Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

REDOX METABOLISM

Reducing NAD(H) to amplify rhythms

Levine and colleagues demonstrate that the effects of caloric restriction on hepatic gene expression, circulating acylcarnitines and body temperature are largely mediated by an increase in the daytime peak of NADH concentration in the liver.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Caloric restriction suppresses daytime hepatic clock output by increasing NADH.

References

  1. Levine, D.C. et al. Nat. Metab. https://doi.org/10.1038/s42255-021-00498-1 (2021).

  2. Ramsey, K. M. et al. Science 324, 651–654 (2009).

    Article  CAS  Google Scholar 

  3. Simcox, J. et al. Cell Metab. 26, 509–522 (2017).

    Article  CAS  Google Scholar 

  4. Titov, D. V. et al. Science 352, 231–235 (2016).

    Article  CAS  Google Scholar 

  5. Levine, D. C. et al. Mol. Cell 78, 835–849 (2020).

    Article  CAS  Google Scholar 

  6. Asher, G. et al. Cell 134, 317–328 (2008).

    Article  CAS  Google Scholar 

  7. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Science 324, 654–657 (2009).

    Article  CAS  Google Scholar 

  8. Lin, S. J., Ford, E., Haigis, M., Liszt, G. & Guarente, L. Genes Dev. 18, 12–16 (2004).

    Article  CAS  Google Scholar 

  9. Anderson, R. M. et al. Science 302, 2124–2126 (2003).

    Article  CAS  Google Scholar 

  10. Sallin, O. et al. eLife 7, e32638 (2018).

    Article  Google Scholar 

  11. Cambronne, X. A. et al. Science 352, 1474–1477 (2016).

    Article  CAS  Google Scholar 

  12. Williamson, D. H., Lund, P. & Krebs, H. A. Biochem. J. 103, 514–527 (1967).

    Article  CAS  Google Scholar 

  13. Zhang, Q., Piston, D. W. & Goodman, R. H. Science 295, 1895–1897 (2002).

    Article  CAS  Google Scholar 

  14. Aguilar-Arnal, L. et al. Proc. Natl Acad. Sci. USA 113, 12715–12720 (2016).

    Article  CAS  Google Scholar 

  15. Chen, D. et al. Genes Dev. 22, 1753–1757 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors received research support from the US National Institutes of Health (DK098656 to J.A.B.) and a Career Development Award from the Crohn’s & Colitis Foundation to K.C. (581355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Baur.

Ethics declarations

Competing interests

J.A.B. is a consultant to Pfizer and Cytokinetics, an inventor on a patent for using NAD+ precursors in liver injury, and has received research funding and materials from Elysium Health and Metro International Biotech, both of which have an interest in NAD+ precursors. K.C. declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chellappa, K., Baur, J.A. Reducing NAD(H) to amplify rhythms. Nat Metab 3, 1589–1590 (2021). https://doi.org/10.1038/s42255-021-00494-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-021-00494-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing