Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A soft-packaged and portable rehabilitation glove capable of closed-loop fine motor skills

Abstract

Regaining fine motor skills (FMSs; that is, the ability to make precise and coordinated movements of fingers) is the ultimate goal of hand rehabilitation. Although robotic-assisted technologies have been widely explored to help patients with simple hand activities, existing rehabilitation gloves still lack sensory feedback for closed-loop control or involve bulky external hardware, incapable of providing precise FMSs rehabilitation portably. Here we develop a soft rehabilitation glove that can accomplish diverse FMSs by integrating 15 bending sensors and 10 shape-memory-alloy (SMA) actuators. Three joint angles of each finger can be precisely sensed and thus are fed to the control system to actuate SMAs in a closed-loop manner. A touchable human–machine interface is also integrated to provide facile interaction for multi-modal rehabilitation exercises. Weighing only 0.49 kg, our soft glove has high portability, allowing for repetitive hand rehabilitation as needed. We validate that our glove can assist an individual with hand impairments after a stroke to realize a set of single and complex FMS rehabilitation exercises and to complete some activities of daily living.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A soft-packaged and portable rehabilitation glove capable of closed-loop FMSs.
Fig. 2: General design and working principle of the soft glove.
Fig. 3: Biomimetic design of fingerstall with joint angle sensing capability.
Fig. 4: Design of dual-SMA actuators with closed-loop controllability.
Fig. 5: FMS rehabilitation on an individual after a stroke with an impaired hand.
Fig. 6: FMS rehabilitation and daily assistance for an individual after a stroke.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supplementary Information files. Other data, if needed, can be available upon request.

Code availability

All the relevant codes are available at https://github.com/weibayang/rehabilitation_glove (ref. 65).

References

  1. Cao, D. et al. Efficacy and safety of manual acupuncture for the treatment of upper limb motor dysfunction after stroke: protocol for a systematic review and meta-analysis. PLoS ONE 16, e0258921 (2021).

    Article  Google Scholar 

  2. Sobinov, A. R. & Bensmaia, S. J. The neural mechanisms of manual dexterity. Nat. Rev. Neurosci. 22, 741–757 (2021).

    Article  Google Scholar 

  3. Yavuzer, G. et al. Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 89, 393–398 (2008).

    Article  Google Scholar 

  4. Pereira, M. F., Prahm, C., Kolbenschlag, J., Oliveira, E. & Rodrigues, N. F. Application of AR and VR in hand rehabilitation: a systematic review. J. Biomed. Inform. 111, 103584 (2020).

    Article  Google Scholar 

  5. Draganski, B. et al. Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312 (2004).

    Article  Google Scholar 

  6. Harvey, R. L. Improving poststroke recovery: neuroplasticity and task-oriented training. Curr. Treat. Options Cardiovasc. Med. 11, 251–259 (2009).

    Article  Google Scholar 

  7. Keller, J. L. et al. Thirty years of hand therapy: the 2014 practice analysis. J. Hand Ther. 29, 222–234 (2016).

    Article  Google Scholar 

  8. Zollo, L., Accoto, D., Sterzi, S. & Guglielmelli, E. Springer Handbook of Medical Technology (eds Kramme, R., et al.) Ch. 42 (Springer, 2011).

  9. van Stormbroek, K. & Buchanan, H. Novice therapists in a developing context: extending the reach of hand rehabilitation. Hand Ther. 22, 141–152 (2017).

    Article  Google Scholar 

  10. Leonardis, D. et al. An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Trans. Haptics 8, 140–151 (2015).

    Article  Google Scholar 

  11. Yang, G. Z., Riener, R. & Dario, P. To integrate and to empower: robots for rehabilitation and assistance. Sci. Robot. 2, eaan5593 (2017).

    Article  Google Scholar 

  12. Dupont, P. E. et al. A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 6, eabi8017 (2021).

    Article  Google Scholar 

  13. Borboni, A., Mor, M. & Faglia, R. Gloreha—hand robotic rehabilitation: design, mechanical model, and experiments. J. Dyn. Syst. Meas. Control. 138, 111003 (2016).

    Article  Google Scholar 

  14. Baniqued, P. D. E. et al. Brain–computer interface robotics for hand rehabilitation after stroke: a systematic review. J. Neuroeng. Rehabil. 18, 15 (2021).

    Article  Google Scholar 

  15. Lum, P. S., Godfrey, S. B., Brokaw, E. B., Holley, R. J. & Nichols, D. Robotic approaches for rehabilitation of hand function after stroke. Am. J. Phys. Med. 91, S242–S254 (2012).

    Article  Google Scholar 

  16. Torrisi, M. et al. Beyond motor recovery after stroke: the role of hand robotic rehabilitation plus virtual reality in improving cognitive function. J. Clin. Neurosci. 92, 11–16 (2021).

    Article  Google Scholar 

  17. Noronha, B. & Accoto, D. Exoskeletal devices for hand assistance and rehabilitation: a comprehensive analysis of state-of-the-art technologies. IEEE Trans. Med. Robot. Bionics 3, 525–538 (2021).

    Article  Google Scholar 

  18. Sandoval-Gonzalez, O. et al. Design and development of a Hand exoskeleton robot for active and passive rehabilitation. Int. J. Adv. Robot. Syst. 13, 1–12 (2016).

    Article  Google Scholar 

  19. Lambercy, O. et al. A haptic knob for rehabilitation of hand function. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 356–366 (2007).

    Article  Google Scholar 

  20. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A. & Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11, 3 (2014).

    Article  Google Scholar 

  21. Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1, eaah3690 (2016).

    Article  Google Scholar 

  22. Gorissen, B. et al. Elastic inflatable actuators for soft robotic applications. Adv. Mater. 29, 1604977 (2017).

    Article  Google Scholar 

  23. Yang, G. Z. et al. The grand challenges of science robotics. Sci. Robot. 3, eaar7650 (2018).

    Article  Google Scholar 

  24. Shahid, T., Gouwanda, D., Nurzaman, S. G. & Gopalai, A. A. Moving toward soft robotics: a decade review of the design of hand exoskeletons. Biomimetics 3, 17 (2018).

    Article  Google Scholar 

  25. Zhang, Y. & Lu, M. A review of recent advancements in soft and flexible robots for medical applications. Int. J. Med. Robotics. Comput. Assist. Surg. 16, e2096 (2020).

    Article  Google Scholar 

  26. Gul, J. Z. et al. 3D printing for soft robotics—a review. Sci. Technol. Adv. Mater. 19, 243–262 (2018).

    Article  Google Scholar 

  27. Sanchez, V., Walsh, C. J. & Wood, R. J. Textile technology for soft robotic and autonomous garments. Adv. Funct. Mater. 31, 2008278 (2021).

    Article  Google Scholar 

  28. Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. & Walsh, C. J. Soft robotic glove for combined assistance and at-home rehabilitation. Rob. Auton. Syst. 73, 135–143 (2015).

    Article  Google Scholar 

  29. Yap, H. K. et al. A fully fabric-based bidirectional soft robotic glove for assistance and rehabilitation of hand impaired patients. IEEE Robot. Autom. Lett. 2, 1383–1390 (2017).

    Article  Google Scholar 

  30. Wang, J., Fei, Y. & Pang, W. Design, modeling, and testing of a soft pneumatic glove with segmented pneuNets bending actuators. IEEE ASME Trans. Mechatron. 24, 990–1001 (2019).

    Article  Google Scholar 

  31. Feng, M., Yang, D. & Gu, G. High-force fabric-based pneumatic actuators with asymmetric chambers and interference-reinforced structure for soft wearable assistive gloves. IEEE Robot. Autom. Lett. 6, 3105–3111 (2021).

    Article  Google Scholar 

  32. Tang, Z. Q., Heung, H. L., Tong, K. Y. & Li, Z. Model-based online learning and adaptive control for a ‘human-wearable soft robot’ integrated system. Int. J. Rob. Res. 40, 256–276 (2021).

    Article  Google Scholar 

  33. Li, H., Cheng, L., Li, Z. & Xue, W. Active disturbance rejection control for a fluid-driven hand rehabilitation device. IEEE ASME Trans. Mechatron. 26, 841–853 (2021).

    Article  Google Scholar 

  34. Ge, L. et al. Design, modeling, and evaluation of fabric-based pneumatic actuators for soft wearable assistive gloves. Soft Robot. 7, 583–596 (2020).

    Article  Google Scholar 

  35. Popov, D., Gaponov, I. & Ryu, J. H. Portable exoskeleton glove with soft structure for hand assistance in activities of daily living. IEEE ASME Trans. Mechatron. 22, 865–875 (2017).

    Article  Google Scholar 

  36. Chen, X. et al. A wearable hand rehabilitation system with soft gloves. IEEE Trans. Industr. Inform. 17, 943–952 (2021).

    Article  Google Scholar 

  37. Xiloyannis, M., Cappello, L., Khanh, D. B., Yen, S. C. & Masia, L. Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove. In 6th IEEE International Conference on Biomedical Robotics and Biomechatronics 1213–1219 (IEEE, 2016).

  38. Nycz, C. J. et al. Design and characterization of a lightweight and fully portable remote actuation system for use with a hand exoskeleton. IEEE Robot. Autom. Lett. 1, 976–983 (2016).

    Article  Google Scholar 

  39. Kang, B. B., Choi, H., Lee, H. & Cho, K. J. Exo-Glove Poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system. Soft Robot. 6, 214–227 (2019).

    Article  Google Scholar 

  40. Dragusanu, M., Iqbal, M. Z., Baldi, T. L., Prattichizzo, D. & Malvezzi, M. Design, development, and control of a hand/wrist exoskeleton for rehabilitation and training. IEEE Trans. Robot. 38, 1472–1488 (2022).

    Article  Google Scholar 

  41. Tran, P. et al. FLEXotendon Glove-III: voice-controlled soft robotic hand exoskeleton with novel fabrication method and admittance grasping control. IEEE ASME Trans. Mechatron. 27, 3920–3931 (2022).

    Article  Google Scholar 

  42. Chen, W. et al. Soft exoskeleton with fully actuated thumb movements for grasping assistance. IEEE Trans. Robot. 38, 2194–2207 (2022).

    Article  MathSciNet  Google Scholar 

  43. Huang, X. et al. Chasing biomimetic locomotion speeds: creating untethered soft robots with shape memory alloy actuators. Sci. Robot. 3, eaau7557 (2018).

    Article  Google Scholar 

  44. Yang, X., Chang, L. & Perez-Arancibia, N. O. An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Sci. Robot. 5, eaba0015 (2020).

    Article  Google Scholar 

  45. Rodrigue, H., Wang, W., Han, M. W., Kim, T. J. Y. & Ahn, S. H. An overview of shape memory alloy-coupled actuators and robots. Soft Robot. 4, 3–15 (2017).

    Article  Google Scholar 

  46. Jeong, J. et al. Wrist assisting soft wearable robot with stretchable coolant vessel integrated SMA muscle. IEEE ASME Trans. Mechatron. 27, 1046–1058 (2022).

    Article  Google Scholar 

  47. Wang, W., Yu, C. Y., Abrego Serrano, P. A. & Ahn, S. H. Shape memory alloy-based soft finger with changeable bending length using targeted variable stiffness. Soft Robot. 7, 283–291 (2020).

    Article  Google Scholar 

  48. Nguyen, X.-T., Calderon, A. A., Rigo, A., Ge, J. Z. & Perez-Arancibia, N. O. SMALLBug: a 30-mg crawling robot driven by a high-frequency flexible SMA microactuator. IEEE Robot. Autom. Lett. 5, 6796–6803 (2020).

    Article  Google Scholar 

  49. Park, S. J., Kim, U. & Park, C. H. A novel fabric muscle based on shape memory alloy springs. Soft Robot. 7, 321–331 (2020).

    Article  Google Scholar 

  50. Yang, H., Xu, M., Li, W. & Zhang, S. Design and implementation of a soft robotic arm driven by SMA coils. IEEE Trans. Ind. Electron. 66, 6108–6116 (2019).

    Article  Google Scholar 

  51. Jin, H. et al. Modeling and motion control of a soft SMA planar actuator. IEEE ASME Trans. Mechatron. 27, 916–927 (2022).

    Article  Google Scholar 

  52. Hadi, A., Alipour, K., Kazeminasab, S. & Elahinia, M. ASR glove: a wearable glove for hand assistance and rehabilitation using shape memory alloys. J. Intell. Mater. Syst. Struct. 29, 1575–1585 (2018).

    Article  Google Scholar 

  53. Copaci, D., Arias, J., Gomez-Tome, M., Moreno, L. & Blanco, D. sEMG-based gesture classifier for a rehabilitation glove. Front. Neurorobot. 16, 750482 (2022).

    Article  Google Scholar 

  54. Tran, P., Jeong, S., Herrin, K. R. & Desai, J. P. Hand exoskeleton systems, clinical rehabilitation practices, and future prospects. IEEE Trans. Med. Robot. Bionics 3, 606–622 (2021).

    Article  Google Scholar 

  55. Zhang, D. R. et al. Real-time performance of hand motion recognition using kinematic signals for impaired hand function training. In 6th International IEEE EMBS Conference on Neural Engineering 339–342 (IEEE, 2013).

  56. Liu, X. et al. Design of virtual guiding tasks with haptic feedback for assessing the wrist motor function of patients with upper motor neuron lesions. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 984–994 (2019).

    Article  Google Scholar 

  57. Dana, A., Vollach, S. & Shilo, D. Use the force: review of high-rate actuation of shape memory alloys. Actuators 10, 7 (2021).

    Article  Google Scholar 

  58. Lagoudas, D. C. Shape Memory Alloys: Modeling and Engineering Applications (ed Lagoudas, D.) Ch. 1 (Springer, 2008).

  59. Neumann, D. Kinesiology of the Musculoskeletal System: Foundation for Rehabilitation (ed Neumann, D.) Ch. 8 (Elsevier Mosby, 2016).

  60. Kyberd, P. J. & Pons, J. L. A comparison of the Oxford and Manus intelligent hand prostheses. In 20th IEEE International Conference on Robotics and Automation 3231–3236 (IEEE, 2003).

  61. Iberall, T. Human prehension and dexterous robot hands. Int. J. Rob. Res. 16, 285–299 (1997).

    Article  Google Scholar 

  62. Cutkosky, M. R. & Wright, P. K. Modelling manufacturing grips and correlations with the design of robotic hands. In 1986 IEEE International Conference on Robotics and Automation 1533–1539 (IEEE, 1986).

  63. Ciancio, A. L., Zollo, L., Baldassarre, G., Caligiore, D. & Guglielmelli, E. The role of thumb opposition in cyclic manipulation: a study with two different robotic hands. In 4th IEEE RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics 1092–1097 (IEEE, 2012).

  64. Li, S. Spasticity, motor recovery, and neural plasticity after stroke. Front. Neurol. 8, 120 (2017).

    Article  Google Scholar 

  65. Sui, M et al. A soft-packaged and portable rehabilitation glove capable of closed-loop fine motor skills. Zenodo https://doi.org/10.5281/zenodo.8172352 (2023).

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (numbers 51975550, U21A20119, 12272369 and 51705495), National Key Research and Development Program of China (number 2022YFC2408100), Provincial Key Research and Development Program of Anhui Province (number 202104h04020004), Natural Science Foundation of Anhui Province of China under Grant 2008085UD02, and Fundamental Research Funds for the Central Universities (WK5290000002).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.S., H.J., L.W. and S.Z. Methodology: M.S., Y.O., H.J., Z.C. and C.W. Investigation: M.S., Y.O., H.J., Z.C., C.W. and J.L. Visualization: M.S., Y.O., H.J., J.L., L.W. and S.Z. Funding acquisition: H.J., L.W. and S.Z. Project administration: H.J., L.W. and S.Z. Supervision: H.J., L.W. and S.Z. Writing—original draft: M.S., H.J. and L.W. Writing—review and editing: M.S., H.J., M.X., W.L., L.W. and S.Z.

Corresponding authors

Correspondence to Hu Jin, Liu Wang or Shiwu Zhang.

Ethics declarations

Competing interests

M.S., Y.O., H.J. and S.Z. are inventors of an invention disclosure of the patent filed by University of Science and Technology of China (ZL202011284541.3, granted on 13 May 2022) related to this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks Xiaonan Huang for their contribution to the peer review of this work. Primary Handling Editor: Trenton Jerde, in collaboration with the Nature Machine Intelligence editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Tables 1–3, Figs. 1–17 and legends for Supplementary Videos 1–10.

Reporting Summary

Supplementary Video 1

Overview of the soft-packaged and portable rehabilitation glove.

Supplementary Video 2

Human–machine interface.

Supplementary Video 3

Test of the maximum contact force of the fingertip.

Supplementary Video 4

Comparison of the noise level between various actuations.

Supplementary Video 5

Design of bending sensors.

Supplementary Video 6

Single-mode FMS rehabilitation on an individual with normal hands.

Supplementary Video 7

Switch-mode FMS rehabilitation on an individual with normal hands.

Supplementary Video 8

Single-mode FMS rehabilitation on a poststroke individual with an impaired right hand.

Supplementary Video 9

Switch-mode of FMS rehabilitation on a poststroke individual with an impaired right hand.

Supplementary Video 10

Assisted daily tasks on a poststroke individual.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, M., Ouyang, Y., Jin, H. et al. A soft-packaged and portable rehabilitation glove capable of closed-loop fine motor skills. Nat Mach Intell 5, 1149–1160 (2023). https://doi.org/10.1038/s42256-023-00728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-023-00728-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing