Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

NAD+ metabolism

NAD+ and mtRNA sensing drive human kidney diseases

Defective nicotinamide adenine dinucleotide (NAD+) metabolism is involved in various diseases. A study in Nature Metabolism identifies the cytosolic mitochondrial-RNA sensing system as a mediator that links NAD+ deficiency to kidney disease in humans and mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An NAD+-dependent mtRNA sensing mechanism for kidney disease.

References

  1. Mills, K. T. et al. Kidney Int. 88, 950–957 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xie, N. et al. Signal Transduct. Target. Ther. 5, 227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rajman, L., Chwalek, K. & Sinclair, D. A. Cell Metab. 27, 529–547 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Irie, J. et al. Endocr. J. 67, 153–160 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Hasegawa, K. et al. Nat. Med. 19, 1496–1504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yasuda, I. et al. J. Am. Soc. Nephrol. 32, 1355–1370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doke, T. et al. Nat. Metab. https://doi.org/10.1038/s42255-023-00761-7 (2023).

    Article  PubMed  Google Scholar 

  8. Rehwinkel, J. & Gack, M. U. Nat. Rev. Immunol. 20, 537–551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poyan Mehr, A. et al. Nat. Med. 24, 1351–1359 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Muraoka, H. et al. Cell Rep. 27, 199–212.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hasegawa, K. et al. J. Biol. Chem. 285, 13045–13056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao, W. et al. Front. Physiol. 9, 1526 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yoshino, M. et al. Science 372, 1224–1229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dollerup, O. L. et al. Am. J. Clin. Nutr. 108, 343–353 (2018).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Itoh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoh, H., Yoshino, J. NAD+ and mtRNA sensing drive human kidney diseases. Nat Metab 5, 357–359 (2023). https://doi.org/10.1038/s42255-023-00762-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00762-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research