Abstract

The maintenance of proteostasis is crucial for any organism to survive and reproduce in an ever-changing environment, but its efficiency declines with age1. Post-transcriptional regulators such as micrRNAs (miRNAs) control protein translation of target mRNAs, with major consequences for development, physiology and longevity2,3. Here we show that food odour stimulates organismal proteostasis and promotes longevity in Caenorhabditis elegans through miR-71-mediated inhibition of tir-1 mRNA stability in olfactory AWC neurons. Screening a collection of miRNAs that control ageing3, we found that the miRNA miR-71 regulates lifespan and promotes ubiquitin-dependent protein turnover, particularly in the intestine. We show that miR-71 directly inhibits the Toll-receptor-domain protein TIR-1 in AWC olfactory neurons and that disruption of miR-71–tir-1 or loss of AWC olfactory neurons eliminates the influence of food source on proteostasis. miR-71-mediated regulation of TIR-1 controls chemotactic behaviour and is regulated by odour. Thus, odour perception influences cell-type-specific miRNA–target interaction, thereby regulating organismal proteostasis and longevity. We anticipate that the proposed mechanism of food perception will stimulate further research on neuroendocrine brain-to-gut communication and may open the possibility for therapeutic interventions to improve proteostasis and organismal health via the sense of smell, with potential implications for obesity, diabetes and ageing.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its supplementary information files. RNA sequencing and microarray data have been deposited in the Gene Expression Omibus (GEO) with identifiers GSE124178 (RNA sequencing) and GSE124300 (microarray).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Taylor, R. C. & Dillin, A. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 3, a004440 (2011).

  2. 2.

    Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010).

  3. 3.

    de Lencastre, A. et al. MicroRNAs both promote and antagonize longevity in C. elegans. Curr. Biol. 20, 2159–2168 (2010).

  4. 4.

    Mori, M. A. et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 16, 336–347 (2012).

  5. 5.

    Segref, A., Torres, S. & Hoppe, T. A screenable in vivo assay to study proteostasis networks in Caenorhabditis elegans. Genetics 187, 1235–1240 (2011).

  6. 6.

    Denzel, M. S. et al. Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156, 1167–1178 (2014).

  7. 7.

    Ruggiano, A., Foresti, O. & Carvalho, P. Quality control: ER-associated degradation: protein quality control and beyond. J. Cell Biol. 204, 869–879 (2014).

  8. 8.

    Vilchez, D. et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489, 263–268 (2012).

  9. 9.

    Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

  10. 10.

    Boulias, K. & Horvitz, H. R. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab. 15, 439–450 (2012).

  11. 11.

    Hsieh, Y.-W., Chang, C. & Chuang, C.-F. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans. PLoS Genet. 8, e1002864 (2012).

  12. 12.

    Hobert, O. Terminal selectors of neuronal identity. Curr. Top. Dev. Biol. 116, 455–475 (2016).

  13. 13.

    Alcedo, J. & Kenyon, C. Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41, 45–55 (2004).

  14. 14.

    Troemel, E. R., Kimmel, B. E. & Bargmann, C. I. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91, 161–169 (1997).

  15. 15.

    Jan, C. H., Friedman, R. C., Ruby, J. G. & Bartel, D. P. Formation, regulation and evolution of Caenorhabditis elegans 3′ UTRs. Nature 469, 97–101 (2011).

  16. 16.

    Chuang, C.-F. & Bargmann, C. I. A Toll–interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes Dev. 19, 270–281 (2005).

  17. 17.

    Liberati, N. T. et al. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl Acad. Sci. USA 101, 6593–6598 (2004).

  18. 18.

    Xie, Y., Moussaif, M., Choi, S., Xu, L. & Sze, J. Y. RFX transcription factor DAF-19 regulates 5-HT and innate immune responses to pathogenic bacteria in Caenorhabditis elegans. PLoS Genet. 9, e1003324 (2013).

  19. 19.

    Taylor, R. C. & Dillin, A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435–1447 (2013).

  20. 20.

    Prahlad, V., Cornelius, T. & Morimoto, R. I. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320, 811–814 (2008).

  21. 21.

    Madison, J. M., Nurrish, S. & Kaplan, J. M. UNC-13 interaction with syntaxin is required for synaptic transmission. Curr. Biol. 15, 2236–2242 (2005).

  22. 22.

    Speese, S. et al. UNC-31 (CAPS) Is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. J. Neurosci. 27, 6150–6162 (2007).

  23. 23.

    Li, C. The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 131(Suppl.), S109–S127 (2005).

  24. 24.

    Chalasani, S. H. et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450, 63–70 (2007).

  25. 25.

    Hobert, O. et al. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 19, 345–357 (1997).

  26. 26.

    Bargmann, C. I. Chemosensation in C. elegans. in WormBook (ed. The C. elegans Research Community) https://doi.org/10.1895/wormbook.1.123.1 (2006).

  27. 27.

    Pokala, N., Liu, Q., Gordus, A. & Bargmann, C. I. Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc. Natl Acad. Sci. USA 111, 2770–2775 (2014).

  28. 28.

    Ward, S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc. Natl Acad. Sci. USA 70, 817–821 (1973).

  29. 29.

    Ben Arous, J., Laffont, S. & Chatenay, D. Molecular and sensory basis of a food related two-state behavior in C. elegans. PLoS One 4, e7584 (2009).

  30. 30.

    Libert, S. et al. Regulation of Drosophila life span by olfaction and food-derived odors. Science 315, 1133–1137 (2007).

  31. 31.

    Maier, W., Adilov, B., Regenass, M. & Alcedo, J. A neuromedin U receptor acts with the sensory system to modulate food type-dependent effects on C. elegans lifespan. PLoS Biol. 8, e1000376 (2010).

  32. 32.

    Inoue, A. et al. Forgetting in C. elegans is accelerated by neuronal communication via the TIR-1/JNK-1 pathway. Cell Rep. 3, 808–819 (2013).

  33. 33.

    Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343 (2017).

  34. 34.

    Tsvetkov, P. et al. NADH binds and stabilizes the 26S proteasomes independent of ATP. J. Biol. Chem. 289, 11272–11281 (2014).

  35. 35.

    Summers, D. W., Gibson, D. A., DiAntonio, A. & Milbrandt, J. SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc. Natl Acad. Sci. USA 113, E6271–E6280 (2016).

  36. 36.

    Pan, Z.-G. & An, X.-S. SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation. Biochem. Biophys. Res. Commun. 498, 416–423 (2018).

  37. 37.

    Lin, C.-W. & Hsueh, Y.-P. Sarm1, a neuronal inflammatory regulator, controls social interaction, associative memory and cognitive flexibility in mice. Brain Behav. Immun. 37, 142–151 (2014).

  38. 38.

    Brooks, K. K., Liang, B. & Watts, J. L. The influence of bacterial diet on fat storage in C. elegans. PLoS One 4, e7545 (2009).

  39. 39.

    Riera, C. E. et al. The sense of smell impacts metabolic health and obesity. Cell Metab. 26, 198–211 (2017).

  40. 40.

    Teff, K. Nutritional implications of the cephalic-phase reflexes: endocrine responses. Appetite 34, 206–213 (2000).

  41. 41.

    Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

  42. 42.

    Stiernagle, T. Maintenance of C. elegans.in WormBook (ed. The C. elegans Research Community) https://doi.org/10.1895/wormbook.1.101.1 (2006).

  43. 43.

    Miedel, M. T. et al. A pro-cathepsin L mutant is a luminal substrate for endoplasmic-reticulum-associated degradation in C. elegans. PLoS One 7, e40145 (2012).

  44. 44.

    Roayaie, K., Crump, J. G., Sagasti, A. & Bargmann, C. I. The Gα protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20, 55–67 (1998).

  45. 45.

    Radman, I., Greiss, S. & Chin, J. W. Efficient and rapid C. elegans transgenesis by bombardment and hygromycin B selection. PLoS One 8, e76019 (2013).

  46. 46.

    Drexel, T., Mahofsky, K., Latham, R., Zimmer, M. & Cochella, L. Neuron type-specific miRNA represses two broadly expressed genes to modulate an avoidance behavior in C. elegans. Genes Dev. 30, 2042–2047 (2016).

  47. 47.

    Friedland, A. E. et al. Heritable genome editing in C. elegans via a CRISPR–Cas9 system. Nat. Methods 10, 741–743 (2013).

  48. 48.

    Katic, I. & Großhans, H. Targeted heritable mutation and gene conversion by Cas9–CRISPR in Caenorhabditis elegans. Genetics 113, 155754 (2013).

  49. 49.

    Semple, J. I., Biondini, L. & Lehner, B. Generating transgenic nematodes by bombardment and antibiotic selection. Nat. Methods 9, 118–119 (2012).

  50. 50.

    Mitchell, D. H., Stiles, J. W., Santelli, J. & Sanadi, D. R. Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine 1. J. Gerontol. 34, 28–36 (1979).

  51. 51.

    Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

  52. 52.

    Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, RESEARCH0002 (2001).

  53. 53.

    Rual, J. F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168 (2004).

  54. 54.

    Jadiya, P. & Nazir, A. A pre- and co-knockdown of RNAseT enzyme, Eri-1, enhances the efficiency of RNAi induced gene silencing in Caenorhabditis elegans. PLoS One 9, e87635 (2014).

  55. 55.

    Hoogewijs, D., Houthoofd, K., Matthijssens, F., Vandesompele, J. & Vanfleteren, J. R. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol. Biol. 9, 9 (2008).

  56. 56.

    Potluri, L. et al. Septal and lateral wall localization of PBP5, the major d,d-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment. Mol. Microbiol. 77, 300–323 (2010).

  57. 57.

    Kitazono, T. et al. Multiple signaling pathways coordinately regulate forgetting of olfactory adaptation through control of sensory responses in Caenorhabditis elegans. J. Neurosci. 37, 10240–10251 (2017).

Download references

Acknowledgements

We thank Y. Kohara and the Caenorhabditis Genetics Center (funded by the NIH National Center for Research Resources), the Dana-Farber Cancer Institute, Addgene and Geneservice for plasmids, cDNA and strains. We thank A. Segref (University of Cologne, Germany) for sharing unpublished strains and data on brain-to-gut regulation mechanisms. We thank the CECAD Imaging facility for support with confocal microscopy and the Cologne Center for Genomics for microarray analysis and RNA sequencing. This work is supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (CECAD, FKZ: ZUK81/1 and SFB1218) and the European Research Council (ERC-CoG-616499) to T.H. and grants from the Austrian Science Fund (FWF) (W-1207-B09 and SFB-F43–23) and European Research Council (ERC-StG-337161) to L.C.

Author information

Affiliations

  1. Institute for Genetics and CECAD Research Center, University of Cologne, Cologne, Germany

    • Fabian Finger
    • , Franziska Ottens
    • , Alexander Springhorn
    • , Lucie Proksch
    • , Sophia Metz
    •  & Thorsten Hoppe
  2. Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria

    • Tanja Drexel
    •  & Luisa Cochella

Authors

  1. Search for Fabian Finger in:

  2. Search for Franziska Ottens in:

  3. Search for Alexander Springhorn in:

  4. Search for Tanja Drexel in:

  5. Search for Lucie Proksch in:

  6. Search for Sophia Metz in:

  7. Search for Luisa Cochella in:

  8. Search for Thorsten Hoppe in:

Contributions

F.F., F.O. and A.S. designed, performed and analysed the results of the experiments. A.S. and L.P. performed and analysed the results of the RNA-sequencing experiments; T.D. and L.C. established the gene-edited strains. S.M. performed the stress assays. T.H. supervised the design and data interpretation; F.F., F.O. and T.H. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Thorsten Hoppe.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–6 and Supplementary Tables 1–8

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s42255-019-0033-z

Further reading