Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epitranscriptomics in metabolic disease

Abstract

While epigenetic modifications of DNA and histones play main roles in gene transcription regulation, recently discovered post-transcriptional RNA modifications, known as epitranscriptomic modifications, have been found to have a profound impact on gene expression by regulating RNA stability, localization and decoding efficiency. Importantly, genetic variations or environmental perturbations of epitranscriptome modifiers (that is, writers, erasers and readers) are associated with obesity and metabolic diseases, such as type 2 diabetes. The epitranscriptome is closely coupled to epigenetic signalling, adding complexity to our understanding of gene expression in both health and disease. Moreover, the epitranscriptome in the parental generation can affect organismal phenotypes in the next generation. In this Review, we discuss the relationship between epitranscriptomic modifications and metabolic diseases, their relationship with the epigenome and possible therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optimization of the central dogma through the epigenome and epitranscriptome.
Fig. 2: mRNA methylation in metabolic diseases.
Fig. 3: Environmental regulation of epitranscriptome in metabolic diseases.
Fig. 4: tRNA modifications and metabolic diseases.
Fig. 5: Epitranscriptomic writers involved in tRNA modifications and the role of tRNA modifications and mutations in decoding and translation.

Similar content being viewed by others

References

  1. Ginter, E. & Simko, V. Type 2 diabetes mellitus, pandemic in 21st century. Adv. Exp. Med. Biol. 771, 42–50 (2012).

    Article  PubMed  Google Scholar 

  2. Sarma, S., Sockalingam, S. & Dash, S. Obesity as a multisystem disease: trends in obesity rates and obesity-related complications. Diabetes Obes. Metab. 23, 3–16 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Zheng, Y., Ley, S. H. & Hu, F. B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14, 88–98 (2018).

    Article  PubMed  Google Scholar 

  4. Chen, L., Magliano, D. J. & Zimmet, P. Z. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat. Rev. Endocrinol. 8, 228–236 (2011).

    Article  PubMed  Google Scholar 

  5. Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 50, D231–D235 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012). This paper reports transcriptome-wide analysis of m6A modification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, C. et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01487-9 (2022).

  11. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  PubMed  Google Scholar 

  14. Xiang, Y. et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 543, 573–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qu, F., Tsegay, P. S. & Liu, Y. N6-Methyladenosine, DNA repair and genome stability. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2021.645823 (2021).

  16. Cui, Q. et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18, 2622–2634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, X. et al. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 534, 575–578 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011). This paper demonstrates FTO as an m6A demethylase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, C. et al. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J. Biol. Chem. 289, 17299–17311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mauer, J. et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2017). This paper reports transcriptome-wide analysis of m6Am and demonstrates FTO as an m6Am demethylase.

    Article  CAS  PubMed  Google Scholar 

  22. Roost, C. et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137, 2107–2115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liao, S., Sun, H. & Xu, C. YTH domain: a family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinformatics 16, 99–107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Du, H. et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife 6, e31311 (2017).

  26. Li, Y. et al. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell 185, 949–966 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Deng, S. et al. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility. Nat. Genet. 54, 1427–1437 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Akichika, S. et al. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363, eaav0080 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Wei, J. et al. Differential m6A, m6Am and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39, 724–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hertel, J. K. et al. FTO, type 2 diabetes, and weight gain throughout adult life: a meta-analysis of 41,504 subjects from the Scandinavian HUNT, MDC and MPP studies. Diabetes 60, 1637–1644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Araújo, T. M. & Velloso, L. A. Hypothalamic IRX3: a new player in the development of obesity. Trends Endocrinol. Metab. 31, 368–377 (2020).

    Article  PubMed  Google Scholar 

  35. Fischer, J. et al. Inactivation of the Fto gene protects from obesity. Nature 458, 894–898 (2009). This paper reports protection from obesity by Fto KO in mice.

    Article  CAS  PubMed  Google Scholar 

  36. Church, C. et al. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet. 5, e1000599 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gao, X. et al. The fat mass- and obesity-associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS ONE 5, e14005 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. McMurray, F. et al. Adult onset global loss of the Fto gene alters body composition and metabolism in the mouse. PLoS Genet. 9, e1003166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ronkainen, J. et al. Fat mass- and obesity-associated gene Fto affects the dietary response in mouse white adipose tissue. Sci. Rep. 5, 9233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, L. et al. NADP modulates RNA m6A methylation and adipogenesis via enhancing FTO activity. Nat. Chem. Biol. 16, 1394–1402 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, R. et al. m6A methylation promotes white-to-beige fat transition by facilitating Hif1a translation. EMBO Rep. 22, e52348 (2021). This paper reports promotion of beigeing by Fto KO in mouse adipose tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schoonjans, K., Staels, B. & Auwerx, J. The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta 1302, 93–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Varga, T., Czimmerer, Z. & Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 1812, 1007–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, W. & Seale, P. Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 17, 691–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inagaki, T., Sakai, J. & Kajimura, S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell Biol. 17, 480–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohno, H., Shinoda, K., Spiegelman, B. M. & Kajimura, S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abe, Y. et al. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat. Commun. 9, 1566 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Merkestein, M. et al. FTO influences adipogenesis by regulating mitotic clonal expansion. Nat. Commun. 6, 6792 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, X. et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24, 1403–1419 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Song, T. et al. Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation. Nucleic Acids Res. 47, 6130–6144 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Church, C. et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat. Genet. 42, 1086–1092 (2010). This paper reports increased food intake and obesity in mice overexpressing Fto.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Merkestein, M. et al. Changes in gene expression associated with FTO overexpression in mice. PLoS ONE 9, e97162 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tews, D. et al. FTO deficiency induces UCP-1 expression and mitochondrial uncoupling in adipocytes. Endocrinology 154, 3141–3151 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Grunnet, L. G. et al. Increased recovery rates of phosphocreatine and inorganic phosphate after isometric contraction in oxidative muscle fibers and elevated hepatic insulin resistance in homozygous carriers of the A-allele of FTO rs9939609. J. Clin. Endocrinol. Metab. 94, 596–602 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Klöting, N. et al. Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans. Diabetologia 51, 641–647 (2008).

    Article  PubMed  Google Scholar 

  56. Ben-Haim, M. S. et al. Dynamic regulation of N6,2′-O-dimethyladenosine (m6Am) in obesity. Nat. Commun. 12, 7185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, Y. et al. METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice. Nat. Commun. 11, 1648 (2020). This paper reports promotion of BAT development and energy expenditure by METTL3 in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Jesus, D. F. et al. m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes. Nat. Metab. 1, 765–774 (2019). This paper reports the significance of m6A in regulating beta cell function in humans.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li, X., Jiang, Y., Sun, X., Wu, Y. & Chen, Z. METTL3 is required for maintaining β-cell function. Metabolism 116, 154702 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Ikels, K. et al. FTO is a relevant factor for the development of the metabolic syndrome in mice. PLoS ONE 9, e105349 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guo, J. et al. Fat mass and obesity-associated gene enhances oxidative stress and lipogenesis in nonalcoholic fatty liver disease. Dig. Dis. Sci. 58, 1004–1009 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Brunt, V. E., Eymann, T. M., Francisco, M. A., Howard, M. J. & Minson, C. T. Passive heat therapy improves cutaneous microvascular function in sedentary humans via improved nitric oxide-dependent dilation. J. Appl Physiol. 121, 716–723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laukkanen, T., Khan, H., Zaccardi, F. & Laukkanen, J. A. Association between sauna bathing and fatal cardiovascular and all-cause mortality events. JAMA Intern. Med. 175, 542–548 (2015).

    Article  PubMed  Google Scholar 

  64. Zhong, X. et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m6A mRNA methylation. Cell Rep. 25, 1816–1828 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lamia, K. A., Storch, K. F. & Weitz, C. J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl Acad. Sci. USA 105, 15172–15177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kersten, S. Integrated physiology and systems biology of PPARα. Mol. Metab. 3, 354–371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun, H. L. et al. Stabilization of ERK-phosphorylated METTL3 by USP5 increases m6A methylation. Mol. Cell 80, 633–647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, J. et al. TBK1–METTL3 axis facilitates antiviral immunity. Cell Rep. 38, 110373 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Li, Y. et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat. Commun. 13, 6350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wei, J. et al. HRD1-mediated METTL14 degradation regulates m6A mRNA modification to suppress ER proteotoxic liver disease. Mol. Cell 81, 5052–5065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, Y. et al. N6-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat. Genet. 52, 870–877 (2020). This paper reports the direct regulation of epigenome by m6A.

    Article  CAS  PubMed  Google Scholar 

  72. Xu, W. et al. METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591, 317–321 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Murakami, S. & Jaffrey, S. R. Hidden codes in mRNA: control of gene expression by m6A. Mol. Cell 82, 2236–2251 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Bilodeau, S., Kagey, M. H., Frampton, G. M., Rahl, P. B. & Young, R. A. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev. 23, 2484–2489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yuan, P. et al. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev. 23, 2507–2520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsumura, Y. et al. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Mol. Cell 60, 584–596 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Kuroki, S. et al. Combined loss of JMJD1A and JMJD1B reveals critical roles for H3K9 demethylation in the maintenance of embryonic stem cells and early embryogenesis. Stem Cell Rep. 10, 1340–1354 (2018).

    Article  CAS  Google Scholar 

  79. Kuroki, S. et al. H3K9 demethylases JMJD1A and JMJD1B control prospermatogonia to spermatogonia transition in mouse germline. Stem Cell Rep. 15, 424–438 (2020).

    Article  CAS  Google Scholar 

  80. Abe, Y. et al. JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. Nat. Commun. 6, 7052 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Damal Villivalam, S. et al. TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis. Nat. Commun. 11, 4313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Wei, F. Y. et al. Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice. J. Clin. Invest. 121, 3598–3608 (2011). This paper reports impaired proinsulin processing and diabetes development by Cdkal1 KO in mouse pancreatic beta cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Steinthorsdottir, V. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39, 770–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Perrochia, L., Guetta, D., Hecker, A., Forterre, P. & Basta, T. Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6A tRNA modification. Nucleic Acids Res. 41, 9484–9499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Takahashi, N. et al. Reactive sulfur species regulate tRNA methylthiolation and contribute to insulin secretion. Nucleic Acids Res. 45, 435–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Okamoto, M. et al. Endogenous hydrogen sulfide protects pancreatic beta cells from a high-fat diet-induced glucotoxicity and prevents the development of type 2 diabetes. Biochem. Biophys. Res. Commun. 442, 227–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, J. et al. Examination of type 2 diabetes loci implicates CDKAL1 as a birth weight gene. Diabetes 58, 2414–2418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Winkler, C. et al. BMI at age 8 years is influenced by the type 2 diabetes susceptibility genes HHEX-IDE and CDKAL1. Diabetes 59, 2063–2067 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Okamura, T. et al. Deletion of CDKAL1 affects high-fat diet-induced fat accumulation and glucose-stimulated insulin secretion in mice, indicating relevance to diabetes. PLoS ONE 7, e49055 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Palmer, C. J. et al. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Mol. Metab. 6, 1212–1225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Igoillo-Esteve, M. et al. tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet. 9, e1003888 (2013). This paper reports TRMT10A mutation in human young-onset diabetes.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gillis, D. et al. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J. Med. Genet. 51, 581–586 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Zung, A. et al. Homozygous deletion of TRMT10A as part of a contiguous gene deletion in a syndrome of failure to thrive, delayed puberty, intellectual disability and diabetes mellitus. Am. J. Med. Genet. A 167A, 3167–3173 (2015).

    Article  PubMed  Google Scholar 

  96. Yew, T. W., McCreight, L., Colclough, K., Ellard, S. & Pearson, E. R. tRNA methyltransferase homologue gene TRMT10A mutation in young adult-onset diabetes with intellectual disability, microcephaly and epilepsy. Diabet. Med. 33, e21–e25 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jackman, J. E., Montange, R. K., Malik, H. S. & Phizicky, E. M. Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. RNA 9, 574–585 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Helm, M. et al. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res. 26, 1636–1643 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vilardo, E. et al. Functional characterization of the human tRNA methyltransferases TRMT10A and TRMT10B. Nucleic Acids Res. 48, 6157–6169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cosentino, C. et al. Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Res. 46, 10302–10318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ontiveros, R. J. et al. Coordination of mRNA and tRNA methylations by TRMT10A. Proc. Natl Acad. Sci. USA 117, 7782–7791 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pearce, S. F. et al. Regulation of mammalian mitochondrial gene expression: recent advances. Trends Biochem. Sci. 42, 625–639 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Asano, K. et al. Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease. Nucleic Acids Res. 46, 1565–1583 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Suzuki, T. & Suzuki, T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res. 42, 7346–7357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fakruddin, M. et al. Defective mitochondrial tRNA taurine modification activates global proteostress and leads to mitochondrial disease. Cell Rep. 22, 482–496 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Chen, D. et al. Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Res. 47, 5341–5355 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Seed, L. M. et al. Molecular and neurological features of MELAS syndrome in paediatric patients: a case series and review of the literature. Mol. Genet. Genom. Med. 10, e1955 (2022).

    Google Scholar 

  108. Kadowaki, T. et al. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N. Engl. J. Med. 330, 962–968 (1994). This paper reports a mutation of mitochondrial tRNA in diabetes mellitus.

    Article  CAS  PubMed  Google Scholar 

  109. Suzuki, S. et al. Clinical features of diabetes mellitus with the mitochondrial DNA 3243 (A-G) mutation in Japanese: maternal inheritance and mitochondria-related complications. Diabetes Res. Clin. Pract. 59, 207–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Tarnopolsky, M. A., Maguire, J., Myint, T., Applegarth, D. & Robinson, B. H. Clinical, physiological and histological features in a kindred with the T3271C MELAS mutation. Muscle Nerve 21, 25–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Chen, Y., Liao, W. X., Roy, A. C., Loganath, A. & Ng, S. C. Mitochondrial gene mutations in gestational diabetes mellitus. Diabetes Res. Clin. Pract. 48, 29–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Suzuki, Y. et al. Diabetes associated with a novel 3264 mitochondrial tRNALeu(UUR) mutation. Diabetes Care 20, 1138–1140 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Kirino, Y., Goto, Y., Campos, Y., Arenas, J. & Suzuki, T. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc. Natl Acad. Sci. USA 102, 7127–7132 (2005). This paper reports impaired mitochondrial tRNA taurine modification by MELAS-associated mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kurata, S. et al. Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U·G wobble pairing during decoding. J. Biol. Chem. 283, 18801–18811 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016). The studies by Chen et al. (ref. 115) and Sharma et al. (ref. 116) report contribution of sperm tsRNAs to transmission of the paternal environment to offspring phenotypes.

    Article  CAS  PubMed  Google Scholar 

  117. Chen, Q., Zhang, X., Shi, J., Yan, M. & Zhou, T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem. Sci. 46, 790–804 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, Y., Shi, J., Rassoulzadegan, M., Tuorto, F. & Chen, Q. Sperm RNA code programmes the metabolic health of offspring. Nat. Rev. Endocrinol. 15, 489–498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schorn, A. J., Gutbrod, M. J., LeBlanc, C. & Martienssen, R. LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sharma, U. et al. Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev. Cell 46, 481–494 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goll, M. G. et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395–398 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Schaefer, M. et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24, 1590–1595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, Y. et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat. Cell Biol. 20, 535–540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sun, W. et al. Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring. Nat. Med. 24, 1372–1383 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Takahashi, H. et al. MYPT1-PP1β phosphatase negatively regulates both chromatin landscape and co-activator recruitment for beige adipogenesis. Nat. Commun. 13, 5715 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Boriack-Sjodin, P. A., Ribich, S. & Copeland, R. A. RNA-modifying proteins as anticancer drug targets. Nat. Rev. Drug Discov. 17, 435–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Huang, Y. et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35, 677–691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Burton, A. & Torres-Padilla, M. E. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 15, 723–734 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell-type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu, S. C. & Zhang, Y. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11, 607–620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tateishi, K., Okada, Y., Kallin, E. M. & Zhang, Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458, 757–761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Inagaki, T. et al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells 14, 991–1001 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29, 2037–2053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, Z. et al. Single-base mapping of m6A by an antibody-independent method. Sci. Adv. 5, eaax0250 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Meyer, K. D. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16, 1275–1280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tegowski, M., Flamand, M. N. & Meyer, K. D. scDART-seq reveals distinct m6A signatures and mRNA methylation heterogeneity in single cells. Mol. Cell 82, 868–878 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Marchand, V. et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 48, e110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sakurai, M., Yano, T., Kawabata, H., Ueda, H. & Suzuki, T. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat. Chem. Biol. 6, 733–740 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Sakurai, M. et al. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Res. 24, 522–534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Anreiter, I., Mir, Q., Simpson, J. T., Janga, S. C. & Soller, M. New twists in detecting mRNA modification dynamics. Trends Biotechnol. 39, 72–89 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Leger, A. et al. RNA modifications detection by comparative nanopore direct RNA sequencing. Nat. Commun. 12, 7198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Thüring, K., Schmid, K., Keller, P. & Helm, M. LC–MS analysis of methylated RNA. Methods Mol. Biol. 1562, 3–18 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Sakai laboratories, Tohoku University Graduate School of Medicine (Sendai, Japan), and the Research Centre for Advanced Science and Technology, The University of Tokyo (Tokyo, Japan) for their helpful discussions. This study was supported by grants-in-aid for scientific research (JP21H04826 to J.S., JP21H02659 to F.-Y.W., JP22K06178 to Y.M.), for exploratory research (JP20K21747 to J.S.), for pioneering research (JP22K18411 to J.S.) from the Ministry of Education, Science, Sports and Culture (MEXT), AMED-CREST (JP20gm1310007 to Y.M. and J.S.) FOREST (JPMJFR205Y to F.-Y.W.) from the Japan Science and Technology Agency (JST) and the Takeda Science Foundation (to Y.M.).

Author information

Authors and Affiliations

Authors

Contributions

Y.M., F.-Y.W. and J.S. conceived the concepts described in this Review. Y.M., F.-Y.W. and J.S. wrote the manuscript. Figures were prepared by Y.M. and F.-Y.W.

Corresponding author

Correspondence to Juro Sakai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Konstantinos Stellos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Isabella Samuelson, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumura, Y., Wei, FY. & Sakai, J. Epitranscriptomics in metabolic disease. Nat Metab 5, 370–384 (2023). https://doi.org/10.1038/s42255-023-00764-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00764-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing