Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities

Abstract

Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular events leading to the inception, progression and manifestation of cardiovascular events.
Fig. 2: Metabolic pathways in lesional cells relevant to atherosclerosis.
Fig. 3: Metabolic pathways in lesional cells and their consequences.
Fig. 4: Current understanding of efferocytosis, the metabolism of AC-derived cargo and consequences thereof.

Similar content being viewed by others

References

  1. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Primers 5, 56 (2019).

    Article  PubMed  Google Scholar 

  2. Rahman, M. S., Murphy, A. J. & Woollard, K. J. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat. Rev. Cardiol. 14, 387–400 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Lim, G. B. Hyperglycaemia-induced trained immunity promotes atherosclerosis. Nat. Rev. Cardiol. 18, 687 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Nitz, K., Lacy, M. & Atzler, D. Amino acids and their metabolism in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 39, 319–330 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Yurdagul, A. Jr., Finney, A. C., Woolard, M. D. & Orr, A. W. The arterial microenvironment: the where and why of atherosclerosis. Biochem. J. 473, 1281–1295 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Hansson, G. K., Libby, P. & Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med. 278, 483–493 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Partida, R. A., Libby, P., Crea, F. & Jang, I. K. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur. Heart J. 39, 2070–2076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Michos, E. D., McEvoy, J. W. & Blumenthal, R. S. Lipid management for the prevention of atherosclerotic cardiovascular disease. N. Engl. J. Med. 381, 1557–1567 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Tsao, C. W. et al. Heart Disease and Stroke Statistics–2023 Update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).

    Article  PubMed  Google Scholar 

  10. Back, M., Yurdagul, A. Jr., Tabas, I., Oorni, K. & Kovanen, P. T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389–406 (2019).

    PubMed  PubMed Central  Google Scholar 

  11. Doran, A. C. Inflammation resolution: implications for atherosclerosis. Circ. Res. 130, 130–148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mullick, A. E. et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J. Exp. Med. 205, 373–383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boren, J. & Williams, K. J. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr. Opin. Lipidol. 27, 473–483 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Ramirez, C. M. et al. Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation 140, 225–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, L. et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569, 565–569 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Camejo, G., Olofsson, S. O., Lopez, F., Carlsson, P. & Bondjers, G. Identification of Apo B-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans. Arteriosclerosis 8, 368–377 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Tsiantoulas, D. et al. APRIL limits atherosclerosis by binding to heparan sulfate proteoglycans. Nature 597, 92–96 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y. et al. Cholesterol-induced apoptotic macrophages elicit an inflammatory response in phagocytes, which is partially attenuated by the Mer receptor. J. Biol. Chem. 281, 6707–6717 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Schrijvers, D. M., De Meyer, G. R., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb. Vasc. Biol. 25, 1256–1261 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Kojima, Y., Weissman, I. L. & Leeper, N. J. The role of efferocytosis in atherosclerosis. Circulation 135, 476–489 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Humphrey, J. D. & Schwartz, M. A. Vascular mechanobiology: homeostasis, adaptation, and disease. Annu. Rev. Biomed. Eng. 23, 1–27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rohlenova, K., Veys, K., Miranda-Santos, I., De Bock, K. & Carmeliet, P. Endothelial cell metabolism in health and disease. Trends Cell Biol. 28, 224–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Enzo, E. et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34, 1349–1370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. White, S. M. et al. YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2-deficient tumor cells. Dev. Cell 49, 425–443 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, K. C. et al. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc. Natl Acad. Sci. USA 113, 11525–11530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, D. et al. HIF-1alpha is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. Elife https://doi.org/10.7554/eLife.25217 (2017).

  31. Yang, Q. et al. PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nat. Commun. 9, 4667 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Atkins, G. B. & Jain, M. K. Role of Kruppel-like transcription factors in endothelial biology. Circ. Res. 100, 1686–1695 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Doddaballapur, A. et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler. Thromb. Vasc. Biol. 35, 137–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Coon, B. G. et al. A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells. J. Cell Biol. https://doi.org/10.1083/jcb.202109144 (2022).

  35. Goldberg, I. J. et al. Lipolytic enzymes and free fatty acids at the endothelial interface. Atherosclerosis 329, 1–8 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Mehrotra, D., Wu, J., Papangeli, I. & Chun, H. J. Endothelium as a gatekeeper of fatty acid transport. Trends Endocrinol. Metab. 25, 99–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Abumrad, N. A. et al. Endothelial cell receptors in tissue lipid uptake and metabolism. Circ. Res. 128, 433–450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ibrahim, A., Yucel, N., Kim, B. & Arany, Z. Local mitochondrial ATP production regulates endothelial fatty acid uptake and transport. Cell Metab. 32, 309–319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kraehling, J. R. et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat. Commun. 7, 13516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, Z. et al. Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing CXCL1 from the endothelium. Cell Metab. 13, 592–600 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, P. Y. et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest. 125, 4514–4528 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Evrard, S. M. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 7, 11853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, P. Y. et al. Endothelial TGF-beta signalling drives vascular inflammation and atherosclerosis. Nat. Metab. 1, 912–926 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu, X. et al. Acetate controls endothelial-to-mesenchymal transition. Cell Metab. https://doi.org/10.1016/j.cmet.2023.05.010 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sorokin, V. et al. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation. Front Immunol. 11, 599415 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Worssam, M. D. & Jorgensen, H. F. Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases. Biochem. Soc. Trans. 49, 2101–2111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, M. & Gomez, D. Smooth muscle cell phenotypic diversity. Arterioscler. Thromb. Vasc. Biol. 39, 1715–1723 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dobnikar, L. et al. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat. Commun. 9, 4567 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kovacic, J. C. et al. Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 190–209 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen, J., Kitchen, C. M., Streb, J. W. & Miano, J. M. Myocardin: a component of a molecular switch for smooth muscle differentiation. J. Mol. Cell. Cardiol. 34, 1345–1356 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 21, 628–637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yap, C., Mieremet, A., de Vries, C. J. M., Micha, D. & de Waard, V. Six shades of vascular smooth muscle cells illuminated by KLF4 (kruppel-like factor 4). Arterioscler. Thromb. Vasc. Biol. 41, 2693–2707 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pan, H. et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142, 2060–2075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vengrenyuk, Y. et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol. 35, 535–546 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alencar, G. F. et al. Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation 142, 2045–2059 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Malhotra, R. et al. HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype. Nat. Genet. 51, 1580–1587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sangiorgi, G. et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J. Am. Coll. Cardiol. 31, 126–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Bos, D. et al. Comparison of atherosclerotic calcification in major vessel beds on the risk of all-cause and cause-specific mortality: The Rotterdam Study. Circ. Cardiovasc. Imaging https://doi.org/10.1161/CIRCIMAGING.115.003843 (2015).

  62. Guillermier, C. et al. Imaging mass spectrometry reveals heterogeneity of proliferation and metabolism in atherosclerosis. JCI Insight https://doi.org/10.1172/jci.insight.128528 (2019).

  63. Perez, J., Hill, B. G., Benavides, G. A., Dranka, B. P. & Darley-Usmar, V. M. Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor. Biochem. J. 428, 255–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Wall, V. Z. et al. Smooth muscle glucose metabolism promotes monocyte recruitment and atherosclerosis in a mouse model of metabolic syndrome. JCI Insight 3, e96544 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jain, M. et al. Smooth muscle cell-specific PKM2 (pyruvate kinase muscle 2) promotes smooth muscle cell phenotypic switching and neointimal hyperplasia. Arterioscler. Thromb. Vasc. Biol. 41, 1724–1737 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao, X. et al. PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis. Acta Biochim. Biophys. Sin. 52, 9–17 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Newman, A. A. C. et al. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRbeta and bioenergetic mechanisms. Nat. Metab. 3, 166–181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perry, R. N., Albarracin, D., Aherrahrou, R. & Civelek, M. Network preservation analysis reveals dysregulated metabolic pathways in human vascular smooth muscle cell phenotypic switching. Circ. Genom. Precis. Med. 16, e003781 (2023).

    Article  Google Scholar 

  69. Seeley, E. H. et al. Spatially resolved metabolites in stable and unstable human atherosclerotic plaques identified by mass spectrometry imaging. Arterioscler. Thromb. Vasc. Biol. https://doi.org/10.1161/ATVBAHA.122.318684 (2023).

    Article  PubMed  Google Scholar 

  70. Yang, L. et al. Lactate promotes synthetic phenotype in vascular smooth muscle cells. Circ. Res. 121, 1251–1262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shi, J., Yang, Y., Cheng, A., Xu, G. & He, F. Metabolism of vascular smooth muscle cells in vascular diseases. Am. J. Physiol. Heart Circ. Physiol. 319, H613–H631 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Peiro, C. et al. Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Cardiovasc. Diabetol. 15, 82 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dong, L. H. et al. TRAF6-mediated SM22alpha K21 ubiquitination promotes G6PD activation and NADPH production, contributing to GSH homeostasis and VSMC survival in vitro and in vivo. Circ. Res. 117, 684–694 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Clarke, M. C. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat. Med. 12, 1075–1080 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reho, J. J., Guo, D. F., Morgan, D. A. & Rahmouni, K. mTORC1 (mechanistic target of rapamycin complex 1) signaling in endothelial and smooth muscle cells is required for vascular function. Hypertension 77, 594–604 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Li, G. et al. Chronic mTOR activation induces a degradative smooth muscle cell phenotype. J. Clin. Invest. 130, 1233–1251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao, Y., Vanhoutte, P. M. & Leung, S. W. Vascular nitric oxide: beyond eNOS. J. Pharm. Sci. 129, 83–94 (2015).

    Article  CAS  Google Scholar 

  79. Tzeng, H. P., Lan, K. C., Yang, T. H., Chung, M. N. & Liu, S. H. Benzo[a]pyrene activates interleukin-6 induction and suppresses nitric oxide-induced apoptosis in rat vascular smooth muscle cells. PLoS ONE 12, e0178063 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ignarro, L. J. et al. Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc. Natl Acad. Sci. USA 98, 4202–4208 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grossi, M. et al. Inhibition of polyamine formation antagonizes vascular smooth muscle cell proliferation and preserves the contractile phenotype. Basic Clin. Pharmacol. Toxicol. 115, 379–388 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, X. P. et al. Arginase I enhances atherosclerotic plaque stabilization by inhibiting inflammation and promoting smooth muscle cell proliferation. Eur. Heart J. 35, 911–919 (2014).

    Article  PubMed  Google Scholar 

  83. Michiels, C. F., Kurdi, A., Timmermans, J. P., De Meyer, G. R. Y. & Martinet, W. Spermidine reduces lipid accumulation and necrotic core formation in atherosclerotic plaques via induction of autophagy. Atherosclerosis 251, 319–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Ouyang, L. et al. Indoleamine 2,3-dioxygenase 1 deletion-mediated kynurenine insufficiency in vascular smooth muscle cells exacerbates arterial calcification. Circulation 145, 1784–1798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, J. B. et al. Environment-sensing aryl hydrocarbon receptor inhibits the chondrogenic fate of modulated smooth muscle cells in atherosclerotic lesions. Circulation 142, 575–590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, M., Kwok, M. K., Fong, S. S. M. & Schooling, C. M. Indoleamine 2,3-dioxygenase and ischemic heart disease: a Mendelian randomization study. Sci. Rep. 9, 8491 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Niinisalo, P. et al. Indoleamine 2,3-dioxygenase activity associates with cardiovascular risk factors: the Health 2000 study. Scand. J. Clin. Lab. Invest. 68, 767–770 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Brouns, R. et al. The role of tryptophan catabolism along the kynurenine pathway in acute ischemic stroke. Neurochem. Res. 35, 1315–1322 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, Q. et al. Tryptophan-derived 3-hydroxyanthranilic acid contributes to angiotensin II-induced abdominal aortic aneurysm formation in mice in vivo. Circulation 136, 2271–2283 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Galvan-Pena, S. & O’Neill, L. A. Metabolic reprograming in macrophage polarization. Front. Immunol. 5, 420 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Viola, A., Munari, F., Sanchez-Rodriguez, R., Scolaro, T. & Castegna, A. The metabolic signature of macrophage responses. Front. Immunol. 10, 1462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol. Immunol. 19, 384–408 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Sarrazy, V. et al. Maintenance of macrophage redox status by ChREBP limits inflammation and apoptosis and protects against advanced atherosclerotic lesion formation. Cell Rep. 13, 132–144 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Puleston, D. J. et al. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab. 30, 352–363 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Guo, X. et al. TREM2 promotes cholesterol uptake and foam cell formation in atherosclerosis. Cell. Mol. Life Sci. 80, 137 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, N. & Westerterp, M. ABC transporters, cholesterol efflux, and implications for cardiovascular diseases. Adv. Exp. Med. Biol. 1276, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ. Res. 123, 1127–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Park, Y. M., Febbraio, M. & Silverstein, R. L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Invest. 119, 136–145 (2009).

    CAS  PubMed  Google Scholar 

  104. van Gils, J. M. et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 13, 136–143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hou, P. et al. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 14, 691 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Doran, A. C., Yurdagul, A. Jr. & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Dang, E. V. & Cyster, J. G. Loss of sterol metabolic homeostasis triggers inflammasomes - how and why. Curr. Opin. Immunol. 56, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. de la Roche, M. et al. Trafficking of cholesterol to the ER is required for NLRP3 inflammasome activation. J. Cell Biol. 217, 3560–3576 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tall, A. R. & Westerterp, M. Inflammasomes, neutrophil extracellular traps, and cholesterol. J. Lipid Res. 60, 721–727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Grebe, A., Hoss, F. & Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 122, 1722–1740 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat. Rev. Drug Discov. 20, 589–610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hendrikx, T. et al. Bone marrow-specific caspase-1/11 deficiency inhibits atherosclerosis development in Ldlr−/− mice. FEBS J. 282, 2327–2338 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Zeng, W. et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci. Rep. 11, 19305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fukuzumi, M., Shinomiya, H., Shimizu, Y., Ohishi, K. & Utsumi, S. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infect. Immun. 64, 108–112 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nishizawa, T. et al. Testing the role of myeloid cell glucose flux in inflammation and atherosclerosis. Cell Rep. 7, 356–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ruiz-Garcia, A. et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J. Biol. Chem. 286, 19247–19258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 38, 395–406 (2017).

    Article  PubMed  Google Scholar 

  121. O’Rourke, S. A. et al. Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages. Atherosclerosis 352, 35–45 (2022).

    Article  PubMed  Google Scholar 

  122. Rogers, I. S. et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc. Imaging 3, 388–397 (2010).

    Article  PubMed  Google Scholar 

  123. Rudd, J. H. et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J. Nucl. Med. 49, 871–878 (2008).

    Article  PubMed  Google Scholar 

  124. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Galvan-Pena, S. et al. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat. Commun. 10, 338 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Di Gioia, M. et al. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nat. Immunol. 21, 42–53 (2020).

    Article  PubMed  Google Scholar 

  127. Baardman, J. et al. Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nat. Commun. 11, 6296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sarrazy, V. et al. Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE−/− mice. Circ. Res. 118, 1062–1077 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Freemerman, A. J. et al. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. J. Immunol. 202, 1265–1286 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Divakaruni, A. S. et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab. 28, 490–503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nomura, M. et al. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17, 216–217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nomura, M. et al. Macrophage fatty acid oxidation inhibits atherosclerosis progression. J. Mol. Cell. Cardiol. 127, 270–276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, Y. et al. Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses. Circ. Res. 125, 1087–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, S. et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29, 443–456 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Nelson, V. L. et al. PPARγ is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes Dev. 32, 1035–1044 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Babaev, V. R. et al. Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb. Vasc. Biol. 25, 1647–1653 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Cordes, T. et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 291, 14274–14284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ganta, V. C. et al. A MicroRNA93-interferon regulatory factor-9-immunoresponsive gene-1-itaconic acid pathway modulates m2-like macrophage polarization to revascularize ischemic muscle. Circulation 135, 2403–2425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. O’Neill, L. A. J. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019).

    Article  PubMed  Google Scholar 

  141. Merlin, J. et al. Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. Nat. Metab. 3, 1313–1326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Albina, J. E., Mills, C. D., Henry, W. L. Jr. & Caldwell, M. D. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J. Immunol. 144, 3877–3880 (1990).

    Article  CAS  PubMed  Google Scholar 

  143. Bauer, P. M., Buga, G. M., Fukuto, J. M., Pegg, A. E. & Ignarro, L. J. Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme. J. Biol. Chem. 276, 34458–34464 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Lee, J., Ryu, H., Ferrante, R. J., Morris, S. M. Jr. & Ratan, R. R. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc. Natl Acad. Sci. USA 100, 4843–4848 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. El-Gayar, S., Thuring-Nahler, H., Pfeilschifter, J., Rollinghoff, M. & Bogdan, C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol. 171, 4561–4568 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Bussiere, F. I. et al. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J. Biol. Chem. 280, 2409–2412 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Teupser, D. et al. Identification of macrophage arginase I as a new candidate gene of atherosclerosis resistance. Arterioscler. Thromb. Vasc. Biol. 26, 365–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Yurdagul, A. Jr. et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518–533 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ravishankar, B. et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proc. Natl Acad. Sci. USA 112, 10774–10779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Baumgartner, R. et al. Evidence that a deviation in the kynurenine pathway aggravates atherosclerotic disease in humans. J. Intern. Med. 289, 53–68 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Pedersen, E. R. et al. Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris. Arterioscler. Thromb. Vasc. Biol. 35, 455–462 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Berg, M. et al. 3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlr-/- mice. Cardiovasc. Res. 116, 1948–1957 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Zhang, L. et al. The tryptophan metabolite 3-hydroxyanthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolaemic mice. Eur. Heart J. 33, 2025–2034 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Cole, J. E. et al. Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. Proc. Natl Acad. Sci. USA 112, 13033–13038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Polyzos, K. A. et al. Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoe−/− mice. Cardiovasc. Res. 106, 295–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Nakajima, K. et al. Orally administered eicosapentaenoic acid induces rapid regression of atherosclerosis via modulating the phenotype of dendritic cells in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 1963–1972 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Holmes, D. R. Jr. et al. Results of prevention of restenosis with tranilast and its outcomes (PRESTO) trial. Circulation 106, 1243–1250 (2002).

    Article  PubMed  Google Scholar 

  158. Tamai, H. et al. Impact of tranilast on restenosis after coronary angioplasty: tranilast restenosis following angioplasty trial (TREAT). Am. Heart J. 138, 968–975 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Chen, S. et al. Novel role for tranilast in regulating NLRP3 ubiquitination, vascular inflammation, and atherosclerosis. J. Am. Heart Assoc. 9, e015513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liang, H. et al. The proatherosclerotic function of indoleamine 2, 3-dioxygenase 1 in the developmental stage of atherosclerosis. Signal. Transduct. Target. Ther. 4, 23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Metghalchi, S. et al. Indoleamine 2,3-dioxygenase fine-tunes immune homeostasis in atherosclerosis and colitis through repression of interleukin-10 production. Cell Metab. 22, 460–471 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Afarideh, M. et al. Association of peripheral 5-hydroxyindole-3-acetic acid, a serotonin derivative, with metabolic syndrome and low-grade inflammation. Endocr. Pract. 21, 711–718 (2015).

    Article  PubMed  Google Scholar 

  163. Colpo, G. D., Venna, V. R., McCullough, L. D. & Teixeira, A. L. Systematic review on the involvement of the kynurenine pathway in stroke: pre-clinical and clinical evidence. Front Neurol. 10, 778 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rodriguez, A. E. et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 29, 1003–1011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yu, W. et al. One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol. Cell 75, 1147–1160 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Rosenblat, M., Coleman, R. & Aviram, M. Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 163, 17–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Callegari, A. et al. Gain and loss of function for glutathione synthesis: impact on advanced atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 2473–2482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hitzel, J. et al. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nat. Commun. 9, 2292 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Ding, Y. et al. Plasma glycine and risk of acute myocardial infarction in patients with suspected stable angina pectoris. J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.115.002621 (2015).

  172. Wittemans, L. B. L. et al. Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nat. Commun. 10, 1060 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Rom, O. et al. Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis. Redox Biol. 52, 102313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25, 2255–2264 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Linton, M. F. et al. Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis. Circ. J. 80, 2259–2268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G. & Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of Apoe−/− mice. Arterioscler. Thromb. Vasc. Biol. 28, 1421–1428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tao, W. et al. siRNA nanoparticles targeting CaMKIIgamma in lesional macrophages improve atherosclerotic plaque stability in mice. Sci. Transl. Med. 12, eaay1063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cai, B. et al. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J. Clin. Invest. 127, 564–568 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Flores, A. M. et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat. Nanotechnol. 15, 154–161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Morioka, S. et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563, 714–718 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Park, D. et al. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477, 220–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Trzeciak, A., Wang, Y. T. & Perry, J. S. A. First we eat, then we do everything else: the dynamic metabolic regulation of efferocytosis. Cell Metab. 33, 2126–2141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Yurdagul, A. Jr. Metabolic consequences of efferocytosis and its impact on atherosclerosis. Immunometabolism 3, e210017 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kumar, D., Pandit, R. & Yurdagul, A. Jr. Mechanisms of continual efferocytosis by macrophages and its role in mitigating atherosclerosis. Immunometabolism 5, e00017 (2023).

    Article  PubMed  Google Scholar 

  189. Viaud, M. et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ. Res. 122, 1369–1384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Cui, D. et al. Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J. Leukoc. Biol. 82, 1040–1050 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Fond, A. M., Lee, C. S., Schulman, I. G., Kiss, R. S. & Ravichandran, K. S. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J. Clin. Invest. 125, 2748–2758 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kiss, R. S., Elliott, M. R., Ma, Z., Marcel, Y. L. & Ravichandran, K. S. Apoptotic cells induce a phosphatidylserine-dependent homeostatic response from phagocytes. Curr. Biol. 16, 2252–2258 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. A-Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Yvan-Charvet, L. et al. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ. Res. 106, 1861–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Patterson M. T., et al. Trem2 promotes foamy macrophage lipid uptake and survival in atherosclerosis. Nat. Cardiovasc. Res. https://doi.org/10.1038/s44161-023-00354-3 (2023).

  196. Piollet, M. et al. TREM2 limits necrotic core formation during atherogenesis by controlling macrophage survival and efferocytosis. Preprint at bioRxiv https://doi.org/10.1101/2023.05.15.539977 (2023).

  197. Yurdagul, A. Jr. et al. ODC (ornithine decarboxylase)-dependent putrescine synthesis maintains MerTK (MER tyrosine-protein kinase) expression to drive resolution. Arterioscler. Thromb. Vasc. Biol. 41, e144–e159 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ampomah, P. B. et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat. Metab. 4, 444–457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gerlach, B. D. et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab. 33, 2445–2463 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhang, X. et al. Loss of macrophage mTORC2 drives atherosclerosis via FoxO1 and IL-1beta signaling. Circ. Res. 133, 200–219 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Schilperoort, M., Ngai, D., Katerelos, M., Power, D. A. & Tabas, I. PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages. Nat. Metab. https://doi.org/10.1038/s42255-023-00736-8 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Jha, M. K. et al. Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. J. Clin. Invest. 131, e141964 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Tabas, I. & Bornfeldt, K. E. Intracellular and Intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ. Res. 126, 1209–1227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Susser, L. I. et al. Mitochondrial fragmentation promotes inflammation resolution responses in macrophages via histone lactylation. Mol. Cell. Biol. 43, 531–546 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wang, Y. et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171, 331–345 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wang, Y. T. et al. Metabolic adaptation supports enhanced macrophage efferocytosis in limited-oxygen environments. Cell Metab. 35, 316–331 (2023).

    Article  PubMed  Google Scholar 

  208. Fredman, G. et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7, 12859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  210. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Proto, J. D. et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49, 666–677 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Sharma, M. et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ. Res. 127, 335–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Conrad, N. et al. Autoimmune diseases and cardiovascular risk: a population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. Lancet 400, 733–743 (2022).

    Article  PubMed  Google Scholar 

  215. Nettersheim, F. S., Picard, F. S. R., Hoyer, F. F. & Winkels, H. Immunotherapeutic strategies in cancer and atherosclerosis—two sides of the same coin. Front. Cardiovas. Med. 8, 812702 (2022).

    Article  Google Scholar 

  216. Wolf, D. et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective ApoB100-reactive CD4+ T-regulatory cells. Circulation https://doi.org/10.1161/CIRCULATIONAHA.119.042863 (2020).

  217. Roy, P. et al. Immunodominant MHC-II (major histocompatibility complex II) restricted epitopes in human apolipoprotein B. Circ. Res. 131, 258–276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Depuydt, M. A. C. et al. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat. Cardiovasc. Res. 2, 112–125 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Wang, Z. et al. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. Nat. Cardiovasc. Res. 2, 290–306 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Kimura, T. et al. Regulatory CD4+ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 138, 1130–1143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Saigusa, R. et al. Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. Nat. Cardiovas. Res. 1, 462–475 (2022).

    Article  Google Scholar 

  222. Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci USA 92, 3893–3897 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kimura, T. et al. Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells. Am. J. Physiol. Heart Circ. Physiol. 312, H781–H790 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Tse, K. et al. Atheroprotective vaccination with MHC-II restricted peptides from ApoB-100. Front. Immunol. 4, 493 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Li, J. et al. CCR5+T-bet+FoxP3+ effector CD4 T cells drive atherosclerosis. Circ. Res. 118, 1540–1552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Freuchet, A. et al. Identification of human exTreg cells as CD16+CD56+ cytotoxic CD4+ T cells. Nat. Immunol. 24, 1748–1761 (2023).

    Article  CAS  PubMed  Google Scholar 

  227. Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9, 1095 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Freuchet, A. et al. Identification of human exTreg cells as CD16+CD56+ cytotoxic CD4+ T cells. Nat. Immunol. 24, 1748–1761 (2023).

  229. Saxena, V., Lakhan, R., Iyyathurai, J. & Bromberg, J. S. Mechanisms of exTreg induction. Eur. J. Immunol. 51, 1956–1967 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2019).

    Article  PubMed  Google Scholar 

  231. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article  CAS  PubMed  Google Scholar 

  232. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    Article  PubMed  Google Scholar 

  233. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Hochrein, S. M. et al. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab. 34, 516–532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Forteza, M. J. et al. Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk. Cardiovasc. Res. 119, 1524–1536 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. He, N. et al. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc. Natl Acad. Sci. USA 114, 12542–12547 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Shrestha, S. et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16, 178–187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Huynh, A. et al. Control of PI3 kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Gaddis, D. E. et al. Atherosclerosis impairs naive CD4 T-cell responses via disruption of glycolysis. Arterioscler. Thromb. Vasc. Biol. 41, 2387–2398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Maganto-García, E., Tarrio, M. L., Grabie, N., Bu, D. X. & Lichtman, A. H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 124, 185–195 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Bazioti, V. et al. T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice. Nat. Commun. 13, 3799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Iqbal, R. et al. Dietary patterns and the risk of acute myocardial infarction in 52 countries: results of the INTERHEART study. Circulation 118, 1929–1937 (2008).

    Article  CAS  PubMed  Google Scholar 

  245. Kelly, R. K. et al. Associations between types and sources of dietary carbohydrates and cardiovascular disease risk: a prospective cohort study of UK Biobank participants. BMC Med. 21, 34 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kedia-Mehta, N. & Finlay, D. K. Competition for nutrients and its role in controlling immune responses. Nat. Commun. 10, 2123 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Zhang, D. et al. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 51, 671–681 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Matias, M. I. et al. Regulatory T cell differentiation is controlled by aKG- induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Rep. https://doi.org/10.1016/j.celrep.2021.109911 (2021).

  250. Klysz, D. et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).

    Article  PubMed  Google Scholar 

  251. Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017).

    Article  CAS  PubMed  Google Scholar 

  253. Roy, D. G. et al. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab. 31, 250–266 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).

    Article  CAS  PubMed  Google Scholar 

  255. Yan, Y. et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J. Immunol. 185, 5953–5961 (2010).

    Article  CAS  PubMed  Google Scholar 

  256. Sharma, M. D. et al. Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113, 6102–6111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Cuffy, M. C. et al. Induction of Indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-γ contributes to medial immunoprivilege1. J. Immunol. 179, 5246–5254 (2007).

    Article  CAS  PubMed  Google Scholar 

  258. Forteza, M. J. et al. Activation of the regulatory T-cell/indoleamine 2,3-dioxygenase axis reduces vascular inflammation and atherosclerosis in hyperlipidemic mice. Front. Immunol. https://doi.org/10.3389/fimmu.2018.00950 (2018).

  259. Zhu, Y. et al. Lactate accelerates calcification in VSMCs through suppression of BNIP3-mediated mitophagy. Cell Signal. 58, 53–64 (2019).

    Article  CAS  PubMed  Google Scholar 

  260. Tsai, T. L. et al. Multiomics reveal the central role of pentose phosphate pathway in resident thymic macrophages to cope with efferocytosis-associated stress. Cell Rep. 40, 111065 (2022).

    Article  CAS  PubMed  Google Scholar 

  261. Yurdagul, A. Jr. Crosstalk between macrophages and vascular smooth muscle cells in atherosclerotic plaque stability. Arterioscler. Thromb. Vasc. Biol. 42, 372–380 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Medina, C. B. et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 580, 130–135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Howangyin, K. Y. et al. Myeloid-epithelial-reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling after myocardial infarction via local delivery of vascular endothelial growth factor. Circulation 133, 826–839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Virmani, R. et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol. 25, 2054–2061 (2005).

    Article  CAS  PubMed  Google Scholar 

  265. de Vries, M. R. et al. Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels. J. Intern. Med. 285, 59–74 (2019).

    Article  PubMed  Google Scholar 

  266. Michel, J. B., Virmani, R., Arbustini, E. & Pasterkamp, G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur. Heart J. 32, 1977–1985 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  268. Borcherding, N. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab. 34, 1499–1513 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Brestoff, J. R. et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 33, 270–282 (2021).

    Article  CAS  PubMed  Google Scholar 

  270. Gurke, S. et al. Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp. Cell. Res. 314, 3669–3683 (2008).

    Article  CAS  PubMed  Google Scholar 

  271. Certo, M. et al. Endothelial cell and T-cell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation. Br. J. Pharmacol. 178, 2041–2059 (2021).

    Article  CAS  PubMed  Google Scholar 

  272. Lukacs-Kornek, V. et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat. Immunol. 12, 1096–1104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Doulias, P. T., Tenopoulou, M., Greene, J. L., Raju, K. & Ischiropoulos, H. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci. Signal. 6, rs1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Mendoza, A. et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 546, 158–161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Lu, Z. et al. GPR40/FFA1 and neutral sphingomyelinase are involved in palmitate-boosted inflammatory response of microvascular endothelial cells to LPS. Atherosclerosis 240, 163–173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Gerriets, V. A. & Rathmell, J. C. Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168–173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Wu, H., Gong, J. & Liu, Y. Indoleamine 2, 3-dioxygenase regulation of immune response (Review). Mol. Med. Rep. 17, 4867–4873 (2018).

    CAS  PubMed  Google Scholar 

  278. Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).

    Article  CAS  PubMed  Google Scholar 

  279. He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  280. Xu, J. et al. Succinate/IL-1beta signaling axis promotes the inflammatory progression of endothelial and exacerbates atherosclerosis. Front. Immunol. 13, 817572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Divorty, N., Mackenzie, A. E., Nicklin, S. A. & Milligan, G. G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease. Front. Pharmacol. 6, 41 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Baumgartner, R. et al. Disruption of GPR35 signaling in bone marrow-derived cells does not influence vascular inflammation and atherosclerosis in hyperlipidemic mice. Metabolites 11, 411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Recio, C. et al. Activation of the immune-metabolic receptor GPR84 enhances inflammation and phagocytosis in macrophages. Front. Immunol. 9, 1419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Natarajan, N. et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol. Genomics 48, 826–834 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Pluznick, J. L. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. McFarlane, S. I., Muniyappa, R., Francisco, R. & Sowers, J. R. Clinical review 145: pleiotropic effects of statins: lipid reduction and beyond. J. Clin. Endocrinol. Metab. 87, 1451–1458 (2002).

    Article  CAS  PubMed  Google Scholar 

  287. Pruefer, D., Scalia, R. & Lefer, A. M. Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats. Arterioscler. Thromb. Vasc. Biol. 19, 2894–2900 (1999).

    Article  CAS  PubMed  Google Scholar 

  288. Perticone, F. et al. Effects of atorvastatin and vitamin C on endothelial function of hypercholesterolemic patients. Atherosclerosis 152, 511–518 (2000).

    Article  CAS  PubMed  Google Scholar 

  289. Mital, S. et al. Simvastatin upregulates coronary vascular endothelial nitric oxide production in conscious dogs. Am. J. Physiol. Heart Circ. Physiol. 279, H2649–H2657 (2000).

    Article  CAS  PubMed  Google Scholar 

  290. Parmar, K. M. et al. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J. Biol. Chem. 280, 26714–26719 (2005).

    Article  CAS  PubMed  Google Scholar 

  291. Bu, D. X. et al. Statin-induced Kruppel-like factor 2 expression in human and mouse T cells reduces inflammatory and pathogenic responses. J. Clin. Invest. 120, 1961–1970 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Koushki, K. et al. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and Toll-like receptor pathways. Clin. Rev. Allergy Immunol. 60, 175–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  293. Aday, A. W. & Ridker, P. M. Targeting residual inflammatory risk: a shifting paradigm for atherosclerotic disease. Front. Cardiovasc. Med. 6, 16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Nilsson, J. Atherosclerotic plaque vulnerability in the statin era. Eur. Heart J. 38, 1638–1644 (2017).

    Article  CAS  PubMed  Google Scholar 

  295. Libby, P., Pasterkamp, G., Crea, F. & Jang, I. K. Reassessing the mechanisms of acute coronary syndromes. Circ. Res. 124, 150–160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Chow, O. A. et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8, 445–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Tsourouktsoglou, T. D. et al. Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4. Cell Rep. 31, 107602 (2020).

    Article  CAS  PubMed  Google Scholar 

  298. Molinaro, R. et al. Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovasc. Res. 117, 2652–2663 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Feng, X., Zhang, L., Xu, S. & Shen, A. Z. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review. Prog. Lipid Res. 77, 101006 (2020).

    Article  CAS  PubMed  Google Scholar 

  300. Pinkosky, S. L. et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J. Lipid Res. 54, 134–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Nissen, S. E. et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N. Engl. J. Med. 388, 1353–1364 (2023).

    Article  PubMed  Google Scholar 

  302. DeFronzo, R. A. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 131, 281–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  303. Staels, B. PPARgamma and atherosclerosis. Curr. Med. Res. Opin. 21, S13–S20 (2005).

    Article  CAS  PubMed  Google Scholar 

  304. Loke, Y. K., Kwok, C. S. & Singh, S. Comparative cardiovascular effects of thiazolidinediones: systematic review and meta-analysis of observational studies. Brit. Med. J. 342, d1309 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Kahn, S. E. et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 355, 2427–2443 (2006).

    Article  CAS  PubMed  Google Scholar 

  306. Thorp, E., Kuriakose, G., Shah, Y. M., Gonzalez, F. J. & Tabas, I. Pioglitazone increases macrophage apoptosis and plaque necrosis in advanced atherosclerotic lesions of nondiabetic low-density lipoprotein receptor-null mice. Circulation 116, 2182–2190 (2007).

    Article  CAS  PubMed  Google Scholar 

  307. Saisho, Y. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr. Metab. Immune Disord. Drug Targets 15, 196–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  308. Cameron, A. R. et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res. 119, 652–665 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Davis, B. J., Xie, Z., Viollet, B. & Zou, M. H. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 55, 496–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  310. Katakam, P. V., Ujhelyi, M. R., Hoenig, M. & Miller, A. W. Metformin improves vascular function in insulin-resistant rats. Hypertension 35, 108–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  311. Vitale, C. et al. Metformin improves endothelial function in patients with metabolic syndrome. J. Intern. Med. 258, 250–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  312. Tai, S. et al. Metformin suppresses vascular smooth muscle cell senescence by promoting autophagic flux. J. Adv. Res. 41, 205–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  313. Cao, X. et al. Metformin inhibits vascular calcification in female rat aortic smooth muscle cells via the AMPK–eNOS–NO pathway. Endocrinology 154, 3680–3689 (2013).

    Article  CAS  PubMed  Google Scholar 

  314. Qing, L. et al. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome signaling pathway. Am. J. Transl. Res 11, 655–668 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Habib, A. et al. Metformin impairs vascular endothelial recovery after stent placement in the setting of locally eluted mammalian target of rapamycin inhibitors via S6 kinase-dependent inhibition of cell proliferation. J. Am. Coll. Cardiol. 61, 971–980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Diabetes, C. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Article  Google Scholar 

  317. Adler, A. I. et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 321, 412–419 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998).

  319. Wang, C. C., Gurevich, I. & Draznin, B. Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes 52, 2562–2569 (2003).

    Article  CAS  PubMed  Google Scholar 

  320. Zoungas, S. et al. Severe hypoglycemia and risks of vascular events and death. N. Engl. J. Med. 363, 1410–1418 (2010).

    Article  CAS  PubMed  Google Scholar 

  321. Cersosimo, E., Xu, X. & Musi, N. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways. Am. J. Physiol. Cell Physiol. 302, C652–C657 (2012).

    Article  CAS  PubMed  Google Scholar 

  322. Calles-Escandon, J. & Cipolla, M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr. Rev. 22, 36–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  323. Moses, J. W. et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349, 1315–1323 (2003).

    Article  CAS  PubMed  Google Scholar 

  324. Hegner, B. et al. mTOR regulates vascular smooth muscle cell differentiation from human bone marrow-derived mesenchymal progenitors. Arterioscler. Thromb. Vasc. Biol. 29, 232–238 (2009).

    Article  CAS  PubMed  Google Scholar 

  325. Martin, K. A. et al. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. Am. J. Physiol. Cell Physiol. 286, C507–C517 (2004).

    Article  CAS  PubMed  Google Scholar 

  326. Martin, K. A. et al. Rapamycin promotes vascular smooth muscle cell differentiation through insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt2 feedback signaling. J. Biol. Chem. 282, 36112–36120 (2007).

    Article  CAS  PubMed  Google Scholar 

  327. McFadden, E. P. et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 364, 1519–1521 (2004).

    Article  CAS  PubMed  Google Scholar 

  328. Meier, P. et al. Coronary collateral function long after drug-eluting stent implantation. J. Am. Coll. Cardiol. 49, 15–20 (2007).

    Article  PubMed  Google Scholar 

  329. Vorpahl, M. et al. Pathobiology of stent thrombosis after drug-eluting stent implantation. Curr. Pharm. Des. 16, 4064–4071 (2010).

    Article  CAS  PubMed  Google Scholar 

  330. Stefanini, G. G. & Holmes, D. R. Jr. Drug-eluting coronary-artery stents. N. Engl. J. Med. 368, 254–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  331. Byrne, R. A. et al. Report of a European society of cardiology-European association of percutaneous cardiovascular interventions task force on the evaluation of coronary stents in Europe: executive summary. Eur. Heart J. 36, 2608–2620 (2015).

    Article  PubMed  Google Scholar 

  332. O’Brien, B., Zafar, H., Ibrahim, A., Zafar, J. & Sharif, F. Coronary stent materials and coatings: a technology and performance update. Ann. Biomed. Eng. 44, 523–535 (2016).

    Article  PubMed  Google Scholar 

  333. Arguello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 32, 1063–1075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Rappez, L. et al. SpaceM reveals metabolic states of single cells. Nat. Methods 18, 799–805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Eberhardt, N. & Giannarelli, C. How single-cell technologies have provided new insights into atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 42, 243–252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Ord, T. et al. Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci. Circ. Res. 129, 240–258 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  337. Williams, J. W. et al. Single cell RNA sequencing in atherosclerosis research. Circ. Res. 126, 1112–1126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Kott, K. A. et al. Single-cell immune profiling in coronary artery disease: the role of state-of-the-art immunophenotyping with mass cytometry in the diagnosis of atherosclerosis. J. Am. Heart Assoc. 9, e017759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by Single-Cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Mizrak, D. et al. Single-molecule spatial transcriptomics of human thoracic aortic aneurysms uncovers calcification-related CARTPT-expressing smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. https://doi.org/10.1161/ATVBAHA.123.319329 (2023).

    Article  PubMed  Google Scholar 

  342. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  343. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  344. Sachdeva, A. et al. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in Get With The Guidelines. Am. Heart J. 157, 111–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  345. Sampson, U. K., Fazio, S. & Linton, M. F. Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr. Atheroscler. Rep. 14, 1–10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Foo, S. Y. et al. Vascular effects of a low-carbohydrate high-protein diet. Proc. Natl Acad. Sci. USA 106, 15418–15423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Zhang, X. et al. High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy. Nat. Metab. 2, 110–125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Lagiou, P. et al. Low carbohydrate-high protein diet and incidence of cardiovascular diseases in Swedish women: prospective cohort study. BMJ 344, e4026 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  349. Hu, F. B. et al. Dietary protein and risk of ischemic heart disease in women. Am. J. Clin. Nutr. 70, 221–227 (1999).

    Article  PubMed  Google Scholar 

  350. Vogtschmidt, Y. D. et al. Is protein the forgotten ingredient: effects of higher compared to lower protein diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 328, 124–135 (2021).

    Article  CAS  PubMed  Google Scholar 

  351. Tharrey, M. et al. Patterns of amino acid intake are strongly associated with cardiovascular mortality, independently of the sources of protein. Int. J. Epidemiol. 49, 312–321 (2020).

    Article  PubMed  Google Scholar 

  352. Ruiz-Canela, M. et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin. Chem. 62, 582–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Liu, Y. et al. Dysregulated oxalate metabolism is a driver and therapeutic target in atherosclerosis. Cell Rep. 36, 109420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. White, P. J. et al. Muscle-liver trafficking of BCAA-derived nitrogen underlies obesity-related glycine depletion. Cell Rep. 33, 108375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Ghrayeb, A. et al. Serine synthesis via reversed SHMT2 activity drives glycine depletion and acetaminophen hepatotoxicity in MASLD. Cell Metab. 36, 116–129.e7 (2024).

    Article  CAS  PubMed  Google Scholar 

  356. Rom, O. et al. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Sci. Transl. Med. 12, eaa2841 (2020).

    Article  Google Scholar 

  357. Grajeda-Iglesias, C., Rom, O. & Aviram, M. Branched-chain amino acids and atherosclerosis: friends or foes? Curr. Opin. Lipidol. 29, 166–169 (2018).

    Article  CAS  PubMed  Google Scholar 

  358. McGarrah, R. W. & White, P. J. Branched-chain amino acids in cardiovascular disease. Nat. Rev. Cardiol. 20, 77–89 (2023).

    Article  CAS  PubMed  Google Scholar 

  359. Li, Z. et al. Oral administration of branched-chain amino acids attenuates atherosclerosis by inhibiting the inflammatory response and regulating the gut microbiota in ApoE-deficient mice. Nutrients 14, 5065 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Zhao, Y. et al. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacol. Sin. 37, 196–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  361. Rom, O. et al. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. J. Nutr. Biochem. 45, 24–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  362. Grajeda-Iglesias, C. et al. Leucine supplementation attenuates macrophage foam-cell formation: studies in humans, mice, and cultured macrophages. Biofactors 44, 245–262 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from an American Heart Association Postdoctoral Fellowship (23POST1026505) to A.C.F.; a Louisiana State University Health Sciences Center, Shreveport and Center for Cardiovascular Diseases and Sciences Postdoctoral Fellowship to A.C.F.; a Louisiana State University Health Sciences Center, Shreveport, CIRP, and Chancellor’s Pathways Research Award to A.Y.J. and O.R.; Deutsche Forschungsgemeinschaft (NE 2574/1-1) to F.S.N.; National Institutes of Health R01 HL135582 to M.S.; P01 HL136275 and R35 HL145241 to K.L.; R00 HL150233, R01 DK134011 and R01 DK136685 to O.R.; R00 HL145131 and R01 HL167758 to A.Y.J.

Author information

Authors and Affiliations

Authors

Contributions

C.S., F.S.N. and B.C. contributed equally to the drafting of the manuscript. A.C.F. provided comments on specific sections. M.A.S., K.L., O.R. and A.Y.J. reviewed and edited the manuscript. A.Y.J. oversaw the development of the Review, incorporating comments, revisions and edits. All authors contributed to the Review and approved the final version for publication.

Corresponding author

Correspondence to Arif Yurdagul Jr..

Ethics declarations

Competing interests

K.L. is founder and co-owner of Atherovax and receives no compensation from Atherovax. No Atherovax funds were used in this study. O.R. is a scientific advisor at Diapin Therapeutics and receives no compensation from Diapin Therapeutics. No Diapin Therapeutics funds were used in this study. All other authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Daniel Ketelhuth, Laurent Yvan-Charvet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stroope, C., Nettersheim, F.S., Coon, B. et al. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 6, 617–638 (2024). https://doi.org/10.1038/s42255-024-01015-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-024-01015-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing