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Bioinformatics, an interdisciplinary field of research, is at the 
centre of modern molecular biology, where computational 
methods are developed and utilized to transform biological 

data into knowledge and translate them for biomedical applications. 
Among the various computational methods utilized in bioinfor-
matics research, machine learning, a branch of artificial intelligence 
characterized by data-driven model building, has been the key 
enabling computational technology1. At the forefront of machine 
learning, ensemble learning and deep learning have independently 
made a substantial impact on the field of bioinformatics through 
their widespread applications, from basic nucleotide and protein 
sequence analysis to systems biology2,3.

Until recently, ensemble and deep learning models have largely 
been treated as independent methodologies in bioinformatics 
applications. The fast-growing synergy between these two popular 
techniques, however, has attracted a new wave of development and 
application of next-generation machine learning methods referred 
to as ensemble deep learning (Fig. 1a). The root of ensemble deep 
learning can be traced back two decades, when ensembles of neu-
ral networks were found to reduce generalization error4. However, 
the recent resurgence of ensemble deep learning models has 
brought about new ideas, algorithms, frameworks and architec-
tures that substantially enrich the old paradigm. Through its novel 
application to a wide range of biological and biomedical research, 
ensemble deep learning is unleashing its power in dealing with 
key challenges, including small sample size, high-dimensionality, 
imbalanced class distribution, and noisy and heterogeneous data 
generated from diverse cellular and biological systems using an 
array of high-throughput omics technologies. These computa-
tional, methodological and technological undertakings and break-
throughs together are leading a phenomenal transformation of 
bioinformatics.

Both ensemble learning and deep learning methods have been 
extensively studied and reviewed in the context of bioinformatics 
applications5,6. However, the emergence of ensemble deep learn-
ing and its application in bioinformatics has yet to be documented. 

With the aim of providing a reference point to foster research in the 
increasingly popular field of ensemble deep learning and its applica-
tion to various challenges in bioinformatics, in this Review Article 
we revisit the foundation of ensemble and deep learning, and sum-
marize and categorize the latest developments in ensemble deep 
learning. This is followed by a survey of ensemble deep learning 
applications in bioinformatics. We then discuss the remaining chal-
lenges and opportunities that we hope will inspire future research 
and development across multiple disciplines.

Basics of ensemble and deep learning
Ensemble learning refers to a class of strategies where instead of 
building a single model, multiple ‘base’ models are combined to per-
form tasks such as supervised and unsupervised learning7. Classic 
ensemble methods for supervised learning fall into three categories: 
bagging-, boosting- and stacking-based methods. In bagging8, indi-
vidual base models are trained on subsets of data sampled randomly 
with replacement (Fig. 1b). In boosting9, models are trained sequen-
tially (Fig. 1c), where subsequent models focus on previous misclas-
sified samples. In stacking, a meta-learner is trained to optimally 
combine the predictions made by base models10. Like supervised 
ensemble learning, conventional unsupervised ensemble learn-
ing, such as ensemble clustering11, also relies on the generation and 
integration of base models (Fig. 1d). While their variants, includ-
ing more advanced methods reviewed in the next section, have also 
been used in ensemble learning, a guiding principle in designing 
ensemble methods has been ‘many heads are better than one’12.

Deep learning, a branch of machine learning, is rooted in artifi-
cial neural networks13. The most fundamental architecture of deep 
learning models is the densely connected neural network (DNN), 
consisting of a series of layers of neurons; each of these is connected 
to all neurons in the previous layer14. More sophisticated models 
expand on the basic architectures. In convolutional neural networks 
(CNNs)15, each layer comprises a series of filters that ‘slide over’ the 
output of the previous layer to extract local features across different 
parts of the input. In recurrent neural networks (RNNs)16, circuits 
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are created to feed the output of a layer back into the same layer 
along with new input, allowing the model to act on dependencies 
between upstream and downstream values in a sequence. Variants 
of RNNs have been proposed to enable more effective learning in 
long-term dependency tasks, with the two most common ones 
being long short-term memory (LSTM)17 and gated recurrent unit 
(GRU)18. In residual neural networks (ResNet)19, shortcuts between 
upstream and downstream layers are introduced to improve the 
effectiveness of backpropagation in networks with many hidden 
layers. In autoencoders20, networks are constructed with an encoder 
and a decoder that together learn a more efficient latent space rep-
resentation of the original higher-dimensional data. Although the 
difference between traditional neural networks and deep learning 
may seem elusive, the latter is increasingly defined by its unique 
architectures and ability to learn complex data representations that 
are beyond the capacity of classic models21.

Ensemble deep learning
Deep learning is well known for its power to approximate almost 
any function and increasingly demonstrates predictive accuracy 
that surpasses human experts. However, deep learning models are 
not without shortcomings: they often exhibit high variance and may 
fall into local loss minima during training. Indeed, empirical results 
of ensemble methods that combine the output of multiple deep 
learning models have been shown to achieve better generalizability 
than a single model22. In addition to simple ensemble approaches 
such as averaging output from individual models, combining het-
erogeneous models enables multifaceted abstraction of data, and 
may lead to better learning outcomes23. In this section, we catego-
rize and summarize the most representative ensemble deep learning 
strategies for both supervised and unsupervised tasks.

Supervised ensemble deep learning. In this section, we summarize 
the key ensemble deep learning frameworks for supervised tasks.

Ensemble across multiple models. The aggregation of multiple and 
often independent deep learning models is the most straightforward 
application of ensemble deep learning to classify (Fig. 2a). As diver-
sity of individual networks is an essential characteristic of a good 
ensemble model24, a variety of strategies exist to promote diversity 
of base networks. One approach is to encourage negative correla-
tion in the classification error of base models25. The key motivation 
behind promoting negative correlation among base models is to 
encourage complementary learning of the training data to achieve 
better generalizability of the ensemble. An alternative approach to 
increase base model diversity is through multiple choice learning 
in which each network is ‘specialized’ on a particular subset of data 
during the training step26.

An issue associated with training and storing multiple models is 
the computational and storage demand involved. To address this, 
methods that perform knowledge distillation have become increas-
ingly popular27. One such implementation is based on the concept 
of a teacher–student network framework, where the teacher net-
works are selected from a pool of pre-trained networks and the stu-
dent network distils knowledge of multiple teachers into a single 
and often simpler network28,29. The testing phase is storage and com-
putationally efficient, as the samples only need to pass through a 
single student network.

Ensemble within a single model. Ensemble strategies described in  
the previous section require training of multiple models. Deep 
learning models are often computationally costly to train and  
may take days or even weeks depending on the scale of the dataset 
and model. Effort has been made to develop ‘implicit ensembles’ 
where a single neural network could achieve an effect similar to 
integrating multiple network models. To this end, a group of tech-
niques focuses on random deactivation of neurons and layers dur-
ing the training process of a single model. This leads to an implicit 
ensemble of networks with different architectures (Fig. 2b). For 
example, the random deactivation of neurons, termed dropout, 
originally proposed as a regularization strategy30 for addressing 
model overfitting is now widely known as an implicit ensemble 
strategy31,32. This has inspired follow-up works on random deacti-
vation of building blocks, termed ResBlocks, in ResNets33 and the 
combined random deactivation of neurons and layers34. Besides 
random deactivation-based methods, alternative strategies have 
also been explored. One popular approach is the snapshot ensemble 
technique, where the key idea is to save multiple versions of a sin-
gle model during the training process for forming an ensemble35. 
In a snapshot ensemble, a cyclic learning rate scheduler is utilized, 
where the learning rate is abruptly changed every few epochs to per-
turb the network and thus may lead to diversity in the snapshots of 
the model.

Ensemble with model branching. Single-model ensemble approaches 
greatly reduce training cost compared to ensembles of multiple 
models. However, such a reduction in computational demand 
comes potentially at a cost in base model diversity. Since the infor-
mation captured by the lower layers of neural networks is likely to 
be similar across models, a group of techniques has emerged with a 
focus on sharing lower layers followed by ‘branching’ of additional 
layers36. These model branching approaches introduce diversity 
while also enjoying the reduction of time and computation of train-
ing multiple models (Fig. 2c). Besides reducing computational cost, 
model branching has also been adapted to address other challenges 
in training an ensemble. For example, the gradient can be propa-
gated over a shorter path in a branching network, mitigating the 
vanishing gradient problem37. In the knowledge distillation frame-
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Fig. 1 | The focus of this review Article and classic ensemble methods. 
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work, each branch acts as a student model, ensembled to form a 
teacher model on the fly to reduce the computationally intensive 
process of pre-training the teacher model38. The key commonality 
between these model branching network ensembles is that by shar-
ing information, the base networks avoid parameter search from 
scratch and can converge faster.

Unsupervised ensemble deep learning. In this section, we summa-
rize the key ensemble deep learning frameworks for unsupervised 
tasks.

Ensemble across multiple models. Most unsupervised ensemble  
deep learning methods employ autoencoders, a popular unsuper-
vised network architecture. Similar to the supervised approach, 
unsupervised ensemble methods can be categorized into those that 
generate and combine multiple models through data and model 
perturbation, and those that achieve implicit ensemble within a 
single model.

For methods based on data perturbation, strategies akin to bag-
ging in supervised learning are widely used (Fig. 2d). For example, 
Geddes et al. used random feature projection of the input data to 
train a set of autoencoders to create a cluster ensemble39. Training a 
series of unsupervised networks with different hyper-parameters is 
a common ensemble strategy for methods based on model pertur-
bation (Fig. 2e). An example extending this approach uses differ-
ent activation functions and a weighting scheme to improve model 
accuracy40. An alternative to data and model perturbation is to use 

multi-view clustering when such data are available. Representative 
examples include multi-view representation learning using deep 
canonically correlated autoencoders41 and multi-view spectral clus-
tering where multiple embedding networks were used to represent 
the original data from different feature sets42.

Ensemble within a single model. The power of autoencoders in data 
dimension reduction has motivated research around creating bet-
ter data representations that are robust to noise in the input data. 
For example, a denoising autoencoder architecture was introduced 
in ref. 43, where values of a random subset of neurons are masked 
(that is, changed to zero) during each training epoch, forcing the 
network to overcome noise introduced to the data. The concept of 
randomly masking neurons in denoising autoencoders is analogous 
to the dropout method used in the supervised approach, and hence 
can be considered as an implicit ensemble within a single model, 
or ‘pseudo-ensemble’44, for unsupervised deep learning (Fig. 2f). 
In this line of research, a recent study exploits the flexibility of the 
dropout algorithm and embeds it in a more advanced variational 
autoencoder architecture45. The proposed algorithm employs a 
novel strategy to learn the dropout parameter, thus alleviating the 
need for manual tuning. Another extension in this direction is the 
‘stacked’ denoising autoencoder that uses multiple layers of denois-
ing autoencoders for improving data representation46. The data 
representation learned from such stacked denoising autoencoders 
led to substantially improved classification accuracy compared with 
using raw input data.
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Theoretical advances for ensemble deep learning. While early 
works on the bias–variance trade-off framework have laid the 
theoretical foundation for neural network ensembles47, recent 
research on ensemble deep learning mostly relies on empirical 
experiments due to the increasingly specialized ensemble method-
ologies and complex neural network architectures. Nevertheless, 
efforts have been made to advance the theoretical foundation of 
this fast-growing field48. Studies have shown the existence of mul-
tiple local minima in training neural networks, where some enjoy 
better generalizability than others49. This has inspired ensemble 
techniques such as snapshot methods that take advantage of the 
diversity of multiple local minima35. Theoretical justification for 
dropout as a form of averaging has been discussed in ref. 31, where 
the expectation of the gradient with dropout was shown to be the 
gradient of the regularized ensemble error. A recent mathematical 
framework provided a new perspective of dropout by relating it to a 
form of data augmentation50.

Bioinformatics applications of ensemble deep learning
This section categorizes representative works in different areas of 
bioinformatics applications (Table 1) and identifies their benefits, 
such as improving model accuracy, reproducibility, interpretability 
and model inference.

Sequence analysis. Biological sequence analysis represents one of 
the fundamental applications of computational methods in molecu-
lar biology. RNN and its variants (for example, LSTM and GRU) 
are well-suited to sequential data. For example, an LSTM/CNN 
multi-model was trained to extract distinct features to predict patho-
genic potential of DNA sequences51. Compared to DNA sequences, 
RNA sequences offer an additional layer of information where 
instructions encoded in genes are transcribed. While traditional 
methods rely on various manually curated RNA sequence features, 
ensemble deep learning enables automatic learning from raw data. 
One example is in predicting localization of long non-coding RNAs, 
where multiple sub-networks were used to integrate distinct feature 
sets to maximize model performance52. In another work, a CNN/
RNN ensemble was used to integrate features and raw sequence data 
to predict different types of translation initiation sites53, overcoming 
the generalizability issue of traditional methods that can only pre-
dict a specific type of translational initiation sites.

Following transcription, messenger RNAs (mRNAs) are further 
translated into proteins that carry out various functions. Similar to 
RNA sequence analysis, methods relying on ensembles of multiple 
sub-networks were used to integrate information from multiple 
features sets to predict DNA binding sites54 and post-translational 
modification (PTM) sites55 on protein sequences. The study on 
PTM site prediction has further demonstrated that features learned 
by ensemble models are ‘transferable’ for predicting different types 
of PTMs, a key property for tackling the issue of small sample size 
in training data.

Genome analysis. While sequence analysis has led to many bio-
logical discoveries, alone it cannot capture the full repertoire of 
information encoded in the genome. Additional layers of genetic 
information including structural variants56 (for example, copy 
number variations (CNVs)) and epigenetic modifications57 of the 
genome bring important insight to the understanding of biological 
systems, populations and complex diseases.

A number of ensemble deep learning methods have been devel-
oped on this front, such as classifying cancer types using CNV 
data and a snapshot ensemble model comprising CNNs, LSTMs 
and convolutional autoencoders58. The use of supervised CNN and 
LSTM models allows both global and local sequential features to 
be captured, and further integration with unsupervised convolu-
tional autoencoders enables unsupervised pre-training, an effective 

component for handling small sample size59. Beyond combining 
different network architectures, studies have also integrated differ-
ent genomic data modalities to capture distinct and complementary 
information. In one study, DNA sequences and their neighbouring 
cytosine–guanine dinucleotide (CpG) states were used as input into 
two sub-networks of an ensemble to explore their relationship in 
predicting DNA methylation states60. This has led to the identifica-
tion of sequence motifs related to DNA methylation and the effect of 
their mutation on CpG methylation. In another study, an ensemble 
network that takes input data either from DNA sequences alone or 
with the addition of epigenetic information extracted from chroma-
tin immunoprecipitation (ChIP) and deoxyribonuclease (DNase) 
sequencing were used to predict human immunodeficiency virus 
type 1 (HIV-1) integration sites61. The ensemble network, compris-
ing CNNs with attention layers62, enabled the discovery of DNA 
sequence motifs that are important for HIV-1 integration.

Gene expression. Gene expression data including microarray, 
RNA-sequencing (RNA-seq) and, recently, single-cell RNA-seq 
(scRNA-seq)63–65, has been studied extensively to better under-
stand complex diseases and to identify biomarkers that can guide 
therapeutic decision making. A recent study on cancer type clas-
sification demonstrated how ensemble deep learning can serve as 
a potential strategy to address the key challenge of reproducibility 
in biomarker research66. The use of a DNN ensemble in this work 
allowed the derivation of important genes through consensus rank-
ing across multiple models, resulting in a robust set of biomarkers. 
Due to the difficulty of obtaining patient samples, especially for rare 
diseases and cancer types, another common challenge in analysing 
gene expression data from cancers and diseases is the small sample 
size. The use of ensemble learning to mitigate this issue is exempli-
fied by ref. 67, where the authors applied a multi-model approach to 
generate initial predictions from RNA-seq gene expression profiles 
of cancer samples and integrated these predictions using a DNN to 
produce the final ensemble prediction.

In addition to its role in medical research, ensemble deep learn-
ing has been used in a wide range of applications to improve under-
standing of basic biological mechanisms from gene expression data. 
An example is the use of a DNN ensemble to explore the embry-
onic to fetal transition process, a defining stage where cells lose the 
potential for regeneration68. A benefit of training multiple networks 
is that the prediction scores from each network can be further used 
to generate an integrative score to determine the transition state of a 
sample between the embryonic and adult state, a strategy that is not 
possible with a single model. The utility of unsupervised ensemble 
deep learning has also been demonstrated on the extraction of bio-
logical pathway signatures69. By integrating signatures across 100 
autoencoders through consensus clustering, the ensemble model 
detected more biological pathways with higher significance than a 
single model. Unsupervised deep learning ensembles have also been 
applied to cell type identification in single-cell research. In ref. 39, 
an ensemble of autoencoders was used to generate a diverse set of 
latent representations of scRNA-seq data for subsequent analysis.

Structural bioinformatics. Proteins are the key products of genes, 
and their functions and mechanisms are largely governed by pro-
tein structures encoded in amino acid sequences. Therefore, mod-
elling and characterizing proteins from their primary amino acid 
sequences to secondary and tertiary structures is essential for under-
standing and predicting their functions70. RNN and its architectural 
variants are specifically designed to capture long- and short-range 
interactions between sequences, and are hence well-suited to 
decoding the relationship between amino acid sequences and the 
protein structures they encode. Extending on the use of a single 
RNN, the ensemble of variants of RNNs with CNNs is a common 
hybrid architecture in recent applications that seeks to combine the 
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power of RNN in analysing sequential data and CNN on extracting 
local features71,72. The replacement of CNN with ResNet73 as well as 
the addition of residual connections between GRU and CNN74 were 
also explored to facilitate feature propagation for improved mod-
elling of long-range dependencies between amino acids. In these 
works, ensemble deep learning not only improved generalizability 
on independent datasets but also led to the discovery of novel fea-
tures associated with protein structures.

Besides predicting protein structures, many studies have focused 
on directly predicting protein functions. An example of ensemble 
deep learning application in this domain is illustrated by the work 
of Zacharaki75, who used an ensemble of CNNs for protein enzy-
matic function prediction. Specifically, the ensemble is a fusion 
of two CNNs trained separately on protein properties and amino 
acid features for extracting complementary information. In another 
example, Singh et al.76 built an ensemble deep learning model to 
identify residue conformation crucial to protein folding and func-
tion. While the dataset used for model training has an extreme class 
imbalance (1.4:1,000), the ensemble model, consisting of ResNet 
and LSTM modules, yielded robust performance on independent 
test sets without manual generation of a balanced dataset.

Proteomics. While protein structure and function prediction are 
essential tasks for characterizing individual proteins, technological 
advances in quantitative mass spectrometry (MS) have now enabled 
global profiling of the entire proteome in cells, tissues and species77. 
Computational analysis of such large volume datasets is transform-
ing our understanding of proteome dynamics in complex systems 
and diseases78.

Ensemble deep learning has been used as a key technique for 
addressing various aspects of proteomics data analysis. The work of 
Zohora et al.79 exemplifies the application of ensemble deep learn-
ing to peptide identification from a liquid chromatography-MS 
(LC-MS) map, a critical step for identifying and quantifying protein 
abundance. Specifically, a hybrid network architecture comprising 
both CNN and RNN modules was designed to detect sequential 
features along the axes during the scan of an MS map. The final 
model, an ensemble of multiple networks with different parameters, 
was shown to achieve state-of-the-art results for protein quantifica-
tion. Another study proposed an ensemble of DNNs for learning 

from data-independent acquisition (DIA) MS data80. While conven-
tional MS runs select only a few important peptides based on their 
signal levels (that is, data-dependent acquisition) for subsequent 
quantification, the DIA approach fragments every single peptide for 
improved proteome coverage. However, the DIA approach may lead 
to an increase in co-eluted peptides and therefore higher interfer-
ence in the data. The ensemble framework was able to quantify the 
amount of interference between multiple peptides mapped to the 
same point, thereby removing interference and improving peptide 
identification confidence and quantification accuracy.

Systems biology. Systems biology aims to map interactions of mole-
cule species, regulatory relationships and mechanisms to understand 
complex biological systems as a whole81. One key aspect of systems 
biology is the understanding of what and how biological molecules 
interact. In recent times, ensemble deep learning has been applied 
on this front to predict interactions among different biological mol-
ecules and entities. The application of an interpretable ensemble of 
CNN models for predicting binding affinity between peptides and 
major histocompatibility complex is an example of ensemble deep 
learning in this domain82 and has important implication in clinics. 
The model demonstrated good generalizability across 30 indepen-
dent datasets and uncovered binding motifs with literature support. 
In predicting protein–protein interactions, an ensemble of DNNs 
trained on S. cerevisiae achieved more accurate results than other 
machine learning methods83. Subsequently, the model was applied 
to other datasets generated from different organisms and the rela-
tive accuracy on each dataset was shown to be a good indicator of 
the evolutionary relationships of those organisms.

Systems biology also extends to the interaction between biologi-
cal molecules and chemical compounds. In particular, the study of 
protein and chemical compound interaction in drug development 
has seen a growing number of ensemble deep learning applica-
tions. For example, Karimi et al. proposed an ensemble model that 
comprised various network modules for compound–protein affin-
ity prediction84. To overcome the limited availability of labelled 
datasets, the model exploited abundant unlabelled compound and 
protein data through unsupervised pre-training. This was followed 
by interaction prediction on labelled data using CNN and RNN 
modules in the ensemble. In another work on predicting drug and 

Table 1 | Categorization of recent ensemble deep learning methods in bioinformatics application

Type of 
learning

Ensemble 
technique

Deep 
learning 
architecture

Sequence 
analysis

Genome 
analysis

Gene 
expression

Structural 
bio- 
informatics

Proteomics Systems 
biology

Multi- 
omics

Bioimage 
informatics

Supervised Multiple models DNN Refs. 66–68 Ref. 80 Ref. 83 Ref. 93 Ref. 98

CNN Ref. 54 Ref. 61 Ref. 75 Refs. 82,85

CNN + RNN Refs. 51,53 Ref. 60 Refs. 71,72 Ref. 79 Ref. 84 Ref. 90

CNN + RNN 
+ ResNet

Ref. 55 Refs. 73,74,76

Others Ref. 52 Ref. 58 Ref. 95

Within single 
model

CNN + RNN Ref. 58

Model branching CNN Refs. 96,97

CNN + 
ResNet

Ref. 94

Unsupervised Multiple models Autoencoder Refs. 39,69 Ref. 91,92

Others Ref. 89

Within single 
model

Autoencoder Ref. 58
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target protein interactions, a CNN-based ensemble model was used 
to score the likelihood of interaction of randomly selected drug–
protein pairs85. The trained model revealed that drugs with similar 
structures bind to similar target proteins, suggesting potential simi-
larity in the effects of these drugs.

Multi-omics. Multi-omics analysis is a topic closely related to sys-
tems biology, where integrative methods are used to understand 
biological regulation by combining an array of omics data. There 
is a growing interest in multi-omic studies as it is increasingly rec-
ognized that a single type of omics data does not capture the entire 
landscape of the complex biological networks86.

Many conventional machine learning methods have been pro-
posed to utilize the complementary information present across mul-
tiple modalities of omics data87,88. Most conventional approaches, 
however, do not account for the relationships among different 
omics layers. To this end, Liang et al. proposed to use an ensemble of 
deep belief networks to encode gene expression, miRNA expression 
and DNA methylation data into multiple layers of hidden variables 
for integrative clustering89, thereby actively exploring regulation 
across different omics layers. Ensembles of different deep learn-
ing architectures have also been utilized to take advantage of the 
unique characteristics of different data types. Using an ensemble of 
CNNs and LSTMs, both genomic sequences and their secondary 
structures can now be integrated for alternative polyadenylation site 
prediction on pre-mRNAs90. This addressed the gap where existing 
models overlooked RNA secondary structures, despite these being 
important features to the polyadenylation process. Another applica-
tion in multi-omics was the use of a novel ensemble of autoencoders 
wherein a coupling cost was used to encourage the base autoencod-
ers to learn from each other91. This unsupervised model allowed the 
integration of two vastly different data types—single-cell transcrip-
tomics and electrophysiological profiles—and to identify common 
and unique cell types across datasets.

High dimensionality and heterogeneity are both issues associ-
ated with the large number of molecular features in multi-omics 
datasets. The application of autoencoders is popular in dealing with 
these challenges. In one instance, an ensemble of autoencoders was 
used to extract lower dimension and integrate over 450,000 features 
in pan-cancer classification92. Stacking multiple deep learning mod-
els, each handling a different modality of omics data93, is another 
approach that avoids feature concatenation that might otherwise 
exacerbate the issue of high dimensionality in datasets potentially 
containing tens of thousands of features.

Bioimage informatics. Traditionally, analysis of bioimages is often 
performed manually by field experts. With the growing number 
of computer vision applications demonstrating their superior per-
formance over human experts, automatic analysis has become an 
increasing focus in bioinformatics studies. A primary application 
of ensemble deep learning in bioimage informatics is the detec-
tion of diseases such as cancers in patient images. For instance, to 
improve classification of glioma from magnetic resonance images, 
Lu et al. embedded a branching module into ResNet for integrating 
multi-scale information obtained from different receptive fields of 
the original ResNet94. Codella et al. proposed an ensemble model 
that combined network architectures, including ResNet, CNN and 
U-Net, to segment and classify skin lesions from dermoscopic 
images95. It is noteworthy that the proposed model achieved a 
segmentation result with 95% accuracy, surpassing that of human 
experts who exhibit an accuracy of around 91%. To segment cervi-
cal cell images, Song et al. performed multi-resolution extraction 
and colour space transformation of the images to generate diverse 
feature sets, leading to enhanced segmentation accuracy96.

Besides improving classification and segmentation accu-
racy, ensemble deep learning methods have also been explored 

in addressing various other challenges in bioimage analysis. For 
example, an ensemble network with knowledge distillation and a 
branching strategy was used to reduce the number of parameters in 
the model and therefore lower the likelihood of overfitting on small 
datasets97. To deal with the problem of class imbalance, Yuan et al.98 
introduced an iterative regularization approach that, for a given 
iteration, penalizes misclassification of samples that were correctly 
classified in previous iterations. This method alleviated the problem 
of bias in favour of majority classes and preserved correctly classi-
fied minority examples.

Challenges and opportunities
The applications we have reviewed here reveal various challenges 
and opportunities surrounding ensemble deep learning in bioinfor-
matics research. In the following sections, we highlight several key 
directions in which ensemble deep learning is likely to have increas-
ingly important impacts.

Small sample size. Deep learning is known for its exceptional 
performance on data with large sample size. While modern omics 
technologies have enabled the profiling of tens of thousands of 
molecular species and biological events in a single experiment, the 
number of samples available is usually small owing to the cost in 
time and labour. Hence, bioinformatics applications are often con-
fronted with the issue of limited sample size, causing unstable pre-
dictions and thus low reproducibility in results.

Fortunately, one essential property of ensemble methods is stabil-
ity. Leveraging this key property, a number of ensemble deep learn-
ing methods were proposed to specifically address small sample 
size challenges, opening up the opportunity to utilize deep learn-
ing in bioinformatics. While the most popular approach so far has 
been using pre-trained models, more specialized methods have also 
been explored. Examples include extracting intermediate features 
learned by the network to generate additional output for integra-
tion and thus stabilizing the ensemble prediction99; and encourag-
ing cooperation among individual models through a pairwise loss, 
thereby reducing the variance caused by small sample size100. These 
methods represent promising strategies that can be explored in 
future lines of research.

High-dimensionality and class imbalance. Omics data are 
well-known for their high-dimensionality, as biological features (for 
example, genes, proteins) frequently outnumber samples. This is 
further exacerbated by the issue of small sample size already men-
tioned. The problem, widely known as the ‘curse of dimensionality’, 
has been identified as one of the main causes of overfitting in deep 
learning models due to the large number of parameters that needs 
to be fitted101. While deep learning models seem to be particularly 
susceptible to the high-dimensionality of omics data, the com-
bination of deep learning with ensemble methods such as model 
averaging39 and the implicit ensemble through dropout30 has been 
demonstrated to be an effective approach for handling this issue.

Imbalanced class distribution is another common issue in many 
bioinformatics applications102 where, for example, a biological 
event of interest is only present in a small proportion of the data. 
Ensemble deep learning is found to be an effective remedy for deal-
ing with this challenge. Bioinformatics applications include the use 
of bootstrap-sampling- and random-sampling-based ensemble 
deep learning for dealing with class imbalance in DNA and protein 
sequence analyses53,54. Due to the increasing use of high-throughput 
technologies, ensemble deep learning strategies that are capable of 
dealing with these challenges will remain an active research direc-
tion in bioinformatics.

Data noise and heterogeneity. Biological systems are inherently 
heterogeneous and noisy. This is further confounded by technical  
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noise from various sources including experimental protocol and 
omics platform. A key characteristic of ensemble methods is their 
robustness to data noise103, which can facilitate the reproduc-
ible extraction of biological signals from noisy and heterogeneous 
data. The application of methods such as denoising autoencoders 
also strengthens model robustness43. The integration of ensemble 
and deep learning methods therefore provides an opportunity to 
address noise and heterogeneity in biological data.

The development of multi-omics technologies further contrib-
uted to heterogeneity within datasets in that different molecular 
species measured across omics platforms must be combined and 
analysed integratively to understand biological systems holistically. 
Ensemble deep learning methods such as multi-model approaches 
reviewed previously have been demonstrated to be highly effective 
in combining different omics data for joint inference89 and classi-
fication90. Given these intrinsic properties of data generated from 
biological systems, we expect ensemble deep learning methods to 
play an increasingly important role in omics data analysis and in 
integrating large-scale multi-omics data.

Model interpretability. A common criticism of deep learning 
models is their lack of interpretability. Besides building an accurate 
model, gaining insight from the model is also critical in bioinfor-
matics applications, since having an interpretable model of a bio-
logical system may lead to testable hypotheses that can be validated 
through experiments.

Several studies reviewed in previous sections have already made 
notable progress in this direction. For example, attention layers in 
ensemble networks were used to identify motifs of HIV integra-
tion sites61 and drug binding sites84. The stability and reproducibil-
ity offered by ensemble methods such as in feature selection104 are 
also making a substantial impact in biomarker discovery105. This is 
evident from the application of ensemble deep learning methods 
to identifying molecular markers for the diagnosis of primary and 
metastatic cancers66 and to provide insights into normal develop-
ment and cancers68. As we move from predictive to preventive bio-
medical research, models that offer biological insight into data will 
become increasingly desirable.

Choice of network architecture. The choice of network archi-
tecture is crucial for achieving optimal performance in a specific 
domain and application. For example, many studies choose to 
employ variants of the RNN such as the LSTM, which is suitable for 
learning sequential information in biological sequences53,72. DNN 
and CNN architectures, on the other hand, are shown to be suitable 
for biological applications that handle high-dimensional input61,66.

The use of multi-model ensembles makes it possible to exploit 
the power of hybrid architectures or to combine heteroge-
neous data types in multi-omics. Examples reviewed include the  
ResNet/RNN hybrid used to capture the relationship between  
each layer of features in RNA secondary structure prediction73,  
and the CNN/LSTM hybrid to learn both RNA sequences and  
secondary structures for joint prediction of alternative polyad-
enylation sites on pre-mRNAs90. While these studies demonstrate  
the importance and the application of specialized network archi-
tectures in bioinformatics, the exponential growth of new network 
architectures proposed in the computer science literature is likely 
to lead to many more novel applications in bioinformatics in the 
coming years.

Computational expense. Deep learning models typically con-
tain large numbers of parameters and the computational bur-
den of generating an ensemble of multiple deep learning models 
could be extremely high especially when working with large-scale  
omics data. Nevertheless, recent developments in ensemble  
deep learning have made use of the modularity of deep learning  

architectures and provided a panel of ensemble strategies and algo-
rithms to enable more efficient model fitting with a substantial 
reduction in training time. The improvement of computer hardware 
and technological advances in computing methods such as distrib-
uted and federated deep learning106,107 also facilitate the application 
and deployment of ensemble deep learning on large-scale omics 
data. Given that the size and complexity of biological data are only 
expected to soar as technology progresses, the development of more 
efficient ensemble deep learning algorithms and architectures will 
be another crucial direction in both machine learning and bioinfor-
matics research.

Future outlook
While the ensemble of neural networks has existed long before the 
deep learning era, the recent development of ensemble deep learn-
ing has substantially enriched the field with novel architectures 
and ensemble strategies that greatly improve model accuracy, reli-
ability and efficiency. These innovations, together with properties 
such as robustness to small sample size, high-dimensionality and 
data noise, have transformed ensemble deep learning into a new 
force, leading to remarkable and widespread breakthroughs across  
different fields of bioinformatics applications. Nonetheless, many of 
the advanced ensemble techniques that harness the power of recent 
deep learning architectures remain under-explored in their appli-
cation to bioinformatics. In addition, the development and appli-
cation of models that enable interpretation of biological systems 
are still in their infancy. We hope this Review Article has sparked 
thoughts on ensemble deep learning across multiple disciplines,  
and will inspire future research and applications that embraces the 
myriad of ensemble deep learning strategies to revolutionize bio-
logical and biomedical research.
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