Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic heterogeneity in cancer

Abstract

Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cancer metabolic heterogeneity in space and time.
Fig. 2: Environmental cues contribute to intratumour and interorgan cancer metabolic heterogeneity.
Fig. 3: Oxygen gradient induces metabolic heterogeneity in space.
Fig. 4: Nutrient availability and scavenging induce metabolic heterogeneity in space.
Fig. 5: Cell density and ECM stiffness affect cancer cell metabolism.
Fig. 6: Stromal cells of the TME regulate cancer cell metabolism.
Fig. 7: Temporal metabolic heterogeneity of cancer cell metabolism during the metastatic cascade.
Fig. 8: Anticancer therapies induce tumour metabolic heterogeneity over time.

Similar content being viewed by others

References

  1. Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Goveia, J. et al. Meta-analysis of clinical metabolic profiling studies in cancer: challenges and opportunities. EMBO Mol. Med. 8, 1134–1142 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rohatgi, N., Ghoshdastider, U., Baruah, P., Kulshrestha, T. & Skanderup, A. J. A pan-cancer metabolic atlas of the tumor microenvironment. Cell Rep. 39, 110800 (2022).

    Article  PubMed  CAS  Google Scholar 

  4. García-Jiménez, C. & Goding, C. R. Starvation and pseudo-starvation as drivers of cancer metastasis through translation reprogramming. Cell Metab. 29, 254–267 (2019).

    Article  PubMed  Google Scholar 

  5. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416 (2019).

    Article  PubMed  CAS  Google Scholar 

  7. Hrovatin, K., Fischer, D. S. & Theis, F. J. Toward modeling metabolic state from single-cell transcriptomics. Mol. Metab. 57, 101396 (2022).

    Article  PubMed  CAS  Google Scholar 

  8. Evers, T. M. J. et al. Deciphering metabolic heterogeneity by single-cell analysis. Anal. Chem. 91, 13314–13323 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    Article  PubMed  CAS  Google Scholar 

  10. Gong, Y. et al. Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets. Cell Metab. 33, 51–64 (2021).

    Article  PubMed  CAS  Google Scholar 

  11. Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

    Article  PubMed  CAS  Google Scholar 

  12. Sun, C. et al. Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer. Nat. Commun. 14, 2692 (2023). This study integrates data from spatial multiomics to map tissue molecular architecture, providing a detailed picture of intratumour heterogeneity and cell-specific metabolic remodelling in gastric cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dobson, S. M. et al. Relapse-fated latent diagnosis subclones in acute B lineage leukemia are drug tolerant and possess distinct metabolic programs. Cancer Discov. 10, 568–587 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bhandari, V. et al. Molecular landmarks of tumor hypoxia across cancer types. Nat. Genet. 51, 308–318 (2019).

    Article  PubMed  CAS  Google Scholar 

  15. Vaupel, P., Höckel, M. & Mayer, A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox Signal. 9, 1221–1235 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lee, P., Chandel, N. S. & Simon, M. C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268–283 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. Nakazawa, M. S., Keith, B. & Simon, M. C. Oxygen availability and metabolic adaptations. Nat. Rev. Cancer 16, 663–673 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pérez-Escuredo, J. et al. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle 15, 72–83 (2016).

    Article  PubMed  Google Scholar 

  21. Corbet, C. et al. The SIRT1/HIF2α axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res. 74, 5507–5519 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Yoo, H. C. et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 31, 267–283 (2020). This study reveals the previously unknown mitochondrial glutamine transporter ‘SLC1A5 variant’, the expression of which is induced under hypoxia, resulting in metabolic reprogramming with glutamine-dependent ATP production and GSH synthesis.

    Article  PubMed  CAS  Google Scholar 

  23. Flint, L. E. et al. Characterization of an aggregated three-dimensional cell culture model by multimodal mass spectrometry imaging. Anal. Chem. 92, 12538–12547 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Xiao, Z., Dai, Z. & Locasale, J. W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun. 10, 3763 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Guillaumond, F. et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc. Natl Acad. Sci. USA 110, 3919–3924 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Halestrap, A. P. & Meredith, D. The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 447, 619–628 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. Halestrap, A. P. & Price, N. T. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J. 343, 281–299 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Schug, Z. T., Vande Voorde, J. & Gottlieb, E. The metabolic fate of acetate in cancer. Nat. Rev. Cancer 16, 708–717 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sun, R. C. & Denko, N. C. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 19, 285–292 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl Acad. Sci. USA 108, 19611–19616 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gameiro, P. A. et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 17, 372–385 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fendt, S. M. et al. Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat. Commun. 4, 2236 (2013).

    Article  PubMed  Google Scholar 

  37. Huang, D. et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 8, 1930–1942 (2014).

    Article  PubMed  CAS  Google Scholar 

  38. Liao, M. et al. HIF-2α-induced upregulation of CD36 promotes the development of ccRCC. Exp. Cell Res. 421, 113389 (2022).

    Article  PubMed  CAS  Google Scholar 

  39. Aoki, T. et al. Hypoxia-induced CD36 expression in gastric cancer cells promotes peritoneal metastasis via fatty acid uptake. Ann. Surg. Oncol. 30, 3125–3136 (2023).

    Article  PubMed  Google Scholar 

  40. Bensaad, K. et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 9, 349–365 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. Peck, B. et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 4, 6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Henderson, F. et al. 3D DESI-MS lipid imaging in a xenograft model of glioblastoma: a proof of principle. Sci. Rep. 10, 16512 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mascini, N. E. et al. Mass spectrometry imaging of the hypoxia marker pimonidazole in a breast tumor model. Anal. Chem. 88, 3107–3114 (2016).

    Article  PubMed  CAS  Google Scholar 

  44. Shakya, S. et al. Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathol. Commun. 9, 101 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Elia, I., Doglioni, G. & Fendt, S. M. Metabolic hallmarks of metastasis formation. Trends Cell Biol. 28, 673–684 (2018).

    Article  PubMed  CAS  Google Scholar 

  46. Muir, A. et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. eLife 6, e27713 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hijmans, B. S., Grefhorst, A., Oosterveer, M. H. & Groen, A. K. Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. Biochimie 96, 121–129 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. McGale, E. H., Pye, I. F., Stonier, C., Hutchinson, E. C. & Aber, G. M. Studies of the inter-relationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals. J. Neurochem. 29, 291–297 (1977).

    Article  PubMed  CAS  Google Scholar 

  49. Jumpertz, R. et al. Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism. PLoS ONE 7, e41503 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Altea-Manzano, P. et al. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling. Nat. Cancer 4, 344–364 (2023).

  51. Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat. Cancer 2, 414–428 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Parik, S. et al. GBM tumors are heterogeneous in their fatty acid metabolism and modulating fatty acid metabolism sensitizes cancer cells derived from recurring GBM tumors to temozolomide. Front. Oncol. 12, 988872 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fukumura, D., Duda, D. G., Munn, L. L. & Jain, R. K. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17, 206–225 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8, e44235 (2019). This study reveals that the nutrient composition of plasma and tumour IF is different and that tumour type, anatomical location and animal diet affect nutrient availability of the TME.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    Article  PubMed  CAS  Google Scholar 

  57. Fong, M. Y. et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol. 17, 183–194 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Christen, S. et al. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep. 17, 837–848 (2016).

    Article  PubMed  CAS  Google Scholar 

  59. Elia, I. et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568, 117–121 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rinaldi, G. et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition. Mol. Cell 81, 386–397 (2021).

    Article  PubMed  CAS  Google Scholar 

  61. Pan, M. et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090–1101 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Batchuluun, B., Pinkosky, S. L. & Steinberg, G. R. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat. Rev. Drug Discov. 21, 283–305 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122, 4–22 (2020).

    Article  PubMed  CAS  Google Scholar 

  64. Hoang-Minh, L. B. et al. Infiltrative and drug-resistant slow-cycling cells support metabolic heterogeneity in glioblastoma. EMBO J. 37, e98772 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Le, A. et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ren, P. et al. ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 activation. J. Pathol. 235, 90–100 (2015).

    Article  PubMed  CAS  Google Scholar 

  67. Zhou, Y. et al. Glutamate dehydrogenase 1 mediated glutaminolysis sustains HCC cells survival under glucose deprivation. J. Cancer 13, 1061–1072 (2022). This study shows that GDH1 drives glutaminolysis-mediated TCA cycle fuelling and HCC cell proliferation and survival under glucose deprivation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yang, C. et al. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 69, 7986–7993 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Damaghi, M. et al. The harsh microenvironment in early breast cancer selects for a Warburg phenotype. Proc. Natl Acad. Sci. USA 118, e2011342118 (2021).

  70. Ma, C. et al. The alternative activity of nuclear PHGDH contributes to tumour growth under nutrient stress. Nat. Metab. 3, 1357–1371 (2021). This study reveals a previously unidentified nutrient-sensing mechanism involving nuclear noncanonical enzymatic activity of PHGDH under nutrient stress conditions.

    Article  PubMed  CAS  Google Scholar 

  71. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Li, M. et al. DDIT3 directs a dual mechanism to balance glycolysis and oxidative phosphorylation during glutamine deprivation. Adv. Sci. 8, e2003732 (2021).

    Article  Google Scholar 

  73. Cheng, T. et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc. Natl Acad. Sci. USA 108, 8674–8679 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zhang, J. et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56, 205–218 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Pavlova, N. N. et al. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab. 27, 428–438 (2018). This study shows that glutamine-deprived cells depend on asparagine for maintaining proliferation and protein synthesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Alkan, H. F. et al. Cytosolic aspartate availability determines cell survival when glutamine is limiting. Cell Metab. 28, 706–720 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kumar, A. et al. NaCT/SLC13A5 facilitates citrate import and metabolism under nutrient-limited conditions. Cell Rep. 36, 109701 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Gopal, E. et al. Expression and functional features of NaCT, a sodium-coupled citrate transporter, in human and rat livers and cell lines. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G402–G408 (2007).

    Article  CAS  Google Scholar 

  79. Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37 (2010).

    Article  PubMed  CAS  Google Scholar 

  80. Geyer, P. E. et al. Plasma proteome profiling to assess human health and disease. Cell Syst. 2, 185–195 (2016).

    Article  PubMed  CAS  Google Scholar 

  81. Armenta, D. A. et al. Ferroptosis inhibition by lysosome-dependent catabolism of extracellular protein. Cell Chem. Biol. 29, 1588–1600 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Stehle, G. et al. Plasma protein (albumin) catabolism by the tumor itself—implications for tumor metabolism and the genesis of cachexia. Crit. Rev. Oncol. Hematol. 26, 77–100 (1997).

    Article  PubMed  CAS  Google Scholar 

  84. Davidson, S. M. et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med. 23, 235–241 (2017). This study shows that pancreatic cells can internalize extracellular proteins, including albumin, that can be consumed, serving as a source of amino acids in vivo.

    Article  PubMed  CAS  Google Scholar 

  85. Bern, M., Sand, K. M., Nilsen, J., Sandlie, I. & Andersen, J. T. The role of albumin receptors in regulation of albumin homeostasis: implications for drug delivery. J. Control. Release 211, 144–162 (2015).

    Article  PubMed  CAS  Google Scholar 

  86. Zhao, H. et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5, e10250 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhang, Q. et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat. Cell Biol. 23, 1240–1254 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Gomes, A. P. et al. Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature 585, 283–287 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wang, G. et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature 618, 374–382 (2023). This study highlights that cancer-derived extracellular vesicles and particles mediate hepatic metabolic reprogramming, suppressing fatty acid metabolism and OXPHOS and promoting fatty liver formation, with consequences for chemotherapy tolerance.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Finicle, B. T., Jayashankar, V. & Edinger, A. L. Nutrient scavenging in cancer. Nat. Rev. Cancer 18, 619–633 (2018).

    Article  PubMed  CAS  Google Scholar 

  91. Rainero, E. et al. Ligand-occupied integrin internalization links nutrient signaling to invasive migration. Cell Rep. 10, 398–413 (2015).

    Article  PubMed  CAS  Google Scholar 

  92. Olivares, O. et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 8, 16031 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kasbaoui, L., Harb, J., Bernard, S. & Meflah, K. Differences in glycosylation state of fibronectin from two rat colon carcinoma cell lines in relation to tumoral progressiveness. Cancer Res. 49, 5317–5322 (1989).

    PubMed  CAS  Google Scholar 

  94. Winchester, B. Lysosomal metabolism of glycoproteins. Glycobiology 15, 1R–15R (2005).

    Article  PubMed  CAS  Google Scholar 

  95. Kondo, H. et al. Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Rep. 34, 108750 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Helms, E. J. et al. Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic cancer-associated fibroblasts. Cancer Discov. 12, 484–501 (2022).

    Article  PubMed  CAS  Google Scholar 

  97. Malandrino, A., Mak, M., Kamm, R. D. & Moeendarbary, E. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extreme Mech. Lett. 21, 25–34 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sullivan, W. J. et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell 175, 117–132 (2018). This study shows that ECM remodelling, via hyaluronidase, promotes glycolysis, enhancing cell migration.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Liu, C. et al. Heterogeneous microenvironmental stiffness regulates pro-metastatic functions of breast cancer cells. Acta Biomater. 131, 326–340 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Liu, T., Zhou, L., Li, D., Andl, T. & Zhang, Y. Cancer-associated fibroblasts build and secure the tumor microenvironment. Front. Cell Dev. Biol. 7, 60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mieulet, V. et al. Stiffness increases with myofibroblast content and collagen density in mesenchymal high grade serous ovarian cancer. Sci. Rep. 11, 4219 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Bertero, T. et al. Tumor–stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29, 124–140 (2019).

    Article  PubMed  CAS  Google Scholar 

  103. Romani, P. et al. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat. Cell Biol. 24, 168–180 (2022).

    Article  PubMed  CAS  Google Scholar 

  104. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Maguire, O. A. et al. Creatine-mediated crosstalk between adipocytes and cancer cells regulates obesity-driven breast cancer. Cell Metab. 33, 499–512 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Yan, W. et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat. Cell Biol. 20, 597–609 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Parker, S. J. et al. Selective alanine transporter utilization creates a targetable metabolic niche in pancreatic cancer. Cancer Discov. 10, 1018–1037 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Kazak, L. & Cohen, P. Creatine metabolism: energy homeostasis, immunity and cancer biology. Nat. Rev. Endocrinol. 16, 421–436 (2020).

    Article  PubMed  Google Scholar 

  110. Rossi, M. et al. PHGDH heterogeneity potentiates cancer cell dissemination and metastasis. Nature 605, 747–753 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Zhang, D. et al. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab. 35, 517–534 (2023).

    Article  PubMed  CAS  Google Scholar 

  112. Chen, Q. T. et al. HK1 from hepatic stellate cell-derived extracellular vesicles promotes progression of hepatocellular carcinoma. Nat. Metab. 4, 1306–1321 (2022). This study reveals that, during hepatic fibrosis, TGF-β stimulates palmitoylation of HK1 in hepatic stellate cells, facilitating its secretion via large extracellular vesicles, which are taken up by HCC cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wei, J. et al. Characterizing intercellular communication of pan-cancer reveals SPP1+ tumor-associated macrophage expanded in hypoxia and promoting cancer malignancy through single-cell RNA-seq data. Front. Cell Dev. Biol. 9, 749210 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jeong, H. et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79, 795–806 (2019).

    Article  PubMed  CAS  Google Scholar 

  115. Zhang, Y. et al. Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol. Cell 71, 201–215 (2018).

    Article  PubMed  CAS  Google Scholar 

  116. Tsai, C. H. et al. Immunoediting instructs tumor metabolic reprogramming to support immune evasion. Cell Metab. 35, 118–133 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Li, Y., Zhao, Z., Liu, W. & Li, X. SNHG3 functions as miRNA sponge to promote breast cancer cells growth through the metabolic reprogramming. Appl. Biochem. Biotechnol. 191, 1084–1099 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ferdoushi, A. et al. Tumor innervation and clinical outcome in pancreatic cancer. Sci. Rep. 11, 7390 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

    Article  PubMed  Google Scholar 

  120. Kamiya, A. et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat. Neurosci. 22, 1289–1305 (2019).

    Article  PubMed  CAS  Google Scholar 

  121. Cracchiolo, J. R. et al. Patterns of recurrence in oral tongue cancer with perineural invasion. Head Neck 40, 1287–1295 (2018).

    Article  Google Scholar 

  122. Gysler, S. M. & Drapkin, R. Tumor innervation: peripheral nerves take control of the tumor microenvironment. J. Clin. Invest. 131, e147276 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Pascual, G. et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature 599, 485–490 (2021). The study shows dietary palmitic acid-induced pro-metastatic epigenetic memory in oral carcinomas and melanoma.

    Article  PubMed  CAS  Google Scholar 

  124. Zhang, Y. et al. Cancer cells co-opt nociceptive nerves to thrive in nutrient-poor environments and upon nutrient-starvation therapies. Cell Metab. 34, 1999–2017 (2022).

    Article  PubMed  CAS  Google Scholar 

  125. Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321–326 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Qiao, G. et al. β-Adrenergic signaling blocks murine CD8. Cancer Immunol. Immunother. 68, 11–22 (2019).

    Article  PubMed  CAS  Google Scholar 

  127. Banh, R. S. et al. Neurons release serine to support mRNA translation in pancreatic cancer. Cell 183, 1202–1218 (2020). This study highlights the metabolic crosstalk between neurons and pancreatic cancer cells, in which neurons release serine to support the growth of pancreatic cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Su, P. et al. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res. 80, 1438–1450 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Geeraerts, X. et al. Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Rep. 37, 110171 (2021).

    Article  PubMed  CAS  Google Scholar 

  131. Notarangelo, G. et al. Oncometabolite d-2HG alters T cell metabolism to impair CD8. Science 377, 1519–1529 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Wenes, M. et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24, 701–715 (2016).

    Article  PubMed  CAS  Google Scholar 

  133. Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Chen, B. et al. Fangchinoline inhibits non-small cell lung cancer metastasis by reversing epithelial–mesenchymal transition and suppressing the cytosolic ROS-related Akt–mTOR signaling pathway. Cancer Lett. 543, 215783 (2022).

    Article  PubMed  CAS  Google Scholar 

  135. Liu, W. et al. TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling. Redox Biol. 53, 102344 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Cheung, E. C. et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer. Cancer Cell 37, 168–182 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Porporato, P. E. et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 8, 754–766 (2014).

    Article  PubMed  CAS  Google Scholar 

  138. Jin, F. et al. The PI3K/Akt/GSK-3β/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility. Cancer Biol. Med. 16, 38–54 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhao, S. et al. MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway. Cell Death Dis. 12, 18 (2021).

    CAS  Google Scholar 

  140. Ashraf, R. & Kumar, S. Mfn2-mediated mitochondrial fusion promotes autophagy and suppresses ovarian cancer progression by reducing ROS through AMPK/mTOR/ERK signaling. Cell. Mol. Life Sci. 79, 573 (2022).

    Article  CAS  Google Scholar 

  141. Hawk, M. A. & Schafer, Z. T. Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. J. Biol. Chem. 293, 7531–7537 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Jiang, L. et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532, 255–258 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345 (2019).

    Article  PubMed  CAS  Google Scholar 

  144. Kashif, M. et al. ROS-lowering doses of vitamins C and A accelerate malignant melanoma metastasis. Redox Biol. 60, 102619 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Sato, M. et al. BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial–mesenchymal transition. Cancer Res. 80, 1279–1292 (2020).

    Article  PubMed  CAS  Google Scholar 

  146. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Meng, Q. et al. Arginine methylation of MTHFD1 by PRMT5 enhances anoikis resistance and cancer metastasis. Oncogene 41, 3912–3924 (2022).

    Article  PubMed  CAS  Google Scholar 

  148. Coller, H. A. Cell biology. The essence of quiescence. Science 334, 1074–1075 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Basnet, H. et al. Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 8, e43627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Stresing, V. et al. Peroxiredoxin 2 specifically regulates the oxidative and metabolic stress response of human metastatic breast cancer cells in lungs. Oncogene 32, 724–735 (2013).

    Article  PubMed  CAS  Google Scholar 

  151. Nagano, H. et al. p53-inducible DPYSL4 associates with mitochondrial supercomplexes and regulates energy metabolism in adipocytes and cancer cells. Proc. Natl Acad. Sci. USA 115, 8370–8375 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Disibio, G. & French, S. W. Metastatic patterns of cancers: results from a large autopsy study. Arch. Pathol. Lab. Med. 132, 931–939 (2008).

    Article  PubMed  Google Scholar 

  153. Crist, S. B. et al. Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nat. Cell Biol. 24, 538–553 (2022).

    Article  PubMed  CAS  Google Scholar 

  154. Snaebjornsson, M. T., Janaki-Raman, S. & Schulze, A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 31, 62–76 (2020).

    Article  PubMed  CAS  Google Scholar 

  155. Zhang, M. et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov. 8, 1006–1025 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Liu, R. Z. et al. The FABP12/PPARγ pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in prostate cancer cells. Mol. Oncol. 14, 3100–3120 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Wang, J. et al. CD36 upregulates DEK transcription and promotes cell migration and invasion via GSK-3β/β-catenin-mediated epithelial-to-mesenchymal transition in gastric cancer. Aging 13, 1883–1897 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Corbet, C. et al. TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nat. Commun. 11, 454 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  PubMed  CAS  Google Scholar 

  160. Gharpure, K. M. et al. FABP4 as a key determinant of metastatic potential of ovarian cancer. Nat. Commun. 9, 2923 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Tan, Y. et al. Metabolic reprogramming from glycolysis to fatty acid uptake and β-oxidation in platinum-resistant cancer cells. Nat. Commun. 13, 4554 (2022). This study shows that cisplatin treatment triggers a metabolic shift from glycolysis to increased fatty acid uptake and β-oxidation, while simultaneously decreasing de novo fatty acid synthesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Terry, A. R. et al. CD36 maintains lipid homeostasis via selective uptake of monounsaturated fatty acids during matrix detachment and tumor progression. Cell Metab. 35, 2060–2076 (2023).

  163. Yang, P. et al. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett. 438, 76–85 (2018).

    Article  PubMed  CAS  Google Scholar 

  164. Hong, X. et al. The lipogenic regulator SREBP2 induces transferrin in circulating melanoma cells and suppresses ferroptosis. Cancer Discov. 11, 678–695 (2021).

    Article  PubMed  CAS  Google Scholar 

  165. Wang, Y. N. et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene 37, 6025–6040 (2018).

    Article  PubMed  CAS  Google Scholar 

  166. Sawyer, B. T. et al. Targeting fatty acid oxidation to promote anoikis and inhibit ovarian cancer progression. Mol. Cancer Res. 18, 1088–1098 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Tian, T. et al. CPT1A promotes anoikis resistance in esophageal squamous cell carcinoma via redox homeostasis. Redox Biol. 58, 102544 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Zou, Y. et al. Polyunsaturated fatty acids from astrocytes activate PPARγ signaling in cancer cells to promote brain metastasis. Cancer Discov. 9, 1720–1735 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Miranda, F. et al. Salt-inducible kinase 2 couples ovarian cancer cell metabolism with survival at the adipocyte-rich metastatic niche. Cancer Cell 30, 273–289 (2016).

    Article  PubMed  CAS  Google Scholar 

  170. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Song, Z., Feng, C., Lu, Y., Lin, Y. & Dong, C. PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer. Gene 642, 43–50 (2018).

    Article  PubMed  CAS  Google Scholar 

  173. Zhu, J. et al. High expression of PHGDH predicts poor prognosis in non-small cell lung cancer. Transl. Oncol. 9, 592–599 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Xian, Y. et al. Phosphoglycerate dehydrogenase is a novel predictor for poor prognosis in gastric cancer. Onco Targets Ther. 9, 5553–5560 (2016).

    CAS  Google Scholar 

  175. Kampen, K. R. et al. Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells. Nat. Commun. 10, 2542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Rawat, V. et al. PSPH promotes melanoma growth and metastasis by metabolic deregulation-mediated transcriptional activation of NR4A1. Oncogene 40, 2448–2462 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Zhang, H. et al. Comprehensive analysis of PHGDH for predicting prognosis and immunotherapy response in patients with endometrial carcinoma. BMC Med. Genomics 16, 29 (2023).

    CAS  Google Scholar 

  178. Chandrika, M. et al. Prognostic significance of phosphoglycerate dehydrogenase in breast cancer. Breast Cancer Res. Treat. 186, 655–665 (2021).

    Article  PubMed  CAS  Google Scholar 

  179. Zhang, Y. et al. Cul4A–DDB1-mediated monoubiquitination of phosphoglycerate dehydrogenase promotes colorectal cancer metastasis via increased S-adenosylmethionine. J. Clin. Invest. 131, e146187 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Noh, S., Kim, D. H., Jung, W. H. & Koo, J. S. Expression levels of serine/glycine metabolism-related proteins in triple negative breast cancer tissues. Tumour Biol. 35, 4457–4468 (2014).

    Article  PubMed  CAS  Google Scholar 

  181. Jekabsons, M. B. et al. Breast cancer cells that preferentially metastasize to lung or bone are more glycolytic, synthesize serine at greater rates, and consume less ATP and NADPH than parent MDA-MB-231 cells. Cancer Metab. 11, 4 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Ngo, B. et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov. 10, 1352–1373 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Anderson, N. M., Mucka, P., Kern, J. G. & Feng, H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9, 216–237 (2018).

    Article  PubMed  CAS  Google Scholar 

  184. Bartman, C. R. et al. Slow TCA flux and ATP production in primary solid tumours but not metastases. Nature 614, 349–357 (2023). This study reveals that primary solid tumours make and use ATP more slowly than most healthy tissues and metastases.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Chen, G. et al. Deregulation of hexokinase II is associated with glycolysis, autophagy, and the epithelial–mesenchymal transition in tongue squamous cell carcinoma under hypoxia. Biomed. Res. Int. 2018, 8480762 (2018).

    PubMed  PubMed Central  Google Scholar 

  186. Tian, X. et al. Hexokinase 2 promoted cell motility and proliferation by activating Akt1/p-Akt1 in human ovarian cancer cells. J. Ovarian Res. 15, 92 (2022).

    CAS  Google Scholar 

  187. Xie, H. et al. Targeting lactate dehydrogenase-A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab. 19, 795–809 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Blaha, C. S. et al. A non-catalytic scaffolding activity of hexokinase 2 contributes to EMT and metastasis. Nat. Commun. 13, 899 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Guo, W. et al. Pyruvate kinase M2 promotes prostate cancer metastasis through regulating ERK1/2–COX-2 signaling. Front. Oncol. 10, 544288 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Labuschagne, C. F., Cheung, E. C., Blagih, J., Domart, M. C. & Vousden, K. H. Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab. 30, 720–734 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Yang, L. et al. Hexokinase 2 discerns a novel circulating tumor cell population associated with poor prognosis in lung cancer patients. Proc. Natl Acad. Sci. USA 118, e2012228118 (2021).

  192. Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Dupuy, F. et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 22, 577–589 (2015).

    Article  PubMed  CAS  Google Scholar 

  194. Maher, E. A. et al. Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR Biomed. 25, 1234–1244 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Roshanzamir, F., Robinson, J. L., Cook, D., Karimi-Jafari, M. H. & Nielsen, J. Metastatic triple negative breast cancer adapts its metabolism to destination tissues while retaining key metabolic signatures. Proc. Natl Acad. Sci. USA 119, e2205456119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Davis, R. T. et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat. Cell Biol. 22, 310–320 (2020).

    Article  PubMed  CAS  Google Scholar 

  198. Yang, W. H., Qiu, Y., Stamatatos, O., Janowitz, T. & Lukey, M. J. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer 7, 790–804 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Wang, Q. et al. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J. Pathol. 236, 278–289 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Yang, L. et al. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol. 10, 728 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Rodrigues, M. F. et al. Enhanced OXPHOS, glutaminolysis and β-oxidation constitute the metastatic phenotype of melanoma cells. Biochem. J. 473, 703–715 (2016).

    Article  PubMed  CAS  Google Scholar 

  202. Liu, G. et al. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J. Transl. Med. 13, 144 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Jin, L. et al. The PLAG1–GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2–AMPK signaling in LKB1-deficient lung cancer. Mol. Cell 69, 87–99 (2018).

    Article  PubMed  CAS  Google Scholar 

  204. Recouvreux, M. V. et al. Glutamine depletion regulates Slug to promote EMT and metastasis in pancreatic cancer. J. Exp. Med. 217, e20200388 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Xiang, L. et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis. 10, 40 (2019).

    Google Scholar 

  206. Zhang, C. et al. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. eLife 5, e10727 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Huang, D. et al. Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress. Cell Res. 26, 1112–1130 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Saraon, P. et al. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol. Cell. Proteomics 12, 1589–1601 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Lee, C. L. et al. Discovery of genes from feces correlated with colorectal cancer progression. Oncol. Lett. 12, 3378–3384 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Gouirand, V. et al. Ketogenic HMG-CoA lyase and its product β-hydroxybutyrate promote pancreatic cancer progression. EMBO J. 41, e110466 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Bonuccelli, G. et al. Ketones and lactate ‘fuel’ tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9, 3506–3514 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Mao, T., Qin, F., Zhang, M., Li, J. & Lai, M. Elevated serum β-hydroxybutyrate, a circulating ketone metabolite, accelerates colorectal cancer proliferation and metastasis via ACAT1. Oncogene 42, 1889–1899 (2023).

    Article  PubMed  CAS  Google Scholar 

  213. Rodrigues, L. M. et al. The action of β-hydroxybutyrate on the growth, metabolism and global histone H3 acetylation of spontaneous mouse mammary tumours: evidence of a β-hydroxybutyrate paradox. Cancer Metab. 5, 4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Huang, C. K. et al. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate. Nat. Commun. 8, 14706 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Martin, P. M. et al. Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of l-lactate and ketone bodies in the brain. J. Neurochem. 98, 279–288 (2006).

    Article  PubMed  CAS  Google Scholar 

  216. Wang, Y. H., Liu, C. L., Chiu, W. C., Twu, Y. C. & Liao, Y. J. HMGCS2 mediates ketone production and regulates the proliferation and metastasis of hepatocellular carcinoma. Cancers 11, 1876 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Evangeliou, A. E., Spilioti, M. G., Vassilakou, D., Goutsaridou, F. & Seyfried, T. N. Restricted ketogenic diet therapy for primary lung cancer with metastasis to the brain: a case report. Cureus 14, e27603 (2022).

    PubMed  PubMed Central  Google Scholar 

  218. Oxnard, G. R. The cellular origins of drug resistance in cancer. Nat. Med. 22, 232–234 (2016).

    Article  PubMed  CAS  Google Scholar 

  219. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Fendt, S. M., Frezza, C. & Erez, A. Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 10, 1797–1807 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Rehman, S. K. et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242 (2021). This study identifies that chemotherapy does not enrich specific cancer clones but induced a diapause-like DTP state in cancer cells with reduced cell proliferation and metabolic activities.

    Article  PubMed  CAS  Google Scholar 

  222. Echeverria, G. V. et al. Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Sci. Transl. Med. 11, eaav0936 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 (2018). This work highlights a non-mutational mechanisms of melanoma drug tolerance, in which residual melanoma cells shift their cell state to escape from drug treatment.

    Article  PubMed  CAS  Google Scholar 

  224. Johnstone, T. C., Park, G. Y. & Lippard, S. J. Understanding and improving platinum anticancer drugs—phenanthriplatin. Anticancer Res. 34, 471–476 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  225. Van Nyen, T. et al. Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers. Nat. Commun. 13, 4578 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Pranzini, E. et al. SHMT2-mediated mitochondrial serine metabolism drives 5-FU resistance by fueling nucleotide biosynthesis. Cell Rep. 40, 111233 (2022).

    Article  PubMed  CAS  Google Scholar 

  227. Montrose, D. C. et al. Exogenous and endogenous sources of serine contribute to colon cancer metabolism, growth, and resistance to 5-fluorouracil. Cancer Res. 81, 2275–2288 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Falcone, M. et al. Sensitisation of cancer cells to radiotherapy by serine and glycine starvation. Br. J. Cancer 127, 1773–1786 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Chen, P. et al. Targeting YTHDF1 effectively re-sensitizes cisplatin-resistant colon cancer cells by modulating GLS-mediated glutamine metabolism. Mol. Ther. Oncolytics 20, 228–239 (2021).

    CAS  Google Scholar 

  230. Obrist, F. et al. Metabolic vulnerability of cisplatin-resistant cancers. EMBO J. 37, e98597 (2018).

  231. Guo, J. et al. Reprogramming of glutamine metabolism via glutamine synthetase silencing induces cisplatin resistance in A2780 ovarian cancer cells. BMC Cancer 21, 174 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Fu, S. et al. Glutamine synthetase promotes radiation resistance via facilitating nucleotide metabolism and subsequent DNA damage repair. Cell Rep. 28, 1136–1143 (2019).

    Article  PubMed  CAS  Google Scholar 

  233. Wicker, C. A. et al. Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models. Cancer Lett. 502, 180–188 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Perillo, B. et al. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52, 192–203 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Traverso, N. et al. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev. 2013, 972913 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Godwin, A. K. et al. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl Acad. Sci. USA 89, 3070–3074 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R. & Turner, N. D. Glutathione metabolism and its implications for health. J. Nutr. 134, 489–492 (2004).

    Article  PubMed  CAS  Google Scholar 

  238. Koppula, P., Zhuang, L. & Gan, B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 12, 599–620 (2021).

    Article  PubMed  CAS  Google Scholar 

  239. Ju, H. Q. et al. Redox regulation of stem-like cells though the CD44v–xCT axis in colorectal cancer: mechanisms and therapeutic implications. Theranostics 6, 1160–1175 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Ji, X. et al. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene 37, 5007–5019 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Feng, L. et al. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J. Transl. Med. 19, 367 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Miyoshi, S. et al. Inhibiting xCT improves 5-fluorouracil resistance of gastric cancer induced by CD44 variant 9 expression. Anticancer Res. 38, 6163–6170 (2018).

    Article  PubMed  CAS  Google Scholar 

  243. Ma, M. Z. et al. Xc inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. Cancer Lett. 368, 88–96 (2015).

    Article  PubMed  CAS  Google Scholar 

  244. Yoshikawa, M. et al. xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res. 73, 1855–1866 (2013).

    Article  PubMed  CAS  Google Scholar 

  245. Iwamoto, H. et al. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab. 28, 104–117 (2018). This study shows that antiangiogenic drug treatment triggered a metabolic shift from glycolysis to fatty acid oxidation metabolism, and cancer-associated adipocytes promoted resistance by supplying fatty acid to cancer cells for energy production under metabolic stress.

    Article  PubMed  CAS  Google Scholar 

  246. Wang, L. et al. Spatially resolved isotope tracing reveals tissue metabolic activity. Nat. Methods 19, 223–230 (2022).

    Article  PubMed  Google Scholar 

  247. Ruiz-Rodado, V., Lita, A. & Larion, M. Advances in measuring cancer cell metabolism with subcellular resolution. Nat. Methods 19, 1048–1063 (2022).

    Article  PubMed  CAS  Google Scholar 

  248. Lee, P. Y. et al. Molecular tissue profiling by MALDI imaging: recent progress and applications in cancer research. Crit. Rev. Clin. Lab. Sci. 58, 513–529 (2021).

    Article  PubMed  CAS  Google Scholar 

  249. Kampa, J. M. et al. Glioblastoma multiforme: metabolic differences to peritumoral tissue and IDH-mutated gliomas revealed by mass spectrometry imaging. Neuropathology 40, 546–558 (2020).

    Article  PubMed  CAS  Google Scholar 

  250. Buescher, J. M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Yang, L. et al. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med 3, 119–136 (2022).

    Article  PubMed  CAS  Google Scholar 

  252. Takáts, Z., Wiseman, J. M. & Cooks, R. G. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 40, 1261–1275 (2005).

    Article  PubMed  Google Scholar 

  253. Theriault, R. L., Kaufmann, M., Ren, K. Y. M., Varma, S. & Ellis, R. E. Metabolomics patterns of breast cancer tumors using mass spectrometry imaging. Int. J. Comput. Assist. Radiol. Surg. 16, 1089–1099 (2021).

    Article  PubMed  Google Scholar 

  254. Calligaris, D. et al. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. Proc. Natl Acad. Sci. USA 111, 15184–15189 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Kompauer, M., Heiles, S. & Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14, 90–96 (2017).

    Article  PubMed  CAS  Google Scholar 

  256. Roach, P. J., Laskin, J. & Laskin, A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135, 2233–2236 (2010).

    Article  PubMed  CAS  Google Scholar 

  257. Banerjee, S. et al. Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids. Proc. Natl Acad. Sci. USA 114, 3334–3339 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Planque, M., Igelmann, S., Ferreira Campos, A. M. & Fendt, S. M. Spatial metabolomics principles and application to cancer research. Curr. Opin. Chem. Biol. 76, 102362 (2023).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Wu (KU Leuven) for her help with article collection and organisation and P. Altea-Manzano (VIB-KU Leuven) for comments and suggestions. X.-Z.L. is supported by an EMBO Postdoctoral Fellowship (ALTF 401-2022) and the Gilead Sciences Research Scholars Program in Solid Tumors. K.L. acknowledges funding from the Austrian Science Fund (P33508). S.-M.F. acknowledges funding from FWO and iBOF (INTERCEPt) Projects, the Beug Foundation, Fonds Baillet Latour, KU Leuven, Francqui Stichting, Foundation ARC and Stichting tegen Kanker.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and X.-Z.L. elaborated on the concepts and wrote the draft under S.-M.F.’s supervision. M.D., X.-Z.L. and S.-M.F. reviewed and edited the manuscript; figures were prepared by M.D., X.-Z.L. and K.L. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Sarah-Maria Fendt.

Ethics declarations

Competing interests

S.-M.F. has received funding from Gilead, Auron Therapeutics, Black Belt Therapeutics and Alesta Therapeutics, has consulted for Fund+ and is on the advisory board of Alesta Therapeutics. All other authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demicco, M., Liu, XZ., Leithner, K. et al. Metabolic heterogeneity in cancer. Nat Metab 6, 18–38 (2024). https://doi.org/10.1038/s42255-023-00963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00963-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer