Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Principles and functions of metabolic compartmentalization

Abstract

Metabolism has historically been studied at the levels of whole cells, whole tissues and whole organisms. As a result, our understanding of how compartmentalization—the spatial and temporal separation of pathways and components—shapes organismal metabolism remains limited. At its essence, metabolic compartmentalization fulfils three important functions or ‘pillars’: establishing unique chemical environments, providing protection from reactive metabolites and enabling the regulation of metabolic pathways. However, how these pillars are established, regulated and maintained at both the cellular and systemic levels remains unclear. Here we discuss how the three pillars are established, maintained and regulated within the cell and discuss the consequences of dysregulation of metabolic compartmentalization in human disease. Organelles are increasingly emerging as ‘command-and-control centres’ and the increased understanding of metabolic compartmentalization is revealing new aspects of metabolic homeostasis, with this knowledge being translated into therapies for the treatment of cancer and certain neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic compartmentalization across scales.
Fig. 2: The three pillars of metabolic compartmentalization.

Similar content being viewed by others

References

  1. Wishart, D. S. et al. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 50, D622–D631 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Ma, H. et al. The Edinburgh Human Metabolic Network reconstruction and its functional analysis. Mol. Syst. Biol. 3, 135 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Waters, D. et al. Global birth prevalence and mortality from inborn errors of metabolism: a systematic analysis of the evidence. J. Glob. Health 8, 021102 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferreira, C. R., van Karnebeek, C. D. M., Vockley, J. & Blau, N. A proposed nosology of inborn errors of metabolism. Genet. Med. 21, 102–106 (2019).

    Article  PubMed  Google Scholar 

  5. Inborn Errors of Metabolism Knowledgebase (IEMbase, accessed January 2022); http://www.iembase.org

  6. Ovadi, J. & Saks, V. On the origin of intracellular compartmentation and organized metabolic systems. Mol. Cell. Biochem. 256–257, 5–12 (2004).

    Article  PubMed  Google Scholar 

  7. O’Flynn, B. G. & Mittag, T. The role of liquid–liquid phase separation in regulating enzyme activity. Curr. Opin. Cell Biol. 69, 70–79 (2021).

    Article  PubMed  Google Scholar 

  8. Prouteau, M. & Loewith, R. Regulation of cellular metabolism through phase separation of enzymes. Biomolecules 8, 160 (2018).

    Article  PubMed Central  Google Scholar 

  9. Sweetlove, L. J. & Fernie, A. R. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat. Commun. 9, 2136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Go, Y.-M. & Jones, D. P. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 1780, 1273–1290 (2009).

    Article  Google Scholar 

  11. Zeng, J., Shirihai, O. S. & Grinstaff, M. W. Modulating lysosomal pH: a molecular and nanoscale materials design perspective. J. Life Sci. (Westlake Village) 2, 25–37 (2020).

    Google Scholar 

  12. Huttanus, H. M. & Feng, X. Compartmentalized metabolic engineering for biochemical and biofuel production. Biotechnol. J. 12, 1700052 (2017).

    Article  Google Scholar 

  13. Kulagina, N., Besseau, S., Papon, N. & Courdavault, V. Peroxisomes: a new hub for metabolic engineering in yeast. Front. Bioeng. Biotechnol. 9, 659431 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tauqeer Alam, M. et al. The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat. Commun. 8, 16018 (2017).

    Article  Google Scholar 

  15. Alberty, R. A. Equilibrium concentrations for pyruvate dehydrogenase and the citric acid cycle at specified concentrations of certain coenzymes. Biophys. Chem. 109, 73–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Alberty, R. A. Standard molar entropies, standard entropies of formation, and standard transformed entropies of formation in the thermodynamics of enzyme-catalyzed reactions. J. Chem. Thermodyn. 38, 396–404 (2006).

    Article  CAS  Google Scholar 

  17. Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74, 69–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Srere, P. A. The metabolon. Trends Biochem. Sci. 10, 109–110 (1985).

    Article  Google Scholar 

  19. Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 32, 1011–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maier, T., Jenni, S. & Ban, N. Architecture of mammalian fatty acid synthase at 4.5 Å resolution. Science 311, 1258–1262 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Miura, N. Condensate formation by metabolic enzymes in Saccharomyces cerevisiae. Microorganisms 10, 232 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Webb, B., Dosey, A., Wittmann, T., Kollman, J. & Barber, D. The glycolytic enzyme phosphofructokinase-1 assembles into filaments. J. Cell Biol. 216, 2305–2313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barry, R. M. et al. Large-scale filament formation inhibits the activity of CTP synthetase. eLife 3, e03638 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lynch, E. M. et al. Human CTP synthase filament structure reveals the active enzyme conformation. Nat. Struct. Mol. Biol. 24, 507–514 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733–737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doigneaux, C. et al. Hypoxia drives the assembly of the multienzyme purinosome complex. J. Biol. Chem. 295, 9551–9566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamada, S., Sato, A. & Sakakibara, S. Nwd1 regulates neuronal differentiation and migration through purinosome formation in the developing cerebral cortex. iScience 23, 101058 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lippincott-Schwartz, J., Roberts, T. H. & Hirschberg, K. Secretory protein trafficking and organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 16, 557–589 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hao, T., Ma, H. W., Zhao, X. M. & Goryanin, I. Compartmentalization of the Edinburgh Human Metabolic Network. BMC Bioinformatics 11, 393 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jennings, M. L. Carriers, exchangers, and cotransporters in the first 100 years of the Journal of General Physiology. J. Gen. Physiol. 150, 1063–1080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vasiliou, V., Vasiliou, K. & Nebert, D. W. Human ATP-binding cassette (ABC) transporter family. Hum. Genomics 3, 281–290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pizzagalli, M. D., Bensimon, A. & Superti-Furga, G. A guide to plasma membrane solute carrier proteins. FEBS J. 288, 2784–2835 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Ehinger, J. K. et al. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat. Commun. 7, 12317 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Longo, N., Frigeni, M. & Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 1863, 2422–2435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cesar-Razquin, A. et al. A call for systematic research on solute carriers. Cell 162, 478–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Ruprecht, J. J. & Kunji, E. R. S. The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem. Sci. 45, 244–258 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, Y. et al. Cardiolipin remodeling enables protein crowding in the inner mitochondrial membrane. EMBO J. 40, e108428 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Paradies, G., Paradies, V., De Benedictis, V., Ruggiero, F. M. & Petrosillo, G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim. Biophys. Acta 1837, 408–417 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Dudek, J. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 5, 90 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tyurina, Y. Y. et al. A mitochondrial pathway for biosynthesis of lipid mediators. Nat. Chem. 6, 542–552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, G.-Y. et al. The phospholipase iPLA2γ is a major mediator releasing oxidized aliphatic chains from cardiolipin, integrating mitochondrial bioenergetics and signaling. J. Biol. Chem. 292, 10672–10684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patwardhan, A. M., Scotland, P. E., Akopian, A. N. & Hargreaves, K. M. Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc. Natl Acad. Sci. USA 106, 18820–18824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ku, G., Thomas, C. E., Akeson, A. L. & Jackson, R. L. Induction of interleukin 1 beta expression from human peripheral blood monocyte-derived macrophages by 9-hydroxyoctadecadienoic acid. J. Biol. Chem. 267, 14183–14188 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Alsalem, M. et al. The contribution of the endogenous TRPV1 ligands 9-HODE and 13-HODE to nociceptive processing and their role in peripheral inflammatory pain mechanisms. Br. J. Pharmacol. 168, 1961–1974 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kagan, V. E. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Campbell, S. L. & Wellen, K. E. Metabolic signaling to the nucleus in cancer. Mol. Cell 71, 398–408 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, X. J. et al. The existence of a nonclassical TCA cycle in the nucleus that wires the metabolic–epigenetic circuitry. Signal Transduct. Target. Ther. 6, 375 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nagaraj, R. et al. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 168, 210–223.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trefely, S. et al. Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. Mol. Cell 82, 447–462 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Anderson, D. D., Woeller, C. F., Chiang, E. P., Shane, B. & Stover, P. J. Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J. Biol. Chem. 287, 7051–7062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. MacFarlane, A. J. et al. Nuclear localization of de novo thymidylate biosynthesis pathway is required to prevent uracil accumulation in DNA. J. Biol. Chem. 286, 44015–44022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Giardina, G. et al. The catalytic activity of serine hydroxymethyltransferase is essential for de novo nuclear dTMP synthesis in lung cancer cells. FEBS J. 285, 3238–3253 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Wagner, G. R. et al. A Class of Reactive Acyl-CoA Species Reveals the Non-enzymatic Origins of Protein Acylation. Cell Metab. 25, 823–837.e828 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Allaman, I., Belanger, M. & Magistretti, P. J. Methylglyoxal, the dark side of glycolysis. Front. Neurosci. 9, 23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Alfonso, L., Ai, G., Spitale, R. C. & Bhat, G. J. Molecular targets of aspirin and cancer prevention. Br. J. Cancer 111, 61–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, X., Kang, R., Kroemer, G. & Tang, D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 18, 280–296 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, Y., Branicky, R., Noe, A. & Hekimi, S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915–1928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morgan, B. et al. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12, 437–443 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Pak, V. V. et al. Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cellmigration and mitochondrial function. Cell Metab. 31, 642–653.e646 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoehne, M. N. et al. Spatial and temporal control of mitochondrial H2O2 release in intact human cells. EMBO J. 41, e109169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Chouchani, E. T. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532, 112–116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bar-Peled, L. et al. Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171, 696–709.e623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mills, E. L. et al. Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. Cell Metab. 34, 140–157.e148 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Dixon, S. J. & Stockwell, B. R. The hallmarks of ferroptosis. Annu. Rev. Cancer Biol. 3, 35–54 (2019).

    Article  Google Scholar 

  71. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zou, Y. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lodhi, I. J. & Semenkovich, C. F. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 19, 380–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Torii, S. et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem. J. 473, 769–777 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem. Biophys. Res. Commun. 478, 838–844 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cabanos, H. F. & Hata, A. N. Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers (Basel) 13, 2666 (2021).

    Article  CAS  Google Scholar 

  80. Goldstein, J. L., DeBose-Boyd, R. A. & Brown, M. S. Protein sensors for membrane sterols. Cell 124, 35–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678–683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Chantranupong, L. et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Castellano, B. M. et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science 355, 1306–1311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Torrence, M. E. et al. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. eLife 10, e63326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Condon, K. J. et al. Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction. Proc. Natl Acad. Sci. USA 118, e2022120188 (2021).

    Article  Google Scholar 

  92. Ye, J. B. et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 29, 2331–2336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Quiros, P. M., Mottis, A. & Auwerx, J. Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17, 213–226 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Biswas, G. et al. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J. 18, 522–533 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Biswas, G., Anandatheerthavarada, Zaidi, M. & Avadhani, N. Mitochondria to nucleus stress signaling: a distinctive mechanism of NFkappaB/Rel activation through calcineurin-mediated inactivation of IkappaBbeta. J. Cell Biol. 161, 507–519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Luo, Y., Bond, J. D. & Ingram, V. M. Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. Proc. Natl Acad. Sci. USA 94, 9705–9710 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guo, X. Y. et al. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature 579, 427–432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fessler, E. et al. A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature 579, 433–437 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu, W. & Papagiannakopoulos, T. The pleiotropic role of the KEAP1/NRF2 pathway in cancer. Annu. Rev. Cancer Biol. 4, 413–435 (2020).

    Article  Google Scholar 

  102. Sporn, M. B. & Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12, 564–571 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Imhoff, B. R. & Hansen, J. M. Extracellular redox status regulates Nrf2 activation through mitochondrial reactive oxygen species. Biochem. J. 424, 491–500 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Cullinan, S. B. & Diehl, J. A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 279, 20108–20117 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Guo, Z., Kozlov, S., Lavin, M., Person, M. & Paull, T. ATM activation by oxidative stress. Science 330, 517–521 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Y. et al. Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Sci. Signal. 11, eaaq0702 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cambronne, X. A. & Kraus, W. L. Location, location, location: compartmentalization of NAD(+) synthesis and functions in mammalian cells. Trends Biochem. Sci. 45, 858–873 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chang, A. Y. & Marshall, W. F. Organelles – understanding noise and heterogeneity in cell biology at an intermediate scale. J. Cell Sci. 130, 819–826 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Korolchuk, V. I. et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, X. & Schwarz, T. L. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shi, X. et al. Combinatorial GxGxE CRISPR screen identifies SLC25A39 in mitochondrial glutathione transport linking iron homeostasis to OXPHOS. Nat. Commun. 13, 2483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ito, T. et al. Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nat. Genet. 53, 1664 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Burgoyne, T., Patel, S. & Eden, E. R. Calcium signaling at ER membrane contact sites. Biochim. Biophys. Acta Mol. Cell Res. 1853, 2012–2017 (2015).

    Article  CAS  Google Scholar 

  115. Tatsuta, T., Scharwey, M. & Langer, T. Mitochondrial lipid trafficking. Trends Cell Biol. 24, 44–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Huang, X., Jiang, C., Yu, L. & Yang, A. Current and emerging approaches for studying inter-organelle membrane contact sites. Front. Cell Dev. Biol. 8, 195 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Birchmeier, W. Orchestrating Wnt signalling for metabolic liver zonation. Nat. Cell Biol. 18, 463–465 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Garcia-Rocha, M. et al. Intracellular distribution of glycogen synthase and glycogen in primary cultured rat hepatocytes. Biochem. J. 357, 17–24 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Siess, E., Brocks, D. & Wieland, O. Distribution of metabolites between the cytosolic and mitochondrial compartments of hepatocytes isolated from fed rats. Hoppe Seylers Z. Physiol. Chem. 359, 785–798 (1978).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337.e11 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Adelmann, C. H. et al. MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Nature 588, 699–704 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jordan Ray, G. et al. A PEROXO-Tag enables rapid isolation of peroxisomes from human cells. iScience 23, 101109 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Koveal, D., Diaz-Garcia, C. M. & Yellen, G. Fluorescent biosensors for neuronal metabolism and the challenges of quantitation. Curr. Opin. Neurobiol. 63, 111–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhao, Y. et al. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metab. 21, 777–789 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tao, R. et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat. Methods 14, 720–728 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cracan, V., Titov, D. V., Shen, H., Grabarek, Z. & Mootha, V. K. A genetically encoded tool for manipulation of NADP(+)/NADPH in living cells. Nat. Chem. Biol. 13, 1088–1095 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Titov, D. V. et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 352, 231–235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. McElroy, G. et al. NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial complex I dysfunction. Cell Metab. 32, 301–308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Seo, B. B. et al. Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc. Natl Acad. Sci. USA 95, 9167–9171 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Steinhorn, B. et al. Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat. Commun. 9, 4044 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pollegioni, L., Langkau, B., Tischer, W., Ghisla, S. & Pilone, M. S. Kinetic mechanism of d-amino acid oxidases from Rhodotorula gracilis and Trigonopsis variabilis. J. Biol. Chem. 268, 13850–13857 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. Goodman, R. P. et al. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature 583, 122–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Luengo, A. et al. Increased demand for NAD(+) relative to ATP drives aerobic glycolysis. Mol. Cell 81, 691–707.e696 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Chen, T., Yavuz, A. & Wang, M. C. Dissecting lipid droplet biology with coherent Raman scattering microscopy. J. Cell Sci. 135, jcs252353 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Shirshin, E. A. et al. Label-free sensing of cells with fluorescence lifetime imaging: the quest for metabolic heterogeneity. Proc. Natl Acad. Sci. USA 119, e2118241119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Datta, S. et al. Snx14 proximity labeling reveals a role in saturated fatty acid metabolism and ER homeostasis defective in SCAR20 disease. Proc. Natl Acad. Sci. USA 117, 33282–33294 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  137. Bersuker, K. et al. A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes. Dev. Cell 44, 97–112.e117 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Thomen, A. et al. Subcellular mass spectrometry imaging and absolute quantitative analysis across organelles. ACS Nano 14, 4316–4325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gorman, G. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers 2, 16080 (2016).

    Article  PubMed  Google Scholar 

  140. Lake, N. J., Bird, M. J., Isohanni, P. & Paetau, A. Leigh syndrome: neuropathology and pathogenesis. J. Neuropathol. Exp. Neurol. 74, 482–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. McFarland, R., Taylor, R. W. & Turnbull, D. M. A neurological perspective on mitochondrial disease. Lancet Neurol. 9, 829–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Bax, B. E. Mitochondrial neurogastrointestinal encephalomyopathy: approaches to diagnosis and treatment. J. Transl. Genet. Genom. 4, 1–16 (2020).

    PubMed  PubMed Central  Google Scholar 

  143. Platt, F., d'Azzo, A., Davidson, B., Neufeld, E. & Tifft, C. Lysosomal storage diseases. Nat. Rev. Dis. Primers 4, 27 (2018).

    Article  PubMed  Google Scholar 

  144. Parenti, G., Andria, G. & Ballabio, A. Lysosomal storage diseases: from pathophysiology to therapy. Annu. Rev. Med. 66, 471–486 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Shayman, J. A. ELIGLUSTAT TARTRATE: glucosylceramide synthase inhibitor treatment of type 1 Gaucher disease. Drugs Future 35, 613–620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fujiki, Y. et al. Recent insights into peroxisome biogenesis and associated diseases. J. Cell Sci. 133, jcs236943 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Klouwer, F. C. et al. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J. Rare Dis. 10, 151 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Berendse, K. et al. Cholic acid therapy in Zellweger spectrum disorders. J. Inherit. Metab. Dis. 39, 859–868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lo Giudice, T., Lombardi, F., Santorelli, F. M., Kawarai, T. & Orlacchio, A. Hereditary spastic paraplegia: clinical–genetic characteristics and evolving molecular mechanisms. Exp. Neurol. 261, 518–539 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Bellofatto, M., De Michele, G., Iovino, A., Filla, A. & Santorelli, F. M. Management of hereditary spastic paraplegia: a systematic review of the literature. Front. Neurol. 10, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Agarwal, A. K., Barnes, R. I. & Garg, A. Genetic basis of congenital generalized lipodystrophy. Int. J. Obes. Relat. Metab. Disord. 28, 336–339 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Herzig, S. et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 337, 93–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Bricker, D. K. et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, drosophila, and humans. Science 337, 96–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tavoulari, S. et al. The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state. EMBO J. 38, e100785 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Papa, S., Francavilla, A., Paradies, G. & Meduri, B. The transport of pyruvate in rat liver mitochondria. FEBS Lett. 12, 285–288 (1971).

    Article  CAS  PubMed  Google Scholar 

  156. Muoio, D. M. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 159, 1253–1262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vacanti, N. et al. The role of the mitochondrial pyruvate carrier in substrate regulation. Mol. Cell 56, 425–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang, Y. et al. Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat. Metab. 2, 1248–1264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bensard, C. L. et al. Regulation of tumor initiation by the mitochondrial pyruvate carrier. Cell Metab. 31, 284–300.e287 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Sharma, A. et al. Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. eLife 8, e45873 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. De La Rossa, A. et al. Paradoxical neuronal hyperexcitability in a mouse model of mitochondrial pyruvate import deficiency. eLife 11, e72595 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Stein, L. R. & Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420–428 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Luongo, T. S. et al. SLC25A51 is a mammalian mitochondrial NAD+ transporter. Nature 588, 174–179 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kory, N. et al. MCART1/SLC25A51 is required for mitochondrial NAD transport. Sci. Adv. 6, eabe5310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Girardi, E. et al. Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nat. Commun. 11, 6145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cambronne, X. A. et al. Biosensor reveals multiple sources for mitochondrial NAD+.Science 352, 1474–1477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pittelli, M. et al. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J. Biol. Chem. 285, 34106–34114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bai, L. et al. Overexpression of SLC25A51 promotes hepatocellular carcinoma progression by driving aerobic glycolysis through activation of SIRT5. Free Radic. Biol. Med. 182, 11–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Fu, Z. et al. The mitochondrial NAD+ transporter SLC25A51 is a fasting-induced gene affecting SIRT3 functions. Metabolism 135, 155275 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Wang, Y. et al. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 599, 136–140 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Rouault, T. A. & Tong, W. H. Iron–sulfur cluster biogenesis and human disease. Trends Genet. 24, 398–407 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Schulz, J., Lindenau, J., Seyfried, J. & Dichgans, J. Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem. 267, 4904–4911 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Alkazemi, D., Rahman, A. & Habra, B. Alterations in glutathione redox homeostasis among adolescents with obesity and anemia. Sci. Rep. 11, 3034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Slabbaert, J. R. et al. Shawn, the Drosophila homolog of SLC25A39/40, is a mitochondrial carrier that promotes neuronal survival. J. Neurosci. 36, 1914–1929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Abu-Remaileh, H. Adelman, W. Chen, S. Hui, D. Lamming, B. Manning, D. Sabatini and T. Walther for comments and suggestions. We thank J. Gosse for editing. We apologize to our colleagues in the field for not being able to cite important contributions owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

N.K. and L.B.-P. conceived and prepared the original draft and revised the manuscript.

Corresponding authors

Correspondence to Liron Bar-Peled or Nora Kory.

Ethics declarations

Competing interests

N.K. is funded by National Institutes of Health (NIH) R00 CA241332 and the Damon Runyon Cancer Research Foundation (73-22). L.B.-P. is funded by the Damon Runyon Cancer Research Foundation (62-20), the American Association for Cancer Research (19-20-45-BARP), the American Cancer Society, the Melanoma Research Alliance, the Ludwig Cancer Center of Harvard Medical School, Lungevity, ALK Positive, V-Foundation, Mary Kay Foundation, Paula and Rodger Riney Foundation and the NIH/National Cancer Institute (1R21CA226082-01, R37CA260062). L.B-P. is a founder and consultant of and holds privately held equity in Scorpion Therapeutics.

Peer review

Peer review information

Nature Metabolism thanks Giuseppe Fiermonte and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bar-Peled, L., Kory, N. Principles and functions of metabolic compartmentalization. Nat Metab 4, 1232–1244 (2022). https://doi.org/10.1038/s42255-022-00645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-022-00645-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing