, 643–655 (2023).

    Article  Google Scholar 

  123. Liu, Y. et al. Electronic skin as wireless human-machine interfaces for robotic VR. Sci. Adv. 8, eabl6700 (2022).

    Article  Google Scholar 

  124. Yao, K. et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4, 893–903 (2022).

    Article  Google Scholar 

  125. Wen, F. et al. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7, 2000261 (2020).

    Article  Google Scholar 

  126. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    Article  Google Scholar 

  127. Liu, Y. et al. Soft, miniaturized, wireless olfactory interface for virtual reality. Nat. Commun. 14, 2297 (2023).

    Article  Google Scholar 

  128. Yu, K.-H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731 (2018).

    Article  Google Scholar 

  129. Hannun, A. Y. et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019).

    Article  Google Scholar 

  130. Attia, Z. I. et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 25, 70–74 (2019).

    Article  Google Scholar 

  131. Krittanawong, C. et al. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat. Rev. Cardiol. 18, 75–91 (2021).

    Article  Google Scholar 

  132. Fang, Y. et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 33, 2104178 (2021).

    Article  Google Scholar 

  133. Kireev, D. et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17, 864–870 (2022).

    Article  Google Scholar 

  134. Choi, J., Ahmed, B. & Gutierrez-Osuna, R. Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inf. Technol. Biomed. 16, 279–286 (2012).

    Article  Google Scholar 

  135. Gjoreski, M., Luštrek, M., Gams, M. & Gjoreski, H. Monitoring stress with a wrist device using context. J. Biomed. Inform. 73, 159–170 (2017).

    Article  Google Scholar 

  136. Hwang, B. et al. Deep ECGNet: an optimal deep learning framework for monitoring mental stress using ultra short-term ECG signals. Telemed. eHealth 24, 753–772 (2018).

    Article  Google Scholar 

  137. Zeng, Z. et al. Nonintrusive monitoring of mental fatigue status using epidermal electronic systems and machine-learning algorithms. ACS Sens. 5, 1305–1313 (2020).

    Article  Google Scholar 

  138. Gholami, M., Napier, C., Patiño, A. G., Cuthbert, T. J. & Menon, C. Fatigue monitoring in running using flexible textile wearable sensors. Sensors 20, 5573 (2020).

    Article  Google Scholar 

  139. Chaabene, S. et al. Convolutional neural network for drowsiness detection using EEG signals. Sensors 21, 1734 (2021).

    Article  Google Scholar 

  140. Parlak, O., Keene, S. T., Marais, A., Curto, V. F. & Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4, eaar2904 (2018).

    Article  Google Scholar 

  141. Shah, R. V. et al. Personalized machine learning of depressed mood using wearables. Transl. Psychiatry 11, 338 (2021).

    Article  Google Scholar 

  142. Mastoras, R.-E. et al. Touchscreen typing pattern analysis for remote detection of the depressive tendency. Sci. Rep. 9, 13414 (2019).

    Article  Google Scholar 

  143. Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    Article  Google Scholar 

  144. Baik, S. et al. Diving beetle-like miniaturized plungers with reversible, rapid biofluid capturing for machine learning-based care of skin disease. Sci. Adv. 7, eabf5695 (2021).

    Article  Google Scholar 

  145. O’Brien, M. K. et al. Advanced machine learning tools to monitor biomarkers of dysphagia: a wearable sensor proof-of-concept study. Digit. Biomark. 5, 167–175 (2021).

    Article  Google Scholar 

  146. Meisel, C. et al. Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting. Epilepsia 61, 2653–2666 (2020).

    Article  Google Scholar 

  147. Ni, X. et al. Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients. Proc. Natl Acad. Sci. USA 118, e2026610118 (2021).

    Article  Google Scholar 

  148. Yang, C. et al. A machine-learning-enhanced simultaneous and multimodal sensor based on moist-electric powered graphene oxide. Adv. Mater. 34, 2205249 (2022).

    Article  Google Scholar 

  149. Miljković, F. et al. Machine learning models for human in vivo pharmacokinetic parameters with in-house validation. Mol. Pharm. 18, 4520–4530 (2021).

    Article  Google Scholar 

  150. Keutzer, L. et al. Machine learning and pharmacometrics for prediction of pharmacokinetic data: differences, similarities and challenges illustrated with rifampicin. Pharmaceutics 14, 1530 (2022).

    Article  Google Scholar 

  151. Khajuria, R. & Sarwar, A. in Recent Innovations in Computing Lecture Notes in Electrical Engineering Vol. 832 (eds Singh, P. K. et al.) 179–188 (Springer, 2022).

  152. Li, H., Wu, J., Gao, Y. & Shi, Y. Examining individuals’ adoption of healthcare wearable devices: an empirical study from privacy calculus perspective. Int. J. Med. Inform. 88, 8–17 (2016).

    Article  Google Scholar 

  153. Lee, P., Bubeck, S. & Petro, J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. N. Engl. J. Med. 388, 1233–1239 (2023).

    Article  Google Scholar 

  154. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    Article  Google Scholar 

  155. Buergel, T. et al. Metabolomic profiles predict individual multidisease outcomes. Nat. Med. 28, 2309–2320 (2022).

    Article  Google Scholar 

  156. Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

    Article  Google Scholar 

  157. Han, X. et al. Deep learning models for electrocardiograms are susceptible to adversarial attack. Nat. Med. 26, 360–363 (2020).

    Article  Google Scholar 

  158. Massari, L. et al. Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin. Nat. Mach. Intell. 4, 425–435 (2022).

    Article  Google Scholar 

  159. Yan, Y. et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6, eabc8801 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Office of Naval Research grants N00014-21-1-2483 and N00014-21-1-2845, Army Research Office grant W911NF-23-1-0041, National Institutes of Health grants R01HL155815 and R21DK13266, National Science Foundation grant 2145802 and National Academy of Medicine Catalyst Award. C.X. was supported by Amazon AI4Science Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, and writing and review/editing of the paper before submission.

Corresponding author

Correspondence to Wei Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks Jun Chen, Chwee Teck Lim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Trenton Jerde, in collaboration with the Nature Machine Intelligence team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Solomon, S.A. & Gao, W. Artificial intelligence-powered electronic skin. Nat Mach Intell 5, 1344–1355 (2023). https://doi.org/10.1038/s42256-023-00760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-023-00760-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research