Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Impact of high growth rates on the microstructure and vortex pinning of high-temperature superconducting coated conductors

Abstract

High-temperature superconducting REBa2Cu3O7 (RE = rare earth or yttrium) coated conductors have emerged as a new class of materials with exceptional physical properties, such as very high critical currents and irreversibility field. Understanding the physics of vortices in these complex materials and controlling of the atomic structure of defects have made it possible to design their performance and achieve exceptional values of superconducting properties which enable their integration into devices. In order to improve performance and reduce costs, faster growth methods are now being explored, which raise new vortex physics scenarios. In this Technical Review, we distinguish the rich vortex pinning microstructure for vapour–solid, solid–solid and liquid–solid growth methods and how it is modified in the fast-growth process. The interplay between vortex physics and defect structure generated at high growth rates is addressed, as well as the implications of the electronic structure on vortex physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Operating regions for applications of different superconducting materials shown by different coloured areas.
Fig. 2: Different REBCO epitaxial growth techniques.
Fig. 3: Nano(microstructure) images of nanocomposites for simultaneous deposition and growth methods in which nanorods are visualized as the main artificial pinning centres.
Fig. 4: Nano(microstructure) images of nanocomposites for sequential deposition and growth methods in which nanoparticles are visualized as the main artificial pinning centres.
Fig. 5: Superconducting characteristics of REBa2Cu3O7 nanocomposite films.

Similar content being viewed by others

References

  1. Rogalla, H. & Kes, P. H. 100 Years of Superconductivity (CRC, 2012).

  2. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Hilgenkamp, H. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485–549 (2002).

    Article  ADS  CAS  Google Scholar 

  4. Larbalestier, D., Gurevich, A., Feldmann, D. M. & Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 414, 368–377 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hahn, S. et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature 570, 496–499 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Rossi, L. & Senatore, C. HTS accelerator magnet and conductor development in Europe. Instruments 5, 8 (2021).

    Article  CAS  Google Scholar 

  7. Creely, A. J., Greenwald, M. J., Ballinger, S. B., Brunner, D. & Canik, J. Overview of the SPARC tokamak. J. Plasma Phys. 86, 865860502 (2020).

    Article  CAS  Google Scholar 

  8. Chow, C. C. T., Ainslie, M. D. & Chau, K. T. High temperature superconducting rotating electrical machines: an overview. Energy Rep. 9, 1124–1156 (2023).

    Article  Google Scholar 

  9. Haran, K. S. et al. High power density superconducting rotating machines — development status and technology roadmap. Supercond. Sci. Technol. 30, 123002 (2017).

    Article  ADS  Google Scholar 

  10. Obradors, X. & Puig, T. Coated conductors for power applications: materials challenges. Supercond. Sci. Technol. 27, 044003 (2014).

    Article  ADS  CAS  Google Scholar 

  11. MacManus-Driscoll, J. L. & Wimbush, S. C. Processing and application of high-temperature superconducting coated conductors. Nat. Rev. Mater. 6, 587–604 (2021).

    Article  ADS  CAS  Google Scholar 

  12. Matsumoto, K. & Mele, P. Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond. Sci. Technol. 23, 014001 (2010).

    Article  ADS  Google Scholar 

  13. Molodyk, B. A. & Larbalestier, D. C. The prospects of high-temperature superconductors. Science 380, 1220–1223 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Iijima, Y., Tanabe, N., Kohno, O. & Ikeno, Y. In‐plane aligned YBa2Cu3O7−x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769 (1999).

    Article  ADS  Google Scholar 

  15. Norton, D. P. et al. Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): an approach to superconducting tapes with high critical current density. Science 274, 7555–7557 (1996).

    Article  Google Scholar 

  16. Gurevich, A. Challenges and opportunities for applications of unconventional superconductors. Annu. Rev. Condens. Matter Phys. 5, 35–56 (2014).

    Article  ADS  CAS  Google Scholar 

  17. Jha, A. K. & Matsumoto, K. Superconductive REBCO thin films and their nanocomposites: the role of rare-earth oxides in promoting sustainable energy. Front. Phys. 7, 82 (2019).

    Article  Google Scholar 

  18. Kwok, W. K. et al. Vortices in high-performance high-temperature superconductors. Rep. Prog. Phys. 79, 116501 (2016).

    Article  ADS  PubMed  Google Scholar 

  19. Crabtree, G. W. & Nelson, D. R. Vortex physics in high-temperature superconductors. Phys. Today 50, 38–45 (1997).

    Article  CAS  Google Scholar 

  20. Sadovskyy, I. A. et al. Toward superconducting critical current by design. Adv. Mater. 28, 4593–4600 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Eley, S., Glatz, A. & Willa, R. Challenges and transformative opportunities in superconductor vortex physics. J. Appl. Phys. 130, 050901 (2021).

    Article  ADS  CAS  Google Scholar 

  22. Brandt, E. H. The flux-line lattice in superconductors. Rep. Prog. Phys. 58, 1465–1594 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Blatter, G., Feigel’man, M. V., Geshkenbeinn, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Kang, S. et al. High-performance high-Tc superconducting wires. Science 311, 1911–1915 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. MacManus-Driscoll, J. L. et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x + BaZrO3. Nat. Mater. 3, 439–443 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Haugan, T. J., Barnes, P. N., Wheeler, R., Meisenkothen, F. & Sumption, M. Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7−2x superconductor. Nature 430, 867–870 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Gutiérrez, J. et al. Strong isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite superconductor films. Nat. Mater. 6, 367–373 (2007).

    Article  ADS  PubMed  Google Scholar 

  28. Llordés, A. et al. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat. Mater. 11, 329–336 (2012).

    Article  ADS  PubMed  Google Scholar 

  29. Obradors, X. et al. in Comprehensive Nanoscience Technology Vol. 3, 303–349 (Academic, 2011).

  30. Soler, L. et al. Ultrafast transient liquid assisted growth of high current density superconducting films. Nat. Commun. 11, 344 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maiorov, B. et al. Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7. Nat. Mater. 8, 398–404 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Malozemoff, A. P. Second-generation high-temperature superconductor wires for the electric power grid. Annu. Rev. Mater. Res. 42, 373–397 (2012).

    Article  ADS  CAS  Google Scholar 

  33. Tixador, P. Superconducting Fault Current Limiter in Series Applications of Superconductivity and Related Phenomena Vol. 3 (World Scientific, 2018).

  34. Wu, Y. et al. Ultra-fast growth of cuprate superconducting films: dual-phase liquid assisted epitaxy and strong flux pinning. Mater. Today Phys. 18, 100400 (2021).

    Article  CAS  Google Scholar 

  35. Fujita, S. et al. Flux-pinning properties of BaHfO3-doped EuBCO-coated conductors fabricated by hot-wall PLD. IEEE Trans. Appl. Supercond. 29, 3–7 (2019).

    Article  Google Scholar 

  36. Zhao, Y. et al. Progress in fabrication of second generation high temperature superconducting tape at Shanghai Superconductor Technology. Supercond. Sci. Technol. 32, 044004 (2019).

    Article  ADS  CAS  Google Scholar 

  37. Majkic, G. et al. Engineering current density over 5 kA mm−2 at 4.2 K, 14 T in thick film REBCO tapes. Supercond. Sci. Technol. 31, 10LT01 (2018).

    Article  Google Scholar 

  38. Dürrschnabel, M. et al. DyBa2Cu3O7−x superconducting coated conductors with critical currents exceeding 1000 Ac m−1. Supercond. Sci. Technol. 25, 105007 (2012).

    Article  ADS  Google Scholar 

  39. Lee, J. H. et al. RCE-DR, a novel process for coated conductor fabrication with high performance. Supercond. Sci. Technol. 27, 044018 (2014).

    Article  ADS  CAS  Google Scholar 

  40. Selvamanickam, V. Overcoming challenges in utilizing high-performance REBCO tapes in ultra-high magnetic field applications. Superconductivity News Forum https://snf.ieeecsc.org/presentation/invited/overcoming-challenges-utilizing-high-performance-rebco-tapes-ultra-high#resources (2021).

  41. Matias, V. & Hammond, R. H. YBCO superconductor wire based on IBAD-textured templates and RCE of YBCO: process economics. Phys. Procedia 36, 1440–1444 (2012).

    Article  ADS  CAS  Google Scholar 

  42. Fleming, M. C. Solidification Processing (McGraw-Hill, 1974).

  43. Shiohara, Y. & Endo, A. Crystal growth of bulk high-Tc superconducting oxide materials. Mater. Sci. Eng. R. Rep. R19, 1–86 (1997).

    Article  CAS  Google Scholar 

  44. Benz, K. W. & Neumann, W. Introduction to Crystal Growth and Characterization. (Wiley-VCH, 2014).

  45. Obradors, X. et al. Chemical solution route to self-assembled epitaxial oxide nanostructures. Chem. Soc. Rev. 43, 2200–2225 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Kelton, K. & Greer, A. Nucleation in Condensed Matter: Applications in Materials and Biology (Elsevier, 2009).

  47. Ohring, M. Materials Science of Thin Films 2nd edn (Elsevier, 2001).

  48. Wu, J. & Shi, J. Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films. Supercond. Sci. Technol. 30, 103002 (2017).

    Article  ADS  Google Scholar 

  49. Wee, S. H. et al. Self-assembly of nanostructured, complex, multication films via spontaneous phase separation and strain-driven ordering. Adv. Funct. Mater. 23, 1912–1918 (2013).

    Article  CAS  Google Scholar 

  50. Matias, V. et al. YBCO films grown by reactive co-evaporation on simplified IBAD-MgO coated conductor templates. Supercond. Sci. Technol. 23, 014018 (2010).

    Article  ADS  Google Scholar 

  51. Nemetschek, R. et al. Continuous tape coating by thermal evaporation. IEEE Trans. Appl. Supercond. 13, 2477–2480 (2003).

    Article  ADS  CAS  Google Scholar 

  52. Prusseit, W. et al. ISD process development for coated conductors. Phys. C Supercond. Appl. 426–431, 866–871 (2005).

    Article  ADS  Google Scholar 

  53. Bauer, M., Semerad, R. & Kinder, H. YBCO films on metal substrates with biaxially aligned MgO buffer layers. IEEE Trans. Appl. Supercond. 9, 1502–1505 (1999).

    Article  ADS  Google Scholar 

  54. Wördenweber, R. Growth of high-Tc thin films. Supercond. Sci. Technol. 12, 79339–79344 (1999).

    Article  Google Scholar 

  55. Hung, C. Y. et al. On-axis single-target sputter deposition of YBCO on Si and YSZ. Mater. Sci. Eng. B 33, 85–90 (1995).

    Article  Google Scholar 

  56. Selvamanickam, V. et al. Progress in performance improvement and new research areas for cost reduction of 2G HTS wires. IEEE Trans. Appl. Supercond. 21, 3049–3054 (2011).

    Article  ADS  CAS  Google Scholar 

  57. Thomas, O. et al. Growth and properties of MOCVD YBa2Cu3O7−x thin films. J. Alloy. Compd. 195, 287–290 (1993).

    Article  CAS  Google Scholar 

  58. Majkic, G., Galstyan, E. & Selvamanickam, V. High performance 2G-HTS wire using a novel MOCVD system. IEEE Trans. Appl. Supercond. 25, 10–13 (2015).

    Article  Google Scholar 

  59. Wu, Y. et al. Ultra-fast growth (up to 100 nm s−1) of heavily doped EuBa2Cu3O7 film with highly aligned BaHfO3 nanocolumn structure. Supercond. Sci. Technol. 34, 05LT01 (2021).

    Article  Google Scholar 

  60. Wu, Y. et al. Ultra-fast dynamic deposition of EuBa2Cu3O7−δ-BaHfO3 nanocomposite films: self-assembly structure modulation and flux pinning behaviors. Mater. Des. 224, 111406 (2022).

    Article  CAS  Google Scholar 

  61. Feighan, J. et al. Strong pinning at high growth rates in rare earth barium cuprate (REBCO) superconductor films grown with liquid-assisted processing (LAP) during pulsed laser deposition. Supercond. Sci. Technol. 34, 045012 (2021).

    Article  ADS  Google Scholar 

  62. Paidpilli, M. et al. Growth of high-performance 4-5μm thick film REBCO tapes doped with hafnium using advanced MOCVD. IEEE Trans. Appl. Supercond. 31, 23–27 (2021).

    Article  Google Scholar 

  63. Gupta, A. et al. Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl. Phys. Lett. 52, 2077–2079 (1988).

    Article  ADS  CAS  Google Scholar 

  64. Miura, M. et al. Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition. NPG Asia Mater. 9, e447 (2017).

    Article  CAS  Google Scholar 

  65. Obradors, X. et al. Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions. Supercond. Sci. Technol. 25, 123001 (2012).

    Article  ADS  Google Scholar 

  66. Solovyov, V., Dimitrov, I. K. & Li, Q. Growth of thick YBa2Cu3O7 layers via a barium fluoride process. Supercond. Sci. Technol. 26, 013001 (2013).

    Article  ADS  Google Scholar 

  67. Rupich, M. W., Verebelyi, D. T., Zhang, W., Kodenkandath, T. & Li, X. Metalorganic deposition of YBCO films for superconductor wires. MRS Bull. 29, 572–578 (2004).

    Article  CAS  Google Scholar 

  68. McIntyre, P. C., Cima, M. J. & Ng, M. F. Metalorganic deposition of high‐Jc Ba2YCu3O7−x thin films from trifluoroacetate precursors onto (100) SrTiO3. J. Appl. Phys. 68, 4183–4187 (1990).

    Article  ADS  CAS  Google Scholar 

  69. Teranishi, R. et al. Fabrication of YBCO film by TFA-MOD process at low-pressure atmosphere. Phys. C Supercond. Appl. 412–414, 920–925 (2004).

    Article  ADS  Google Scholar 

  70. Palmer, X. et al. Solution design for low-fluorine trifluoroacetate route to YBa2Cu3O7 films. Supercond. Sci. Technol. 29, 024002 (2016).

    Article  ADS  Google Scholar 

  71. Rupich, M. W. et al. Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation. Supercond. Sci. Technol. 23, 014015 (2010).

    Article  ADS  Google Scholar 

  72. Li, Z. et al. Control of nanostructure and pinning properties in solution deposited YBa2Cu3O7−x nanocomposites with preformed perovskite nanoparticles. Sci. Rep. 9, 5828 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Suenaga, M. BaF2 processes for YBa2Cu3O7 conductors: promises and challenges. Phys. C Supercond. Appl. 378–381, 1045–1051 (2002).

    Article  ADS  Google Scholar 

  74. Zhang, Y. et al. High critical current density YBa2Cu3O7−δ thin films fabricated by ex situ processing at low pressures. Supercond. Sci. Technol. 17, 1154–1159 (2004).

    Article  ADS  CAS  Google Scholar 

  75. Yamada, Y. Liquid-phase epitaxy processing of RBa2Cu3O7−δ. Supercond. Sci. Technol. 13, 82–87 (2000).

    Article  ADS  CAS  Google Scholar 

  76. Kursumovic, A., Cheng, Y. S., Glowacki, B. A., Madsen, J. & Evetts, J. E. Study of the rate-limiting processes in liquid-phase epitaxy of thick YBaCuO films. J. Cryst. Growth 218, 45–56 (2000).

    Article  ADS  CAS  Google Scholar 

  77. Kursumovic, A. et al. Hybrid liquid phase epitaxy processes for YBa2Cu3O7 film growth. Supercond. Sci. Technol. 17, 1215–1223 (2004).

    Article  ADS  CAS  Google Scholar 

  78. Funaki, S. et al. Crystal growth mechanism of VLS-Sm1+xBa2−xCu3Oy films including self-assembled BaZrO3 nanorods. Phys. C Supercond. Appl. 469, 1414–1417 (2009).

    Article  ADS  CAS  Google Scholar 

  79. Ito, T. et al. Thick coated conductor using vapor-liquid-solid. IEEE Trans. Appl. Supercond. 31, 6601304 (2021).

    Article  CAS  Google Scholar 

  80. Ito, T. et al. Effect of surface liquid layer during film growth on morphology of BaHfO3in YBa2Cu3Oy coated conductors fabricated by pulsed laser deposition. IEEE Trans. Appl. Supercond. 31, 6601205 (2021).

    Article  CAS  Google Scholar 

  81. Ito, T. et al. Enhancement of Ic of BaHfO3-doped REBCO thick coated conductor using vapor-liquid-solid growth technique. IEEE Trans. Appl. Supercond. 31, 6601304 (2021).

    Article  CAS  Google Scholar 

  82. Lee, J. et al. Enhanced pinning properties of GdBa2Cu3O7−δ coated conductors via a post-annealing process. IEEE Trans. Appl. Supercond. 26, 8001906 (2016).

    Article  Google Scholar 

  83. MacManus-Driscoll, J. L. et al. Strong pinning in very fast grown reactive co-evaporated GdBa2Cu3O7 coated conductors. Appl. Phys. Lett. Mater. 2, 086103 (2014).

    Google Scholar 

  84. Lee, J. W., Song, J. H., Park, I., Lee, W. & Yoo, S. I. Experimental determination of SmBa2Cu3O7−δ stability diagram at low oxygen pressures. J. Phys. Chem. C 127, 1527–1535 (2023).

    Article  CAS  Google Scholar 

  85. Rasi, S. et al. Kinetic control of ultrafast transient liquid assisted growth of solution-derived YBa2Cu3O7−x superconducting films. Adv. Sci. 9, 2203834 (2022).

    Article  CAS  Google Scholar 

  86. Queraltó, A. et al. Transient liquid assisted growth of superconducting YBa2Cu3O7−x films based on pulsed laser deposition. Supercond. Sci. Technol. 36, 025003 (2023).

    Article  ADS  Google Scholar 

  87. Chu, N. et al. Rapid phase formation and interfacial reaction of YBa2Cu3O7−δ coated conducts by using high-rate crystallization of fluorine-free chemical solution. Jpn. J. Appl. Phys. 61, 075509 (2022).

    Article  ADS  Google Scholar 

  88. Shen, J. J. et al. Realizing the rapid crystallization of YBa2Cu3O7−δ films on LaMnO3 buffer layer by induction heating. J. Supercond. Nov. Magn. 35, 3147–3155 (2022).

    Article  CAS  Google Scholar 

  89. Saltarelli, L. et al. Chemical and microstructural nanoscale homogeneity in superconducting YBa2Cu3O7−x films derived from metal-propionate fluorine-free solutions. ACS Appl. Mater. Interfaces 14, 48582–48597 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, H. et al. Growth rate control and solid-gas modeling of TFA-YBa2Cu3O7 thin film processing. Supercond. Sci. Technol. 23, 034005 (2010).

    Article  ADS  Google Scholar 

  91. Sánchez-Valdés, C. F., Puig, T. & Obradors, X. In situ study through electrical resistance of growth rate of trifluoroacetate-based solution-derived YBa2Cu3O7 films. Supercond. Sci. Technol. 28, 024006 (2015).

    Article  ADS  Google Scholar 

  92. Teranishi, R. et al. Growth mechanism of Y123 film by MOD-TFA process. Phys. C Supercond. Appl. 378–381, 1033–1038 (2002).

    Article  ADS  Google Scholar 

  93. Qu, T. et al. Thermodynamics and kinetics analysis of MOD-YBCO heat treatment process using in situ resistance measurement method. IEEE Trans. Appl. Supercond. 26, 6602205 (2016).

    Article  Google Scholar 

  94. List, F. A. et al. Low-pressure conversion studies for YBCO precursors derived by PVD and MOD methods. IEEE Trans. Appl. Supercond. 15, 2656–2658 (2005).

    Article  ADS  CAS  Google Scholar 

  95. Feighan, J. P. F., Kursumovic, A. & MacManus-Driscoll, J. L. Materials design for artificial pinning centres in superconductor PLD coated conductors. Supercond. Sci. Technol. 30, 123001 (2017).

    Article  ADS  Google Scholar 

  96. Dam, B. et al. Growth and etching phenomena observed by STM/AFM on pulsed-laser deposited YBa2Cu3O7−δ films. Phys. C Supercond. Appl. 261, 1–11 (1996).

    Article  ADS  CAS  Google Scholar 

  97. Pratap, R. et al. Growth of high-performance thick film REBCO tapes using advanced MOCVD. IEEE Trans. Appl. Supercond. 29, 6600905 (2019).

    Article  Google Scholar 

  98. Maiorov, B. et al. Vortex pinning landscape in YBa2Cu3O7 films grown by hybrid liquid phase epitaxy. Supercond. Sci. Technol. 20, 223–229 (2007).

    Article  Google Scholar 

  99. Queraltó, A., de la Mata, M., Arbiol, J., Obradors, X. & Puig, T. Disentangling epitaxial growth mechanisms of solution derived functional oxide thin films. Adv. Mater. Interfaces 3, 1600392 (2016).

    Article  Google Scholar 

  100. Queraltó, A. et al. Orientation symmetry breaking in self-assembled Ce1−xGdxO2−y nanowires derived from chemical solutions. RSC Adv. 6, 97226–97236 (2016).

    Article  ADS  Google Scholar 

  101. Miletto Granozio, F. & Scotti Di Uccio, U. Simple model for the nucleation of (0 0 1) and (1 0 0) oriented grains in YBCO films. J. Cryst. Growth 174, 409–416 (1997).

    Article  ADS  CAS  Google Scholar 

  102. Miletto Granozio, F. & Scotti Di Uccio, U. Gibbs energy and growth habits of YBCO. J. Alloy. Compd. 251, 56–64 (1997).

    Article  Google Scholar 

  103. Miletto Granozio, F. et al. Competition between a-axis and c-axis growth in superconducting thin films. Phys. Rev. B 61, 756–765 (2000).

    Article  ADS  CAS  Google Scholar 

  104. Ichino, Y., Sudoh, K., Miyachi, K., Yoshida, Y. & Takai, Y. Orientation mechanism of REBa2Cu3Oy (RE = Nd, Sm, Gd, Y, Yb) thin films prepared by pulsed laser deposition. IEEE Trans. Appl. Supercond. 13, 2735–2738 (2003).

    Article  ADS  CAS  Google Scholar 

  105. Obradors, X., Zalamova, K., Vlad, V. R. & Pomar, A. Nucleation and mesostrain influence on percolating critical currents of solution derived YBa2Cu3O7 superconducting thin films. Phys. C Supercond. Appl. 482, 58–67 (2012).

    Article  ADS  CAS  Google Scholar 

  106. Pop, C. et al. Growth of all-chemical high critical current YBa2Cu3O7−δ thick films and coated conductors. Supercond. Sci. Technol. 32, 015004 (2019).

    Article  ADS  Google Scholar 

  107. Villarejo, B. et al. High performance of superconducting YBa2Cu3O7 thick films prepared by single-deposition inkjet printing. ACS Appl. Electron. Mater. 3, 3948–3961 (2021).

    Article  CAS  Google Scholar 

  108. Obradors, X. et al. Epitaxial YBa2Cu3O7−x nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions. Supercond. Sci. Technol. 31, 044001 (2018).

    Article  ADS  Google Scholar 

  109. Ercolano, G. et al. State-of-the-art flux pinning in YBa2Cu3O7−δ by the creation of highly linear, segmented nanorods of Ba2(Y/Gd)(Nb/Ta)O6 together with nanoparticles of (Y/Gd)2O3 and (Y/Gd)Ba2Cu4O8. Supercond. Sci. Technol. 24, 095012 (2011).

    Article  ADS  Google Scholar 

  110. Cayado, P. et al. Chemical solution deposition of Y1−xGdxBa2Cu3O7−δ–BaHfO3 nanocomposite films: combined influence of nanoparticles and rare-earth mixing on growth conditions and transport properties. RSC Adv. 8, 42398–42404 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Erbe, M. et al. BaHfO3 artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films. Supercond. Sci. Technol. 28, 114002 (2015).

    Article  ADS  Google Scholar 

  112. Opherden, L. et al. Large pinning forces and matching effects in YBCO thin films with BY(N/T)O nano-precipitates. Sci. Rep. 6, 21188 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Díez-Sierra, J. et al. High critical current density and enhanced pinning in superconducting films of YBa2Cu3O7−δ nanocomposites with embedded BaZrO3, BaHfO3, BaTiO3, and SrZrO3 nanocrystals. ACS Appl. Nano Mater. 3, 5542–5553 (2020).

    Article  Google Scholar 

  114. Cayado, P. et al. Large critical current densities and pinning forces in CSD-grown superconducting GdBa2Cu3O7−x–BaHfO3 nanocomposite films. Supercond. Sci. Technol. 30, 094007 (2017).

    Article  ADS  Google Scholar 

  115. Yamada, Y. et al. Epitaxial nanostructure and defects effective for pinning in Y(RE)Ba2Cu3O7−x coated conductors. Appl. Phys. Lett. 87, 132502 (2005).

    Article  ADS  Google Scholar 

  116. Selvamanickam, V. et al. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition. Supercond. Sci. Technol. 26, 035006 (2013).

    Article  ADS  Google Scholar 

  117. Popov, R., Erbe, M., Hänisch, J. & Holzapfel, B. Superconducting BaHfO3–GdBa2Cu3O7 nanocomposite thin films: influence of growth temperature and deposition rate on transport properties. IEEE Trans. Appl. Supercond. 29, 3–7 (2019).

    Article  Google Scholar 

  118. Ercolano, G. et al. Strong correlated pinning at high growth rates in YBa2Cu3O7−x thin films with Ba2YNbO6 additions. J. Appl. Phys. 116, 033915 (2014).

    Article  ADS  Google Scholar 

  119. Horide, T. et al. Self-organized nanocomposite structure controlled by elemental site occupancy to improve vortex pinning in YBa2Cu3O7 superconducting films. ACS Appl. Electron. Mater. 4, 3018–3026 (2022).

    Article  CAS  Google Scholar 

  120. Celentano, G. et al. YBa2Cu3O7−x films with Ba2Y(Nb,Ta)O6 nanoinclusions for high-field applications. Supercond. Sci. Technol. 33, 044010 (2020).

    Article  ADS  CAS  Google Scholar 

  121. Rizzo, F. et al. Pushing the limits of applicability of REBCO coated conductor films through fine chemical tuning and nanoengineering of inclusions. Nanoscale 10, 8187–8195 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Coll, M. et al. Solution-derived YBa2Cu3O7 nanocomposite films with a Ba2YTaO6 secondary phase for improved superconducting properties. Supercond. Sci. Technol. 26, 015001 (2012).

    Article  ADS  Google Scholar 

  123. Coll, M. et al. Size-controlled spontaneously segregated Ba2YTaO6 nanoparticles in YBa2Cu3O7 nanocomposites obtained by chemical solution deposition. Supercond. Sci. Technol. 27, 044008 (2014).

    Article  ADS  CAS  Google Scholar 

  124. Zhao, R. et al. Precise tuning of (YBa2Cu3O7−δ)1−x:(BaZrO3)x thin film nanocomposite structures. Adv. Funct. Mater. 24, 5240–5245 (2014).

    Article  CAS  Google Scholar 

  125. Yoshida, Y. et al. Approaches in controllable generation of artificial pinning center in REBa2Cu3Oy coated conductor for high flux pinning. Supercond. Sci. Technol. 30, 104002 (2017).

    Article  ADS  Google Scholar 

  126. Sebastian, M. A. et al. Impact of calcium doping of YBa2Cu3O7−δ multilayer thin films on the flux pinning landscape at 65–5 K, 0–9 T for various applications. IEEE Trans. Appl. Supercond. 33, 8000606 (2023).

    Article  CAS  Google Scholar 

  127. Aye, M. M. et al. Role of the deposition distance on nanorod growth and flux pinning in BaZrO3-doped YBa2Cu3O6+x thin films: implications for superconducting tapes. ACS Appl. Nano Mater. 5, 18159–18167 (2022).

    Article  CAS  Google Scholar 

  128. Ichino, Y., Yoshida, Y. & Miura, S. Three-dimensional Monte Carlo simulation of nanorod self-organization in REBa2Cu3Oy thin films grown by vapor phase epitaxy. Jpn. J. Appl. Phys. 56, 015601 (2017).

    Article  ADS  Google Scholar 

  129. Izumi, T. & Nakaoka, K. Control of artificial pinning centers in REBCO coated conductors derived from the trifluoroacetate metal-organic deposition process. Supercond. Sci. Technol. 31, 034008 (2018).

    Article  ADS  Google Scholar 

  130. Solano, E. et al. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles. J. Nanopart. Res. 14, 1034 (2012).

    Article  ADS  Google Scholar 

  131. Solano, E. et al. Axiotaxy in oxide heterostructures: preferential orientation of BaCeO3 nanoparticles embedded in superconducting YBa2Cu3O7−δ thin films. Thin Solid Films 638, 105–113 (2017).

    Article  ADS  CAS  Google Scholar 

  132. Park, I., Oh, W. J., Lee, J. H., Moon, S. H. & Yoo, S. I. Improvement of pinning properties by refining Gd2O3 particles trapped in GdBa2Cu3O7−δ coated conductors fabricated by the RCE-DR process. IEEE Trans. Appl. Supercond. 31, 3–7 (2021).

    Article  Google Scholar 

  133. Chamorro, N. et al. Hybrid approach to obtain high-quality BaMO3 perovskite nanocrystals. RSC Adv. 10, 28872–28878 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. De Keukeleere, K. et al. Fast and tunable synthesis of ZrO2 nanocrystals: mechanistic insights into precursor dependence. Inorg. Chem. 54, 3469–3476 (2015).

    Article  PubMed  Google Scholar 

  135. Cayado, P. et al. Epitaxial YBa2Cu3O7−x nanocomposite thin films from colloidal solutions. Supercond. Sci. Technol. 28, 124007 (2015).

    Article  ADS  Google Scholar 

  136. De Keukeleere, K. et al. Superconducting YBa2Cu3O7−δ nanocomposites using preformed ZrO2 nanocrystals: growth mechanisms and vortex pinning properties. Adv. Electron. Mater. 2, 1600161 (2016).

    Article  Google Scholar 

  137. Rijckaert, H. et al. Superconducting HfO2-added solution-derived YBa2Cu3O7 nanocomposite films: the effect of colloidal nanocrystal shape and crystallinity on pinning mechanism. Supercond. Sci. Technol. 35, 084008 (2022).

    Article  ADS  Google Scholar 

  138. Rijckaert, H. et al. Superconducting HfO2–YBa2Cu3O7−δ nanocomposite films deposited using ink-jet printing of colloidal solutions. Coatings 10, 17 (2020).

    Article  CAS  Google Scholar 

  139. Aabdin, Z. et al. Microstructure of BaZrO3-doped DyBa2Cu3O7−x coated conductors deposited by inclined substrate deposition. Phys. Procedia 36, 1655–1660 (2012).

    Article  ADS  CAS  Google Scholar 

  140. Queraltó, A. et al. Combinatorial screening of cuprate superconductors by drop-on-demand inkjet printing. ACS Appl. Mater. Interfaces 13, 9101–9112 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chen, S. et al. Scale up of high-performance REBCO tapes in a pilot-scale advanced MOCVD tool with in-line 2D-XRD system. IEEE Trans. Appl. Supercond. 31, 6600205 (2021).

    CAS  Google Scholar 

  142. Hayasaka, R. et al. Investigation of the crystallization process of CSD-ErBCO on IBAD-substrate via DSD approach. Sci. Rep. 10, 19934 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yazdani-Asrami, M. et al. Roadmap on artificial intelligence and big data techniques for superconductivity. Supercond. Sci. Technol. 36, 043501 (2023).

    Article  ADS  Google Scholar 

  144. Miura, M. et al. Thermodynamic approach for enhancing superconducting critical current performance. NPG Asia Mater. 14, 85 (2022).

    Article  ADS  CAS  Google Scholar 

  145. Majkic, G. et al. In-field critical current performance of 4.0 μm thick film REBCO conductor with Hf addition at 4.2 K and fields up to 31.2 T. Supercond. Sci. Technol. 33, 07LT03 (2020).

    Article  Google Scholar 

  146. Foltyn, S. R. et al. Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6, 631–642 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Vallès, F. et al. Optimizing vortex pinning in YBa2Cu3O7−x superconducting films up to high magnetic fields. Commun. Mater. 3, 45 (2022).

    Article  Google Scholar 

  148. Cantoni, C. et al. Strain-driven oxygen deficiency in self-assembled, nanostructured, composite oxide films. ACS Nano 5, 4783–4789 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Gazquez, J. et al. Emerging diluted ferromagnetism in high-Tc superconductors driven by point defect clusters. Adv. Sci. 3, 1500295 (2016).

    Article  Google Scholar 

  150. Guzman, R. et al. Probing localized strain in solution-derived YBCO nanocomposite thin films. Phys. Rev. Mater. 1, 024801 (2017).

    Article  Google Scholar 

  151. Hartman, S. T. et al. Direct observation of apical oxygen vacancies in the high-temperature superconductor YBa2Cu3O7−x. Phys. Rev. Mater. 3, 114806 (2019).

    Article  CAS  Google Scholar 

  152. Mundet, B. et al. Local strain-driven migration of oxygen vacancies to apical sites in YBa2Cu3O7−x. Nanoscale 12, 5922–5931 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Horide, T., Ishimaru, M., Sato, K. & Matsumoto, K. Nonlocal self-organization of long stacking faults from highly strained nanocomposite film of complex oxide. Phys. Rev. Mater. 3, 013403 (2019).

    Article  CAS  Google Scholar 

  154. Cayado, P. et al. Critical current density improvement in CSD-grown high-entropy REBa2Cu3O7−δ films. RSC Adv. 12, 28831–28842 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Molodyk, A. et al. Development and large volume production of extremely high current density YBCO superconducting wires for fusion. Sci. Rep. 11, 2084 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gautam, B. et al. Probing the effect of interface on vortex pinning efficiency of one-dimensional BaZrO3 and BaHfO3 artificial pinning centers in YBa2Cu3O7−x thin films. Appl. Phys. Lett. 113, 212602 (2018).

    Article  ADS  Google Scholar 

  157. Nishiyama, T. et al. Microstructural characterization of TFA-MOD processed Y1−xGdxBa2Cu3O7−y with BaZrO3. Micron 52–53, 1–7 (2013).

    Article  PubMed  Google Scholar 

  158. Pinto, V. et al. Chemical solution deposition of YBCO films with Gd excess. Coatings 10, 860 (2020).

    Article  CAS  Google Scholar 

  159. Bartolomé, E. et al. Embedded magnetism in YBa2Cu3O7 associated with Cu–O vacancies within nanoscale intergrowths: implications for superconducting current performance. ACS Appl. Nano Mater. 3, 3050–3059 (2020).

    Article  Google Scholar 

  160. Li, Z. et al. Suppression of superconductivity at the nanoscale in chemical solution derived YBa2Cu3O7−δ thin films with defective Y2Ba4Cu8O16 intergrowths. Nanoscale Adv. 2, 3384–3393 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  161. Guzman, R. et al. Strain-driven broken twin boundary coherence in YBa2Cu3O7−x nanocomposite thin films. Appl. Phys. Lett. 102, 081906 (2013).

    Article  ADS  Google Scholar 

  162. Rouco, V. et al. Role of twin boundaries on vortex pinning of CSD YBCO nanocomposites. Supercond. Sci. Technol. 27, 125009 (2014).

    Article  ADS  Google Scholar 

  163. Miura, M. et al. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition. Sci. Rep. 6, 20436 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  164. Miura, M. et al. Vortex liquid-glass transition up to 60 T in nanoengineered coated conductors grown by metal organic deposition. Appl. Phys. Lett. 96, 94–97 (2010).

    Article  Google Scholar 

  165. Palau, A. et al. Crossover between channeling and pinning at twin boundaries in YBa2Cu3O7 thin films. Phys. Rev. Lett. 97, 257002 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  166. Palau, A. et al. Disentangling vortex pinning landscape in chemical solution deposited superconducting YBa2Cu3O7−x films and nanocomposites. Supercond. Sci. Technol. 31, 034004 (2018).

    Article  ADS  Google Scholar 

  167. Chen, J. et al. Significant improvement of the critical current of MOD-derived YBa2Cu3O7−δ-coated conductors by post-annealing treatment. Appl. Phys. Express 14, 055506 (2021).

    Article  ADS  CAS  Google Scholar 

  168. Usoskin, A. et al. Double-disordered HTS-coated conductors and their assemblies aimed for ultra-high fields: large area tapes. IEEE Trans. Appl. Supercond. 28, 6602506 (2018).

    Article  Google Scholar 

  169. Abraimov, D. et al. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field. Supercond. Sci. Technol. 28, 114007 (2015).

    Article  ADS  Google Scholar 

  170. Xu, A., Braccini, V., Jaroszynski, J., Xin, Y. & Larbalestier, D. C. Role of weak uncorrelated pinning introduced by BaZrO3 nanorods at low-temperature in (Y,Gd)Ba2Cu3Ox thin films. Phys. Rev. B 86, 115416 (2012).

    Article  ADS  Google Scholar 

  171. Mele, P. et al. High pinning performance of YBa2Cu3O7−x films added with Y2O3 nanoparticulate defects. Supercond. Sci. Technol. 28, 24002 (2015).

    Article  CAS  Google Scholar 

  172. Campbell, A. M. & Evetts, J. E. Flux vortices and transport currents in type II superconductors. Adv. Phys. 21, 199–428 (1972).

    Article  ADS  CAS  Google Scholar 

  173. Eley, S., Miura, M., Maiorov, B. & Civale, L. Universal lower limit on vortex creep in superconductors. Nat. Mater. 16, 409–413 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  174. Figueras, J. et al. The loss of vortex line tension sets an upper limit to the irreversibility line in YBa2Cu3O7. Nat. Phys. 2, 402–407 (2006).

    Article  CAS  Google Scholar 

  175. Puig, T. et al. Vortex pinning in chemical solution nanostructured YBCO films. Supercond. Sci. Technol. 21, 034008 (2008).

    Article  ADS  Google Scholar 

  176. Sadovskyy, I. A., Koshelev, A. E., Kwok, W. K., Welp, U. & Glatz, A. Targeted evolution of pinning landscapes for large superconducting critical currents. Proc. Natl Acad. Sci. USA 116, 10291–10296 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dam, B. et al. Origin of high critical currents in YBa2Cu3O7−d superconducting thin films. Nature 399, 439–442 (1999).

    Article  ADS  CAS  Google Scholar 

  178. Vallès, F., Rouco, V., Mundet, B., Obradors, X. & Puig, T. Angular flux creep contributions in YBa2Cu3O7−δ nanocomposites from electrical transport measurements. Sci. Rep. 8, 5924 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  179. Gutiérrez, J., Puig, T. & Obradors, X. Anisotropy and strength of vortex pinning centers in YBa2Cu3O7−x coated conductors. Appl. Phys. Lett. 90, 16–18 (2007).

    Article  Google Scholar 

  180. Zhang, J., Wu, H., Zhao, G., Han, L. & Zhang, J. Progress in the study of vortex pinning centers in high-temperature superconducting films. Nanomaterials 12, 4000 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Rivasto, E., Hynninen, T., Huhtinen, H. & Paturi, P. Optimization of high-temperature superconducting bilayer structures using a vortex dynamics simulation. J. Phys. Condens. Matter 35, 075701 (2023).

    Article  ADS  CAS  Google Scholar 

  182. Willa, R., Koshelev, A. E., Sadovskyy, I. A. & Glatz, A. Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors. Supercond. Sci. Technol. 31, 014001 (2018).

    Article  ADS  Google Scholar 

  183. Wimbush, S. C. & Long, N. J. The interpretation of the field angle dependence of the critical current in defect-engineered superconductors. N. J. Phys. 14, 083017 (2012).

    Article  Google Scholar 

  184. Rivasto, E. et al. Self-assembled nanorods in YBCO matrix — a computational study of their effects on critical current anisotropy. Sci. Rep. 10, 3169 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. Collomb, D., Zhang, M., Yuan, W. & Bending, S. J. Imaging of strong nanoscale vortex pinning in GdBaCuO high-temperature superconducting tapes. Nanomaterials 11, 1082 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kihlstrom, K. J. et al. Large enhancement of the in-field critical current density of YBCO coated conductors due to composite pinning landscape. Supercond. Sci. Technol. 34, 015011 (2021).

    Article  ADS  Google Scholar 

  187. Iliffe, W. et al. The effect of in situ irradiation on the superconducting performance of REBa2Cu3O7−δ-coated conductors. MRS Bull. 48, 710–719 (2023).

    Article  ADS  CAS  Google Scholar 

  188. Deutscher, G. The role of Cu-O bond length fluctuations in the high temperature superconductivity mechanism. J. Appl. Phys. 111, 112603 (2012).

    Article  ADS  Google Scholar 

  189. Jia, Y. et al. Doubling the critical current density of high temperature superconducting coated conductors through proton irradiation. Appl. Phys. Lett. 103, 122601 (2013).

    Article  ADS  Google Scholar 

  190. Huang, D. et al. High-field critical current density enhancement in GdBCO coated conductors by cooperative defects. Supercond. Sci. Technol. 36, 065003 (2023).

    Article  ADS  Google Scholar 

  191. Choi, W. J., Ahmad, D., Seo, Y. I., Ko, R. K. & Kwon, Y. S. Effect of the proton irradiation on the thermally activated flux flow in superconducting SmBCO coated conductors. Sci. Rep. 10, 2017 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  192. Huang, D. et al. Enhancement in the critical current density of BaTiO3-doped YBCO films by low-energy (60 keV) proton irradiation. Supercond. Sci. Technol. 34, 045001 (2021).

    Article  ADS  Google Scholar 

  193. Soman, A. A. et al. Reduced critical current anisotropy and improved critical current performance in a combined pinning landscape created by proton and silver irradiation. IEEE Trans. Appl. Supercond. 33, 6600805 (2023).

    Article  CAS  Google Scholar 

  194. Jones, S. C. et al. Designing high-performance superconductors with nanoparticle inclusions: comparisons to strong pinning theory. Apl. Mater. 9, 091105 (2021).

    Article  ADS  CAS  Google Scholar 

  195. Miura, S. et al. Characteristics of high-performance BaHfO3-doped SmBa2Cu3Oy superconducting films fabricated with a seed layer and low-temperature growth. Supercond. Sci. Technol. 28, 65013 (2015).

    Article  Google Scholar 

  196. Strickland, N. M. et al. Near-isotropic enhancement of the 20 K critical current of REBa2Cu3O7 coated conductors from columnar defects. Supercond. Sci. Technol. 36, 055001 (2023).

    Article  ADS  Google Scholar 

  197. Gutiérrez, J. et al. The role of stacking faults in the critical current density of MOD films through a thickness dependence study. Supercond. Sci. Technol. 22, 015022 (2009).

    Article  ADS  Google Scholar 

  198. Civale, L. et al. Angular-dependent vortex pinning mechanisms in YBa2Cu3O7 coated conductors and thin films. Appl. Phys. Lett. 84, 2121–2123 (2004).

    Article  ADS  CAS  Google Scholar 

  199. Bartolomé, E. et al. Intrinsic anisotropy versus effective pinning anisotropy in YBa2Cu3O7 thin films and nanocomposites. Phys. Rev. B 100, 054502 (2019).

    Article  ADS  Google Scholar 

  200. Pompeo, N. et al. Intrinsic anisotropy and pinning anisotropy in nanostructured YBa2Cu3O7−δ from microwave measurements. Supercond. Sci. Technol. 33, 044017 (2020).

    Article  ADS  CAS  Google Scholar 

  201. Banchewski, J. Transient Liquid Assisted Growth of YBCO Superconducting Films: Growth Kinetics, Physical Properties and Vortex Pinning. Doctoral Thesis, Universitat Autonoma de Barcelona (2020).

  202. Jha, A. K. et al. Isotropic enhancement in the critical current density of YBCO thin films incorporating nanoscale Y2BaCuO5 inclusions. J. Appl. Phys. 122, 093905 (2017).

    Article  ADS  Google Scholar 

  203. van der Beek, C. J. et al. Strong pinning in high-temperature superconducting films. Phys. Rev. B 66, 024523 (2002).

    Article  ADS  Google Scholar 

  204. Mishev, V. et al. Interaction of vortices in anisotropic superconductors with isotropic defects. Supercond. Sci. Technol. 28, 102001 (2015).

    Article  ADS  Google Scholar 

  205. Van Der Beek, C. J., Konczykowski, M. & Prozorov, R. Anisotropy of strong pinning in multi-band superconductors. Supercond. Sci. Technol. 25, 084010 (2012).

    Article  ADS  Google Scholar 

  206. Yamasaki, H., Ohki, K., Yamada, H., Nakagawa, Y. & Mawatari, Y. Strong flux pinning in YBa2Cu3O7−δ thin films due to nanometer-sized precipitates. Supercond. Sci. Technol. 21, 125011 (2008).

    Article  ADS  Google Scholar 

  207. Tsuchiya, Y. et al. Flux pinning landscape up to 25 T in SmBa2Cu3Oy films with BaHfO3 nanorods fabricated by low-temperature growth technique. Supercond. Sci. Technol. 30, 104004 (2017).

    Article  ADS  Google Scholar 

  208. Hanisch, J., Iida, K., Cayado, P. & Erbe, M. Microstructure, pinning properties, and aging of CSD-grown SmBa2Cu3O7−δ films with and without BaHfO3 nanoparticles. Supercond. Sci. Technol. 35, 084009 (2022).

    Article  ADS  Google Scholar 

  209. Nelson, D. R. & Vinokur, V. M. Boson localization and correlated pinning of superconducting vortex arrays. Phys. Rev. B 48, 13060 (1993).

    Article  ADS  CAS  Google Scholar 

  210. Tsuchiya, Y. et al. Delocalization of vortex in SmBa2Cu3O7−δ superconducting films with BaHfO3 nano-rods. J. Appl. Phys. 120, 103902 (2016).

    Article  ADS  Google Scholar 

  211. Cai, C., Holzapfel, B., Hänisch, J., Fernández, L. & Schultz, L. High critical current density and its field dependence in mixed rare earth (Nd,Eu,Gd)Ba2Cu3O7−δ thin films. Appl. Phys. Lett. 84, 377–379 (2004).

    Article  ADS  CAS  Google Scholar 

  212. Galstyan, E. et al. In-field critical current and pinning mechanisms at 4.2 K of Zr-added REBCO coated conductors. Supercond. Sci. Technol. 33, 074007 (2020).

    Article  ADS  Google Scholar 

  213. Sanchez, A., Navau, C., Del-Valle, N., Chen, D. X. & Clem, J. R. Self-fields in thin superconducting tapes: implications for the thickness effect in coated conductors. Appl. Phys. Lett. 96, 072510 (2010).

    Article  ADS  Google Scholar 

  214. Larkin, A. I. & Ovchinnikov, Y. N. Pinning in type II superconductors. J. Low Temp. Phys. 34, 409 (1979).

    Article  ADS  Google Scholar 

  215. Francis, A. et al. Development of general expressions for the temperature and magnetic field dependence of the critical current density in coated conductors with variable properties. Supercond. Sci. Technol. 33, 044011 (2020).

    Article  ADS  CAS  Google Scholar 

  216. Okada, T., Misaizu, H. & Awaji, S. A possible explanation for double-peak structure in strain dependence of critical current density in REBa2Cu3O7−d. Supercond. Sci. Technol. 33, 094014 (2020).

    Article  ADS  Google Scholar 

  217. Tallon, J. L. et al. Critical doping in overdoped high-Tc superconductors: a quantum critical point? Phys. Status Solidi 215, 531–540 (1999).

    Article  CAS  Google Scholar 

  218. Tallon, J. L. & Loram, J. W. The doping dependence of T* — what is the real high-Tc phase diagram? Phys. C Supercond. Appl. 349, 53–68 (2001).

    Article  ADS  CAS  Google Scholar 

  219. Proust, C. & Taillefer, L. The remarkable underlying ground states of cuprate superconductors. Annu. Rev. Condens. Matter Phys. 10, 409–429 (2019).

    Article  ADS  CAS  Google Scholar 

  220. Stangl, A., Palau, A., Deutscher, G., Obradors, X. & Puig, T. Ultra-high critical current densities of superconducting YBa2Cu3O7−δ thin films in the overdoped state. Sci. Rep. 11, 8176 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  221. Arpaia, R., Andersson, E., Trabaldo, E., Bauch, T. & Lombardi, F. Probing the phase diagram of cuprates with YBa2Cu3O7−δ thin films and nanowires. Phys. Rev. Mater. 2, 024804 (2018).

    Article  CAS  Google Scholar 

  222. Bozovic, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  223. Mahmood, F., He, X., BoŽović, I. & Armitage, N. P. Locating the missing superconducting electrons in the overdoped cuprates La2−xSrxCuO4. Phys. Rev. Lett. 122, 027003 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  224. Wahlberg, E. et al. Restored strange metal phase through suppression of charge density waves in underdoped YBa2Cu3O7−d. Science 373, 1506–1510 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  225. Raffy, H., Li, Z. Z. & Auban-Senzier, P. Transport properties of very overdoped nonsuperconducting Bi2Sr2CuO6+δ thin films. Phys. Rev. B 106, 224503 (2022).

    Article  ADS  CAS  Google Scholar 

  226. Deutscher, G. Impact of pseudo-gap states on the pinning energy and irreversibility field of high temperature superconductors. Appl. Phys. Lett. Mater. 2, 096108 (2014).

    Google Scholar 

  227. Shimoyama, J., Horii, S., Otzschi, K. & Kishio, K. How to optimize critical current performance of RE123 materials by controlling oxygen content. MRS Proc. 689, 818 (2001).

    Article  Google Scholar 

  228. Cayado, P. et al. Untangling surface oxygen exchange effects in YBa2Cu3O6+x thin films by electrical conductivity relaxation. Phys. Chem. Chem. Phys. 19, 14129–14140 (2017).

    Article  CAS  PubMed  Google Scholar 

  229. Cayado, P. et al. Determination of the oxygen chain ordering in REBa2Cu3O7−δ by electrical conductivity relaxation measurements. ACS Appl. Electron. Mater. 3, 5374–5382 (2021).

    Article  CAS  Google Scholar 

  230. Talantsev, E. F. et al. Hole doping dependence of critical current density in YBa2Cu3O7−2d conductors. Appl. Phys. Lett. 104, 242601 (2014).

    Article  ADS  Google Scholar 

  231. Meyer, T. L. et al. Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La1.85Sr0.15CuO4. Nat. Commun. 9, 92 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  232. Burriel, M. et al. Influence of crystal orientation and annealing on the oxygen diffusion and surface exchange of La2NiO4+δ. J. Phys. Chem. C 120, 17927–17938 (2016).

    Article  CAS  Google Scholar 

  233. Kim, T., Lee, J., Lee, Y. & Moon, S. Development of an RGB color analysis method for controlling uniformity in a long-length GdBCO coated conductor. Supercond. Sci. Technol. 28, 124006 (2015).

    Article  ADS  Google Scholar 

  234. Li, Y. et al. A reel-to-reel scanning hall probe microscope for characterizing long REBCO conductor in magnetic fields up to 5 tesla. IEEE Trans. Appl. Supercond. 32, 9000206 (2022).

    Article  CAS  Google Scholar 

  235. González, J. C. et al. Biaxial texture analysis of YBa2Cu3O7-coated conductors by micro-Raman spectroscopy. Phys. Rev. B 70, 094525 (2004).

    Article  ADS  Google Scholar 

  236. Castaneda, N., Majkic, G., Robles, F. & Selvamanickam, V. Correlation between critical current density and Raman spectra of tetragonal REBCO. IEEE Trans. Appl. Supercond. 33, 6600906 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the European Research Council for the ULTRASUPERTAPE project (ERC-2014-ADG-669504), IMPACT project (ERC-2019-PoC-8749) and SMS-INKS (ERC-2022-PoC-101081998), and EU COST actions OPERA (CA20116) and SUPERQUMAP (CA-21144). We also acknowledge the financial support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund, MCIU/AEI/FEDER for SUPERENERTECH (PID2021–127297OB-C21), FUNFUTURE “Severo Ochoa” Program for Centers of Excellence in R&D (CEX2019–000917-S) and HTS-JOINTS (PDC2022–133208-I00) and PTI+TransEner CSIC programme for Spanish NGEU. The authors also thank the Catalan Government for 2021 SGR 00440. The access and staff support of several advanced facilities (Soleil and ALBA synchrotrons, INMA and ICN2 electron microscopes, ICMAB scientific services, NHMF Laboratory) are also acknowledged. Many discussions with academic and industrial colleagues and collaborators in the field of coated conductors and vortex pinning are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

T.P. and X.O. designed, wrote and supervised the manuscript. J.G. supervised and corrected the manuscript.

Corresponding author

Correspondence to Teresa Puig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Xiaoding Qi and other, anonymous, reviewer(s) for their contribution to the peer review of this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Metal evaporation

(ME). The REBCO polycrystalline pellet or granulate material is placed in a high-vacuum environment and heated to its evaporation point by joule heating of the resistive boat or by an electron gun. The vaporized molecules then travel from the source to the substrate in which they nucleate, forming the REBCO thin film.

Metalorganic chemical vapour deposition

(MOCVD). A chemical reaction technique in which volatile precursors are injected into a reactor with a non-reactive carrier gas; the volatile metalorganic precursors then decompose on the substrates to produce the desired layer. The volatile by-products are removed from the chamber by gas flow. This process uses high-vacuum environments.

Pulsed laser deposition

(PLD). A physical vapour deposition technique in which a high-power pulsed laser is focused to a REBCO target inside a vacuum chamber, vaporizing the material (forming a plasma plume) that is deposited on a substrate. The process needs ultra-high vacuum in the presence of a background gas (usually oxygen).

Reactive coevaporation and direct reaction

(RCE-DR). The metal precursors are evaporated under high vacuum, and subsequently, a fast pressure jump up to a certain \({P}_{{{\rm{O}}}_{2}}\) is executed, so that after the oxidation of the metals, an equilibrium liquid can be formed. The REBCO phase grows by the dissolution of the RE ions into the equilibrium Ba–Cu–O liquid.

Transient liquid-assisted growth

(TLAG). A metalorganic fluorine-free precursor solution is deposited at atmospheric pressure on a substrate and pyrolyzed. Subsequently, the solid phases (RE2O3, BaCO3 and CuO) are fast heated at a certain \({P}_{{{\rm{O}}}_{2}}\). Depending on this \({P}_{{{\rm{O}}}_{2}}\), either a fast pressure ramp (for \({P}_{{{\rm{O}}}_{2}}\) < 10−4 bar) or temperature ramp (for \({P}_{{{\rm{O}}}_{2}}\) > 10−4 bar) is used to grow REBCO from the created non-equilibrium transient liquid in which the RE is dissolved.

Trifluoroacetate growth

(TFA). Precursor phases are based on trifluoroacetates; thus, the volatile gas which controls (and limits) the growth rate is hydrogen fluoride (HF) which is formed when a humid atmosphere reacts with BaF2 and the reaction with CuO and RE2O3 is initiated to form REBCO.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puig, T., Gutierrez, J. & Obradors, X. Impact of high growth rates on the microstructure and vortex pinning of high-temperature superconducting coated conductors. Nat Rev Phys 6, 132–148 (2024). https://doi.org/10.1038/s42254-023-00663-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00663-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing