Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological research and self-driving labs in deep space supported by artificial intelligence

Abstract

Space biology research aims to understand fundamental spaceflight effects on organisms, develop foundational knowledge to support deep space exploration and, ultimately, bioengineer spacecraft and habitats to stabilize the ecosystem of plants, crops, microbes, animals and humans for sustained multi-planetary life. To advance these aims, the field leverages experiments, platforms, data and model organisms from both spaceborne and ground-analogue studies. As research is extended beyond low Earth orbit, experiments and platforms must be maximally automated, light, agile and intelligent to accelerate knowledge discovery. Here we present a summary of decadal recommendations from a workshop organized by the National Aeronautics and Space Administration on artificial intelligence, machine learning and modelling applications that offer solutions to these space biology challenges. The integration of artificial intelligence into the field of space biology will deepen the biological understanding of spaceflight effects, facilitate predictive modelling and analytics, support maximally automated and reproducible experiments, and efficiently manage spaceborne data and metadata, ultimately to enable life to thrive in deep space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multi-hierarchical levels of space biological research and data.
Fig. 2: Self-driving labs are autonomous experimental platforms with AI and ML closed-loop control for knowledge gain and experimental design.
Fig. 3: Deep space biological and biomedical data collection and transfer.

Similar content being viewed by others

References

  1. Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183, 1162–1184 (2020).

    Article  Google Scholar 

  2. Loftus, D. J., Rask, J. C., McCrossin, C. G. & Tranfield, E. M. The chemical reactivity of lunar dust: from toxicity to astrobiology. Earth Moon Planets 107, 95–105 (2010).

    Article  Google Scholar 

  3. Pohlen, M., Carroll, D., Prisk, G. K. & Sawyer, A. J. Overview of lunar dust toxicity risk. NPJ Microgravity 8, 55 (2022).

  4. Paul, A.-L. & Ferl, R. J. The biology of low atmospheric pressure–implications for exploration mission design and advanced life support. Am. Soc. Gravit. Space Biol. 19, 3–17 (2005).

  5. Council, N. R. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era (National Academies Press, 2011).

  6. Goswami, N. et al. Maximizing information from space data resources: a case for expanding integration across research disciplines. Eur. J. Appl. Physiol. 113, 1645–1654 (2013).

    Article  Google Scholar 

  7. Nangle, S. N. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 401–407 (2020).

    Article  Google Scholar 

  8. Costes, S. V., Sanders, L. M. & Scott, R. T. Workshop on Artificial Intelligence & Modeling for Space Biology. Zenodo https://doi.org/10.5281/zenodo.7508535 (2023).

  9. Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. Topol, E. J. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (Basic Books, 2019).

  11. Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

    Article  Google Scholar 

  12. Scott, R. T. et al. Biomonitoring and precision health in deep space supported by artificial intelligence. Nat. Mach. Intell. https://doi.org/10.1038/s42256-023-00617-5 (2023).

  13. National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Board on Research Data and Information & Committee on Toward an Open Science Enterprise Open Science by Design: Realizing a Vision for 21st Century Research (National Academies Press, 2018).

  14. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  15. Berrios, D. C., Beheshti, A. & Costes, S. V. FAIRness and usability for open-access omics data systems. AMIA Annu. Symp. Proc. 2018, 232–241 (2018).

    Google Scholar 

  16. Low, L. A. & Giulianotti, M. A. Tissue chips in space: modeling human diseases in microgravity. Pharm. Res. 37, 8 (2019).

    Article  Google Scholar 

  17. Ronca, A. E., Souza, K. A. & Mains, R. C. (eds) Translational Cell and Animal Research in Space: 1965–2011 NASA Special Publication NASA/SP-2015-625 (NASA Ames Research Center, 2016).

  18. Alwood, J. S. et al. From the bench to exploration medicine: NASA life sciences translational research for human exploration and habitation missions. NPJ Microgravity 3, 5 (2017).

  19. Schatten, H., Lewis, M. L. & Chakrabarti, A. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut. 49, 399–418 (2001).

    Article  Google Scholar 

  20. Shi, L. et al. Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFκB and metabolic pathways. Cell. Mol. Immunol. 18, 1489–1502 (2021).

    Article  Google Scholar 

  21. Ferl, R. J., Koh, J., Denison, F. & Paul, A.-L. Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiology 15, 32–56 (2015).

    Article  Google Scholar 

  22. Ou, X. et al. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.). Mutat. Res. 662, 44–53 (2009).

    Article  Google Scholar 

  23. Overbey, E. G. et al. Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina. Sci. Rep. 9, 13304 (2019).

    Article  Google Scholar 

  24. Clément, G. & Slenzka, K. Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space (Springer Science & Business Media, 2006).

  25. Yeung, C. K. et al. Tissue chips in space-challenges and opportunities. Clin. Transl. Sci. 13, 8–10 (2020).

    Article  Google Scholar 

  26. Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345–361 (2021).

    Article  Google Scholar 

  27. Globus, R. K. & Morey-Holton, E. Hindlimb unloading: rodent analog for microgravity. J. Appl. Physiol. 120, 1196–1206 (2016).

    Article  Google Scholar 

  28. Simonsen, L. C., Slaba, T. C., Guida, P. & Rusek, A. NASA’s first ground-based Galactic cosmic ray simulator: enabling a new era in space radiobiology research. PLoS Biol. 18, e3000669 (2020).

    Article  Google Scholar 

  29. Buckey, J. C. Jr & Homick, J. L. The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission. NASA Technical Reports Server (NASA, 2003).

  30. Diallo, O. N. et al. Impact of the International Space Station Research Results. NASA Technical Reports Server (NASA, 2019).

  31. Vandenbrink, J. P. & Kiss, J. Z. Space, the final frontier: a critical review of recent experiments performed in microgravity. Plant Sci. 243, 115–119 (2016).

    Article  Google Scholar 

  32. Massaro Tieze, S., Liddell, L. C., Santa Maria, S. R. & Bhattacharya, S. BioSentinel: a biological CubeSat for deep space exploration. Astrobiology https://doi.org/10.1089/ast.2019.2068 (2020).

  33. Ricco, A. J., Maria, S. R. S., Hanel, R. P. & Bhattacharya, S. BioSentinel: a 6U nanosatellite for deep-space biological science. IEEE Aerospace Electron. Syst. Mag. 35, 6–18 (2020).

    Article  Google Scholar 

  34. Chen, Y. et al. Automated ‘cells-to-peptides’ sample preparation workflow for high-throughput, quantitative proteomic assays of microbes. J. Proteome Res. 18, 3752–3761 (2019).

    Article  Google Scholar 

  35. Zampieri, M., Sekar, K., Zamboni, N. & Sauer, U. Frontiers of high-throughput metabolomics. Curr. Opin. Chem. Biol. 36, 15–23 (2017).

    Article  Google Scholar 

  36. Stephens, Z. D. et al. Big data: astronomical or genomical? PLoS Biol. 13, e1002195 (2015).

    Article  Google Scholar 

  37. Tomczak, K., Czerwińska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19, A68–A77 (2015).

    Google Scholar 

  38. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  Google Scholar 

  39. Atta, L. & Fan, J. Computational challenges and opportunities in spatially resolved transcriptomic data analysis. Nat. Commun. 12, 5283 (2021).

    Article  Google Scholar 

  40. Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  Google Scholar 

  41. Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article  Google Scholar 

  42. Mardis, E. R. DNA sequencing technologies: 2006–2016. Nat. Protoc. 12, 213–218 (2017).

    Article  Google Scholar 

  43. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  Google Scholar 

  44. Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647–1660.e19 (2019).

    Article  Google Scholar 

  45. Giacomello, S. et al. Spatially resolved transcriptome profiling in model plant species. Nat Plants 3, 17061 (2017).

    Article  Google Scholar 

  46. Mao, X. W. et al. Characterization of mouse ocular response to a 35-day spaceflight mission: evidence of blood-retinal barrier disruption and ocular adaptations. Sci. Rep. 9, 8215 (2019).

    Article  Google Scholar 

  47. Jonscher, K. R. et al. Spaceflight activates lipotoxic pathways in mouse liver. PLoS ONE 11, e0152877 (2016).

    Article  Google Scholar 

  48. Beheshti, A. et al. Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver. Sci. Rep. 9, 19195 (2019).

    Article  Google Scholar 

  49. Malkani, S. et al. Circulating miRNA spaceflight signature reveals targets for countermeasure development. Cell Rep. 33, 108448 (2020).

    Article  Google Scholar 

  50. da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e20 (2020).

    Article  Google Scholar 

  51. Jiang, P., Green, S. J., Chlipala, G. E., Turek, F. W. & Vitaterna, M. H. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 7, 113 (2019).

    Article  Google Scholar 

  52. Beisel, N. S., Noble, J., Barbazuk, W. B., Paul, A.-L. & Ferl, R. J. Spaceflight-induced alternative splicing during seedling development in Arabidopsis thaliana. NPJ Microgravity 5, 9 (2019).

  53. Polo, S.-H. L. et al. RNAseq analysis of rodent spaceflight experiments is confounded by sample collection techniques. iScience 23, 101733 (2020).

    Article  Google Scholar 

  54. Choi, S., Ray, H. E., Lai, S.-H., Alwood, J. S. & Globus, R. K. Preservation of multiple mammalian tissues to maximize science return from ground based and spaceflight experiments. PLoS ONE 11, e0167391 (2016).

    Article  Google Scholar 

  55. Krishnamurthy, A., Ferl, R. J. & Paul, A.-L. Comparing RNA-seq and microarray gene expression data in two zones of the Arabidopsis root apex relevant to spaceflight. Appl. Plant Sci. 6, e01197 (2018).

    Article  Google Scholar 

  56. Vrana, J. et al. Aquarium: open-source laboratory software for design, execution and data management. Synth. Biol. 6, ysab006 (2021).

    Article  Google Scholar 

  57. Miles, B. & Lee, P. L. Achieving reproducibility and closed-loop automation in biological experimentation with an IoT-enabled lab of the future. SLAS Technol. 23, 432–439 (2018).

    Article  Google Scholar 

  58. Durand, A. et al. A machine learning approach for online automated optimization of super-resolution optical microscopy. Nat. Commun. 9, 5247 (2018).

    Article  Google Scholar 

  59. Hess, J. F. et al. Library preparation for next generation sequencing: a review of automation strategies. Biotechnol. Adv. 41, 107537 (2020).

    Article  Google Scholar 

  60. Gómez-Sjöberg, R., Leyrat, A. A., Pirone, D. M., Chen, C. S. & Quake, S. R. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79, 8557–8563 (2007).

    Article  Google Scholar 

  61. Jessop-Fabre, M. M. & Sonnenschein, N. Improving reproducibility in synthetic biology. Front. Bioeng. Biotechnol. 7, 18 (2019).

    Article  Google Scholar 

  62. Hillson, N. et al. Building a global alliance of biofoundries. Nat. Commun. 10, 2040 (2019).

    Article  Google Scholar 

  63. Arnold, C. Cloud labs: where robots do the research. Nature 606, 612–613 (2022).

  64. Segal, M. An operating system for the biology lab. Nature 573, S112–S113 (2019).

  65. Thiel, C. S. et al. Real-time 3D high-resolution microscopy of human cells on the International Space Station. Int. J. Mol. Sci. 20, 2033 (2019).

    Article  Google Scholar 

  66. Ferl, R. J. & Paul, A.-L. The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit. NPJ Microgravity 2, 15023 (2016).

  67. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).

    Article  Google Scholar 

  68. Ronca, A. E. et al. Behavior of mice aboard the International Space Station. Sci. Rep. 9, 4717 (2019).

    Article  Google Scholar 

  69. Wiltschko, A. B. et al. Mapping sub-second structure in mouse behavior. Neuron 88, 1121–1135 (2015).

    Article  Google Scholar 

  70. Dunn, T. W. et al. Geometric deep learning enables 3D kinematic profiling across species and environments. Nat. Methods 18, 564–573 (2021).

    Article  Google Scholar 

  71. Pereira, T. D. et al. SLEAP: A deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022).

  72. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

  73. Zhang, P. et al. Multi-scale vision longformer: A new vision transformer for high-resolution image encoding. In Proc. IEEE/CVF Intl. Conf. Computer Vision 2998–3008 (2021).

  74. Chen, Z. et al. Visformer: The vision-friendly transformer. In Proc. IEEE/CVF Intl. Conf. Computer Vision 589–598 (2021).

  75. Savoy, M. IDx-DR for Diabetic Retinopathy Screening. American Family Physician https://www.aafp.org/afp/2020/0301/p307.html (2020).

  76. Vyas, R. J. et al. Decreased vascular patterning in the retinas of astronaut crew members as new measure of ocular damage in spaceflight-associated neuro-ocular syndrome. Invest. Ophthalmol. Vis. Sci. 61, 34 (2020).

    Article  Google Scholar 

  77. Lagatuz, M. et al. Vascular patterning as integrative readout of complex molecular and physiological signaling by VESsel GENeration analysis. J. Vasc. Res. 58, 207–230 (2021).

    Article  Google Scholar 

  78. Lee, A. G. et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. NPJ Microgravity 6, 7 (2020).

  79. Chopra, R., Wagner, S. K. & Keane, P. A. Optical coherence tomography in the 2020s-outside the eye clinic. Eye 35, 236–243 (2021).

    Article  Google Scholar 

  80. Sher, I., Moverman, D., Ketter-Katz, H., Moisseiev, E. & Rotenstreich, Y. In vivo retinal imaging in translational regenerative research. Ann. Transl. Med. 8, 1096 (2020).

    Article  Google Scholar 

  81. Mao, X. W. et al. Impact of spaceflight and artificial gravity on the mouse retina: biochemical and proteomic analysis. Int. J. Mol. Sci. 19, 2546 (2018).

    Article  Google Scholar 

  82. Castro-Wallace, S. L. et al. Nanopore DNA sequencing and genome assembly on the International Space Station. Sci. Rep. 7, 18022 (2017).

    Article  Google Scholar 

  83. McIntyre, A. B. R. et al. Nanopore sequencing in microgravity. NPJ Microgravity 2, 16035 (2016).

  84. Stahl-Rommel, S. et al. Real-time culture-independent microbial profiling onboard the International Space Station using nanopore sequencing. Genes 12, 106 (2021).

    Article  Google Scholar 

  85. Häse, F., Roch, L. M. & Aspuru-Guzik, A. Next-generation experimentation with self-driving laboratories. Trends Chem. 1, 282–291 (2019).

    Article  Google Scholar 

  86. Garcia Martin, H. et al. Perspectives for self-driving labs in synthetic biology. Curr. Opin. Biotech. 79, 102881 (2023).

  87. Borkowski, O. et al. Large scale active-learning-guided exploration for in vitro protein production optimization. Nat. Commun. 11, 1872 (2020).

    Article  Google Scholar 

  88. Kitano, H. Nobel Turing Challenge: creating the engine for scientific discovery. NPJ Syst. Biol. Appl. 7, 29 (2021).

  89. Christensen, M. et al. Data-science driven autonomous process optimization. Commun. Chem. 4, 112 (2021).

    Article  Google Scholar 

  90. Granda, J. M., Donina, L., Dragone, V., Long, D.-L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article  Google Scholar 

  91. MacLeod, B. P. et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, eaaz8867 (2020).

    Article  Google Scholar 

  92. Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020).

    Article  Google Scholar 

  93. Carbonell, P., Radivojevic, T. & Martín, H. G. Opportunities at the intersection of synthetic biology, machine learning, and automation. ACS Synth. Biol. 8, 1474–1477 (2019).

    Article  Google Scholar 

  94. Shih, S. C. C. et al. A versatile microfluidic device for automating synthetic biology. ACS Synth. Biol. 4, 1151–1164 (2015).

    Article  Google Scholar 

  95. Shih, S. C. C. et al. A droplet-to-digital (D2D) microfluidic device for single cell assays. Lab Chip 15, 225–236 (2015).

    Article  Google Scholar 

  96. Iwai, K. et al. Scalable and automated CRISPR-based strain engineering using droplet microfluidics. Microsys. Nanoeng. 8, 31 (2022).

  97. Markin, C. J. et al. Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 373, eabf8761 (2021).

    Article  Google Scholar 

  98. Crane, M. M., Chung, K., Stirman, J. & Lu, H. Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab Chip 10, 1509–1517 (2010).

    Article  Google Scholar 

  99. Nakai, M. & Ke, W. Review of the methods for handling missing data in longitudinal data analysis. Int. J. Math. Analysis 5, 1–13 (2011).

  100. Ray, S. et al. GeneLab: omics database for spaceflight experiments. Bioinformatics 35, 1753–1759 (2019).

    Article  Google Scholar 

  101. Berrios, D. C., Galazka, J., Grigorev, K., Gebre, S. & Costes, S. V. NASA GeneLab: interfaces for the exploration of space omics data. Nucleic Acids Res. 49, D1515–D1522 (2021).

    Article  Google Scholar 

  102. Scott, R. T. et al. Advancing the integration of biosciences data sharing to further enable space exploration. Cell Rep. 33, 108441 (2020).

    Article  Google Scholar 

  103. Sanders, L. M. & Costes, S. V. NASA Science Mission Directorate Artificial Intelligence Workshop Report: Standards for AI readiness. National Aeronautics and Space Administration 22–29 (NASA, 2021).

  104. Haibe-Kains, B. et al. Transparency and reproducibility in artificial intelligence. Nature 586, E14–E16 (2020).

    Article  Google Scholar 

  105. Gebru, T. et al. Datasheets for datasets. Comms. ACM 64, 86–92 (2021).

  106. Ong, E. et al. Ontobee: a linked ontology data server to support ontology term dereferencing, linkage, query and integration. Nucleic Acids Res. 45, D347–D352 (2017).

    Article  Google Scholar 

  107. Noy, N. F. et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 37, W170–W173 (2009).

    Article  Google Scholar 

  108. Köhler, S. et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42, D966–D974 (2014).

    Article  Google Scholar 

  109. Radiation biology ontology. BioPortal https://bioportal.bioontology.org/ontologies/RBO (2022).

  110. Kwok, R. How to pick an electronic laboratory notebook. Nature 560, 269–270 (2018).

    Article  Google Scholar 

  111. Kanza, S. et al. Electronic lab notebooks: can they replace paper? J. Cheminform. 9, 31 (2017).

    Article  Google Scholar 

  112. Erard, S. et al. VESPA: a community-driven Virtual Observatory in Planetary Science. Planetary and Space Science 150, 65–85 (2018).

  113. Zaslavsky, I. et al. EarthCube Data Discovery Hub: enhancing, curating and finding data across multiple geoscience data sources. American Geophysical Union, Fall Meeting 2017 Abstract IN21B-0049 (American Geophysical Union, 2017).

  114. Crichton, D. J. et al. Cancer biomarkers and big data: a planetary science approach. Cancer Cell 38, 757–760 (2020).

    Article  Google Scholar 

  115. Greene, G., Plante, R. & Hanisch, R. Building open access to research (OAR) data infrastructure at NIST. Data Sci. J. 18, 10.5334/dsj-2019-030 (2019).

  116. McGregor, C. A platform for real-time space health analytics as a service utilizing space data relays. In 2021 IEEE Aerospace Conference (50100) 1–14 (IEEE, 2021).

  117. McGregor, C. A platform for real-time online health analytics during spaceflight. In 2013 IEEE Aerospace Conference 1–8 (IEEE, 2013).

  118. Lavin, A. et al. Technology readiness levels for machine learning systems. Nat. Commun. 13, 6039 (2022).

    Article  Google Scholar 

  119. Heil, B. J. et al. Reproducibility standards for machine learning in the life sciences. Nat. Methods 18, 1132–1135 (2021).

    Article  Google Scholar 

  120. Mohamed, S. K., Nounu, A. & Nováček, V. Biological applications of knowledge graph embedding models. Brief. Bioinform. 22, 1679–1693 (2021).

    Article  Google Scholar 

  121. Ehrlinger, L. & Wöß, W. Towards a definition of knowledge graphs. SEMANTICS 2016 Posters and Demos Track 1–4 (SEMANTICS, 2016).

  122. Nelson, C. A. et al. Knowledge network embedding of transcriptomic data from spaceflown mice uncovers signs and symptoms associated with terrestrial diseases. Life 11, 42 (2021).

    Article  Google Scholar 

  123. Nelson, C. A., Butte, A. J. & Baranzini, S. E. Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings. Nat. Commun. 10, 3045 (2019).

    Article  Google Scholar 

  124. Nelson, C. A., Bove, R., Butte, A. J. & Baranzini, S. E. Embedding electronic health records onto a knowledge network recognizes prodromal features of multiple sclerosis and predicts diagnosis. J. Am. Med. Inform. Assoc. 29, 424–434 (2021).

  125. Antonsen, E. L. et al. Directed acyclic graph guidance documentation. NASA Technical Reports Server (NASA, 2022).

  126. Reynolds, R. J. et al. Validating causal diagrams of human health risks for spaceflight: an example using bone data from rodents. Biomedicines 10, 2187 (2022).

    Article  Google Scholar 

  127. Pawar, U., O’Shea, D., Rea, S. & O’Reilly, R. Incorporating explainable artificial intelligence (XAI) to aid the understanding of machine learning in the healthcare domain. in Proc. Artif. Intell. Cogn. Sci. 169–180 (2020).

  128. Adadi, A. & Berrada, M. in Embedded Systems and Artificial Intelligence (ed. Ditzinger, T.) 327–337 (Springer Singapore, 2020).

  129. Yang, G., Ye, Q. & Xia, J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inf. Fusion 77, 29–52 (2022).

    Article  Google Scholar 

  130. Rajabi, E. & Etminani, K. Towards a knowledge graph-based explainable decision support system in healthcare. Stud. Health Technol. Inform. 281, 502–503 (2021).

    Google Scholar 

  131. Covert, I., Lundberg, S. & Lee, S.-I. Explaining by removing: a unified framework for model explanation. J. Mach. Learn. Res. 22, 1–90 (2021).

    MathSciNet  MATH  Google Scholar 

  132. Ribeiro, M. T., Singh, S. & Guestrin, C. ‘Why should I trust you?’: Explaining the predictions of any classifier. Preprint at https://arxiv.org/abs/1602.04938 (2016).

  133. Lundberg, S. & Lee, S.-I. A unified approach to interpreting model predictions. Preprint at https://arxiv.org/abs/1705.07874 (2017).

  134. Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).

    Article  Google Scholar 

  135. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at https://arxiv.org/abs/1312.6114 (2013).

  136. Antoniadou, E. et al. NASA frontier development lab technical memorandum: harnessing AI to support medical care in space. Frontier Development Lab (Frontier Development Lab, 2019).

  137. Gupta, A. & Zou, J. Feedback GAN for DNA optimizes protein functions. Nat. Mach. Intell. 1, 105–111 (2019).

    Article  Google Scholar 

  138. Viñas, R., Andrés-Terré, H., Liò, P. & Bryson, K. Adversarial generation of gene expression data. Bioinformatics 38, 730-737 (2021).

  139. Ghimire, S. et al. Generative modeling and inverse imaging of cardiac transmembrane potential. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2018 508–516 (Springer, 2018).

  140. Shakeri, F. et al. FHIST: a benchmark for few-shot classification of histological images. Preprint at https://arxiv.org/abs/2206.00092 (2022).

  141. Yang, J., Chen, H., Yan, J., Chen, X. & Yao, J. Towards better understanding and better generalization of few-shot classification in histology images with contrastive learning. Preprint at https://arxiv.org/abs/2202.09059 (2022).

  142. Ravishankar, H. et al. in Deep Learning and Data Labeling for Medical Applications (eds. Carneiro, G. et al.) 188–196 (Springer, 2016).

  143. Altaf, F., Islam, S. M. S. & Janjua, N. K. A novel augmented deep transfer learning for classification of COVID-19 and other thoracic diseases from X-rays. Neural Comput. Appl. 33, 14037–14048 (2021).

    Article  Google Scholar 

  144. Bersuker, G., Mason, M. & Jones, K. L. Neuromorphic computing: the potential for high-performance processing in space. Center for Space Policy and Strategy https://csps.aerospace.org/sites/default/files/2021-08/Bersuker_NeuromorphicComputing_12132018.pdf (The Aerospace Corporation, 2018).

  145. Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

    Article  Google Scholar 

  146. Göltz, J. et al. Fast and energy-efficient neuromorphic deep learning with first-spike times. Nat. Mach. Intell. 3, 823–835 (2021).

    Article  Google Scholar 

  147. Dahl, S. G., Ivans, R. C. & Cantley, K. D. Learning behavior of memristor-based neuromorphic circuits in the presence of radiation. Proc. Intl. Conf. Neuromorphic Syst. 53–56 (ACM, 2019).

  148. Yanguas-Gil, A. et al. Neuromorphic architectures for edge computing under extreme environments. 2021 IEEE Space Computing Conference (SCC) 39–45 (2021).

  149. Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).

    Article  Google Scholar 

  150. Furano, G. et al. Towards the use of artificial intelligence on the edge in space systems: challenges and opportunities. IEEE Aerospace Electron Syst. Mag. 35, 44–56 (2020).

  151. Caro, M. C. et al. Generalization in quantum machine learning from few training data. Nat. Commun. 13, 4919 (2022).

    Article  Google Scholar 

  152. Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).

    Article  Google Scholar 

  153. Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors. Preprint at https://arxiv.org/abs/1802.06002 (2018).

  154. Quenelle, N. NASA TechLeap Prize winner tests quantum earth observation system. NASA Feature https://www.nasa.gov/feature/nasa-techleap-prize-winner-tests-quantum-earth-observation-system (NASA, 2022).

  155. Hammarlund, E. U. Harnessing hypoxia as an evolutionary driver of complex multicellularity. Interface Focus 10, 20190101 (2020).

    Article  Google Scholar 

  156. Liu, J., Harkin, J., Maguire, L. P., McDaid, L. J. & Wade, J. J. SPANNER: a self-repairing spiking neural network hardware architecture. IEEE Trans. Neural Netw. Learn. Syst. 29, 1287–1300 (2018).

    Article  Google Scholar 

  157. Leino, K. et al. Self-correcting neural networks for safe classification. Preprint at https://arxiv.org/abs/2107.11445 (2021).

  158. Ruiz, C., Zitnik, M. & Leskovec, J. Identification of disease treatment mechanisms through the multiscale interactome. Nat. Commun. 12, 1796 (2021).

    Article  Google Scholar 

  159. Schaffer, L. V. & Ideker, T. Mapping the multiscale structure of biological systems. Cell Syst. 12, 622–635 (2021).

    Article  Google Scholar 

  160. Yu, M. K. et al. Translation of genotype to phenotype by a hierarchy of cell subsystems. Cell Syst. 2, 77–88 (2016).

    Article  Google Scholar 

  161. Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).

    Article  Google Scholar 

  162. Macklin, D. N. et al. Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science 369, eaav3751 (2020).

    Article  Google Scholar 

  163. Hunter, P. J. & Borg, T. K. Integration from proteins to organs: the Physiome Project. Nat. Rev. Mol. Cell Biol. 4, 237–243 (2003).

    Article  Google Scholar 

  164. Fink, M. et al. Cardiac cell modelling: observations from the heart of the cardiac Physiome Project. Prog. Biophys. Mol. Biol. 104, 2–21 (2011).

    Article  Google Scholar 

  165. Space Station Research Explorer. NASA https://www.nasa.gov/mission_pages/station/research/experiments/explorer/ (accessed 1 October 2022).

  166. Li, T., Sahu, A. K., Talwalkar, A. & Smith, V. Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37, 50–60 (2020).

    Google Scholar 

  167. Shi, W. & Dustdar, S. The promise of edge computing. Computer 49, 78–81 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all June 2021 participants and speakers at the ‘NASA Workshop on Artificial Intelligence and Modeling for Space Biology’. We thank the NASA Space Biology Program, part of the NASA Biological and Physical Sciences Division within the NASA Science Mission Directorate; as well as the NASA Human Research Program (HRP). We thank the Space Biosciences Division and Space Biology at Ames Research Center (ARC), especially D. Ly, R. Vik and P. Vaishampayan. We thank the support provided by NASA GeneLab, and the NASA Ames Life Sciences Data Archive. Additional thanks to S. Bhattacharya, NASA Space Biology Program Scientist; K. Martin, ARC Lead of Exploration Medical Capability (an Element of HRP); and L. Lewis, ARC NASA HRP Lead. Funding: S.V.C. is funded by NASA Human Research Program grant NNJ16HP24I. S.E.B holds the Heidrich Family and Friends endowed Chair in Neurology at the University of California, San Francisco (UCSF). S.E.B. also holds the Distinguished Professorship I in Neurology at UCSF. S.E.B is funded by an National Science Foundation Convergence Accelerator award (2033569) and NIH/NCATS Translator award (1OT2TR003450). G.I.M was supported by the Translational Research Institute for Space Health, through NASA NNX16AO69A (Project Number T0412). E.L.A. was supported by the Translational Research Institute for Space Health, through NASA NNX16AO69A. C.E.M. thanks NASA grants NNX14AH50G and NNX17AB26G. This work was also part of the DOE Agile BioFoundry, supported by the US Department of Energy, Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, and the DOE Joint BioEnergy Institute, supported by the Office of Science, Office of Biological and Environmental Research, through contract DE-AC02- 05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. S.V.K. is funded by the Canadian Space Agency (19HLSRM04) and Natural Sciences and Engineering Research Council (NSERC, RGPIN-288253). J.H.Y. is funded by NIH grant R00 GM118907 and the Agilent Early Career Professor Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed ideas and discussion during the joint workshop writing session or were speakers at the ‘NASA Workshop on Artificial Intelligence and Modeling for Space Biology.’ L.M.S., R.T.S. and S.V.C. prepared the manuscript. All authors provided feedback on the manuscript.

Corresponding author

Correspondence to Sylvain V. Costes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks Ilaria Cinelli, Christopher Bradburne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanders, L.M., Scott, R.T., Yang, J.H. et al. Biological research and self-driving labs in deep space supported by artificial intelligence. Nat Mach Intell 5, 208–219 (2023). https://doi.org/10.1038/s42256-023-00618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-023-00618-4

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics