Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of spin in thermoelectricity

Abstract

Thermoelectric (TE) materials and devices are crucial for renewable thermal-to-electrical energy conversion applications. The optimization of TE performance can be achieved by manipulating four fundamental degrees of freedom: charge, lattice, spin and orbital. Historically, most strategies to improve TE performance focus on phonon and electron charge transport properties. However, in the past 15 years, the field of spin caloritronics, which explores the interplay among heat, charge and spin, has emerged. The inclusion of spins has introduced conceptually innovative mechanisms and versatile functionalities for solid-state thermal-to-electrical energy conversion. Here, we review the recent theoretical and experimental progress in the field of spin caloritronics. We discuss the strategic role of spin-related mechanisms in improving charge-based TE performance and the recent developments in the novel magneto-TE and thermospin effects as well as their potential applications. This Review offers a perspective for understanding the role of spin in TE, designing new high-efficiency TE materials and developing new TE technology beyond the conventional framework.

Key points

  • The intercoupled transport of charge, heat and spins has resulted in an emerging field known as spin caloritronics, which combines the spintronics and thermoelectrics (TEs). The additional spin degrees of freedom offer conceptually innovative mechanisms and functionalities for solid-state thermal-to-electrical energy conversion.

  • Various spin-related effects offer new mechanisms for optimizing the charge-based TE performance beyond the well-known Sσ anticorrelation limit, such as Rashba spin-split effect, Kondo effect, spin entropy, spin fluctuation, magnon-drag effect and magnetic nanocomposite effect.

  • Spin-dependent magneto-TE effects, such as longitudinal magneto-Seebeck–Peltier effect and transverse Nernst–Ettingshausen effect, provide a new TE conversion technology that can be controlled by spin/magnetism.

  • The discovery of various heat–spin–charge interconversion effects has led to the development of versatile TE converters with unique driven principles, geometric symmetries and novel functionalities that are not found in conventional TEs. The thermospin effects include the spin Seebeck–Peltier effect and spin-dependent Seebeck–Peltier effect.

  • Spin caloritronics provides new TE functionalities and application prospects, such as transverse TE generation, thermal energy harvesting and cooling, heat flux sensing and spin sources for spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conversion relationship among charge, spin and heat currents.
Fig. 2: The Rashba effect and Kondo effects for improving charge-based thermoelectric performance.
Fig. 3: Spin-entropy-enhanced thermopower.
Fig. 4: Enhancement of thermoelectric performance by spin fluctuation and the magnon-drag effect.
Fig. 5: Superparamagnetic-transition-enhanced and magnetic-transition-enhanced thermoelectric performance in magnetic nanocomposite materials.
Fig. 6: Thermoelectric generation with spin Seebeck devices.
Fig. 7: Transverse thermoelectric generation by combining the longitudinal spin Seebeck effect and the anomalous Nernst effect.

Similar content being viewed by others

References

  1. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    ADS  Google Scholar 

  2. DiSalvo, F. J. Thermoelectric cooling and power generation. Science 285, 703–706 (1999).

    Google Scholar 

  3. Zhu, T. et al. Compromise and synergy in high‐efficiency thermoelectric materials. Adv. Mater. 29, 1605884 (2017).

    Google Scholar 

  4. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    ADS  Google Scholar 

  5. Heremans, J. P., Wiendlocha, B. & Chamoire, A. M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012).

    Google Scholar 

  6. Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    ADS  Google Scholar 

  7. Chen, Z. et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv. Mater. 29, 1606768 (2017).

    ADS  Google Scholar 

  8. Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008).

    ADS  Google Scholar 

  9. Pei, Y., Wang, H. & Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012).

    Google Scholar 

  10. Chen, Z.-G., Han, G., Yang, L., Cheng, L. & Zou, J. Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. Mater. Int. 22, 535–549 (2012).

    Google Scholar 

  11. Tan, G., Zhao, L.-D. & Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016).

    Google Scholar 

  12. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    ADS  Google Scholar 

  13. Chen, Z., Zhang, X. & Pei, Y. Manipulation of phonon transport in thermoelectrics. Adv. Mater. 30, e1705617 (2018).

    Google Scholar 

  14. Toberer, E. S., Baranowski, L. L. & Dames, C. Advances in thermal conductivity. Annu. Rev. Mater. Res. 42, 179–209 (2012).

    ADS  Google Scholar 

  15. Kim, W. Strategies for engineering phonon transport in thermoelectrics. J. Mater. Chem. C. 3, 10336–10348 (2015).

    Google Scholar 

  16. Biswas, K. et al. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011).

    Google Scholar 

  17. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    ADS  Google Scholar 

  18. Polash, M. M. H., Moseley, D., Zhang, J., Hermann, R. P. & Vashaee, D. Understanding and design of spin-driven thermoelectrics. Cell Rep. Phys. Sci. 2, 100614 (2021).

    Google Scholar 

  19. Zheng, Y. et al. Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe. Sci. Adv. 5, eaat9461 (2019).

    ADS  Google Scholar 

  20. Polash, M. M. H. & Vashaee, D. Spin fluctuations yield zT enhancement in ferromagnets. iScience 24, 103356 (2021).

    ADS  Google Scholar 

  21. Wang, Y., Rogado, N. S., Cava, R. J. & Ong, N. P. Spin entropy as the likely source of enhanced thermopower in NaxCO2O4. Nature 423, 425–428 (2003).

    ADS  Google Scholar 

  22. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    ADS  Google Scholar 

  23. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010).

    ADS  Google Scholar 

  24. Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

    ADS  Google Scholar 

  25. Uchida, K. et al. Long-range spin Seebeck effect and acoustic spin pumping. Nat. Mater. 10, 737–741 (2011).

    ADS  Google Scholar 

  26. Miao, B. F., Huang, S. Y., Qu, D. & Chien, C. L. Inverse spin Hall effect in a ferromagnetic metal. Phys. Rev. Lett. 111, 066602 (2013).

    ADS  Google Scholar 

  27. Wang, L. et al. Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 116, 196602 (2016).

    ADS  Google Scholar 

  28. Bauer, G. E. W., MacDonald, A. H. & Maekawa, S. ‘Spin caloritronics’. Solid State Commun. 150, 459–460 (2010).

    ADS  Google Scholar 

  29. Bahramy, M. S. & Ogawa, N. Bulk Rashba semiconductors and related quantum phenomena. Adv. Mater. 29, 1605911 (2017).

    Google Scholar 

  30. Hong, M. et al. Rashba effect maximizes thermoelectric performance of GeTe derivatives. Joule 4, 2030–2043 (2020).

    Google Scholar 

  31. Wu, L. et al. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering. J. Phys. Condens. Matter 28, 085801 (2016).

    ADS  Google Scholar 

  32. Yuan, J. et al. One-dimensional thermoelectrics induced by Rashba spin–orbit coupling in two-dimensional BiSb monolayer. Nano Energy 52, 163–170 (2018).

    Google Scholar 

  33. He, J. & Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017).

    Google Scholar 

  34. Wu, L. et al. Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTeI. Phys. Rev. B 90, 195210 (2014).

    ADS  Google Scholar 

  35. Tian, Q., Zhang, W., Qin, Z. & Qin, G. Novel optimization perspectives for thermoelectric properties based on Rashba spin splitting: a mini review. Nanoscale 13, 18032–18043 (2021).

    Google Scholar 

  36. Li, X. et al. Defect-mediated Rashba engineering for optimizing electrical transport in thermoelectric BiTeI. npj Comput. Mater. 6, 107 (2020).

    ADS  Google Scholar 

  37. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    ADS  Google Scholar 

  38. Kondo, J. Giant thermo-electric power of dilute magnetic alloys. Prog. Theor. Phys. 34, 372–382 (1965).

    ADS  Google Scholar 

  39. Bentien, A., Johnsen, S., Madsen, G. K. H., Iversen, B. B. & Steglich, F. Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2. Europhys. Lett. 80, 17008 (2007).

    ADS  Google Scholar 

  40. Iga, F. et al. Thermoelectric properties of the Kondo semiconductor: Yb1−x LuxB12. J. Magn. Magn. Mater. 226230, 137–138 (2001).

    ADS  Google Scholar 

  41. Rowe, D. M., Kuznetsov, V. L., Kuznetsova, L. A. & Min, G. Electrical and thermal transport properties of intermediate-valence YbAl3. J. Phys. D Appl. Phys. 35, 2183–2186 (2002).

    ADS  Google Scholar 

  42. Huo, D., Kuwai, T., Mizushima, T., Isikawa, Y. & Sakurai, J. Thermoelectric power of CePd1−xNixAl single crystals. Phys. B 312313, 232–234 (2002).

    ADS  Google Scholar 

  43. Wei, K. et al. Enhanced thermoelectric performance of heavy-fermion compounds YbTM 2Zn20 (TM = Co, Rh, Ir) at low temperatures. Sci. Adv. 5, eaaw6183 (2019).

    ADS  Google Scholar 

  44. Dilley, N. R. et al. Thermoelectric and optical properties of the filled skutterudite YbFe4Sb12. Phys. Rev. B 61, 4608–4614 (2000).

    ADS  Google Scholar 

  45. Gambino, R. J., Grobman, W. D. & Toxen, A. M. Anomalously large thermoelectric cooling figure of merit in the Kondo systems CePd3 and Celn3. Appl. Phys. Lett. 22, 506–507 (1973).

    ADS  Google Scholar 

  46. Sun, Y., Liu, Y., Li, R., Li, Y. & Bai, S. Strategies to improve the thermoelectric figure of merit in thermoelectric functional materials. Front. Chem. 10, 865281 (2022).

    ADS  Google Scholar 

  47. Wu, J. et al. Large enhancement of thermoelectric performance in MoS(2)/h-BN heterostructure due to vacancy-induced band hybridization. Proc. Natl Acad. Sci. USA 117, 13929–13936 (2020).

    ADS  Google Scholar 

  48. Matusiak, M., Tunnicliffe, E. M., Cooper, J. R., Matsushita, Y. & Fisher, I. R. Evidence for a charge Kondo effect in Pb1−xTlxTe from measurements of thermoelectric power. Phys. Rev. B 80, 220403 (2009).

    ADS  Google Scholar 

  49. Pei, Y., LaLonde, A., Iwanaga, S. & Snyder, G. J. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ. Sci. 4, 2085–2089 (2011).

    Google Scholar 

  50. Grigorian, L. et al. Giant thermopower in carbon nanotubes: a one-dimensional Kondo system. Phys. Rev. B 60, R11309–R11312 (1999).

    ADS  Google Scholar 

  51. Chaikin, P. M. & Beni, G. Thermopower in the correlated hopping regime. Phys. Rev. B 13, 647–651 (1976).

    ADS  Google Scholar 

  52. Koshibae, W., Tsutsui, K. & Maekawa, S. Thermopower in cobalt oxides. Phys. Rev. B 62, 6869–6872 (2000).

    ADS  Google Scholar 

  53. Tang, G. et al. Lu-induced spin entropy enhancement in Ca3Co4O9+ δ system. Solid State Commun. 150, 1706–1709 (2010).

    ADS  Google Scholar 

  54. Tang, G., Yang, W., Jiang, Y., Wu, Z. & Wang, Z. Large increase in the spin entropy of thermoelectric Ca3Co4O9+ δ induced by Ni and Ce co-doping. J. Mater. Sci. 50, 1746–1751 (2015).

    ADS  Google Scholar 

  55. Koshibae, W. & Maekawa, S. Effects of spin and orbital degeneracy on the thermopower of strongly correlated systems. Phys. Rev. Lett. 87, 236603 (2001).

    ADS  Google Scholar 

  56. Gutiérrez Moreno, J. J., Cao, J., Fronzi, M. & Assadi, M. H. N. A review of recent progress in thermoelectric materials through computational methods. Mater. Renew. Sustain. Energy 9, 16 (2020).

    Google Scholar 

  57. Tang, G., Xu, F., Zhang, D. & Wang, Z. Improving the spin entropy by suppressing Co4+ concentration in thermoelectric Ca3Co4O9+ δ. Ceram. Int. 39, 1341–1344 (2013).

    Google Scholar 

  58. Duan, S. et al. Anomalous thermopower and high ZT in GeMnTe2 driven by spin’s thermodynamic entropy. Research 2021, 1949070 (2021).

    ADS  Google Scholar 

  59. Gratz, E. & Markosyan, A. Physical properties of RCo2 Laves phases. J. Phys. Condens. Matter 13, R385 (2001).

    ADS  Google Scholar 

  60. Takabatake, T. et al. Roles of spin fluctuations and rattling in magnetic and thermoelectric properties of AT4Sb12 (A= Ca, Sr, Ba, La; T= Fe, Ru, Os). Phys. B 383, 93–102 (2006).

    ADS  Google Scholar 

  61. Tsujii, N., Nishide, A., Hayakawa, J. & Mori, T. Observation of enhanced thermopower due to spin fluctuation in weak itinerant ferromagnet. Sci. Adv. 5, eaat5935 (2019).

    ADS  Google Scholar 

  62. Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism, Vol. 56 (Springer Science & Business Media, 2012).

  63. Lonzarich, G. & Taillefer, L. Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals. J. Phys. C Solid State Phys. 18, 4339 (1985).

    ADS  Google Scholar 

  64. Takahashi, Y. Spin Fluctuation Theory of Itinerant Electron Magnetism, Vol. 9 (Springer, 2013).

  65. Brinkman, W. & Engelsberg, S. Spin-fluctuation contributions to the specific heat. Phys. Rev. 169, 417 (1968).

    ADS  Google Scholar 

  66. Sun, P. et al. Generic Seebeck effect from spin entropy. Innovation 2, 100101 (2021).

    Google Scholar 

  67. Wen, Q. et al. Enhanced thermoelectric performance of BiCuSeO by increasing Seebeck coefficient through magnetic ion incorporation. J. Mater. Chem. A 5, 13392–13399 (2017).

    ADS  Google Scholar 

  68. Vandaele, K. et al. Thermal spin transport and energy conversion. Mater. Today Phys. 1, 39–49 (2017).

    Google Scholar 

  69. Watzman, S. J. et al. Magnon-drag thermopower and Nernst coefficient in Fe, Co, and Ni. Phys. Rev. B 94, 144407 (2016).

    ADS  Google Scholar 

  70. Zheng, Y., Weiss, E. J., Antolin, N., Windl, W. & Heremans, J. P. Magnon drag effect in Fe-Co alloys. J. Appl. Phys. 126, 125107 (2019).

    ADS  Google Scholar 

  71. Zhao, W. et al. Superparamagnetic enhancement of thermoelectric performance. Nature 549, 247–251 (2017).

    ADS  Google Scholar 

  72. Zhao, W. et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nat. Nanotechnol. 12, 55–60 (2017).

    ADS  Google Scholar 

  73. Li, C. et al. Magnetism-induced huge enhancement of the room-temperature thermoelectric and cooling performance of p-type BiSbTe alloys. Energy Environ. Sci. 13, 535–544 (2020).

    Google Scholar 

  74. Ma, S. et al. High-pressure synthesis and excellent thermoelectric performance of Ni/BiTeSe magnetic nanocomposites. J. Mater. Chem. A 8, 4816–4826 (2020).

    Google Scholar 

  75. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2015).

    ADS  Google Scholar 

  76. Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645–649 (2015).

    Google Scholar 

  77. Fujishiro, Y. et al. Large magneto-thermopower in MnGe with topological spin texture. Nat. Commun. 9, 408 (2018).

    ADS  Google Scholar 

  78. Han, F. et al. Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal. Nat. Commun. 11, 6167 (2020).

    ADS  Google Scholar 

  79. Skinner, B. & Fu, L. Large, nonsaturating thermopower in a quantizing magnetic field. Sci. Adv. 4, eaat2621 (2018).

    ADS  Google Scholar 

  80. Liang, T. et al. Evidence for massive bulk Dirac fermions in Pb(1)-xSnxSe from Nernst and thermopower experiments. Nat. Commun. 4, 2696 (2013).

    ADS  Google Scholar 

  81. Fu, C. et al. Largely suppressed magneto-thermal conductivity and enhanced magneto-thermoelectric properties in PtSn4. Research 2020, 4643507 (2020).

    ADS  Google Scholar 

  82. Wang, H. et al. Magnetic field‐enhanced thermoelectric performance in Dirac semimetal Cd3As2 crystals with different carrier concentrations. Adv. Funct. Mater. 29, 1902437 (2019).

    Google Scholar 

  83. Wang, H. et al. Magnetic-field enhanced high-thermoelectric performance in topological Dirac semimetal Cd(3)As(2) crystal. Sci. Bull. 63, 411–418 (2018).

    Google Scholar 

  84. Miura, A., Iguchi, R., Seki, T., Takanashi, K. & Uchida, K. I. Spin-mediated charge-to-heat current conversion phenomena in ferromagnetic binary alloys. Phys. Rev. Mater. 4, 034409 (2020).

    Google Scholar 

  85. Wegrowe, J. E. et al. Anisotropic magnetothermopower: contribution of interband relaxation. Phys. Rev. B 73, 134422 (2006).

    ADS  Google Scholar 

  86. Uchida, K. I. Transport phenomena in spin caloritronics. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 97, 69–88 (2021).

    ADS  Google Scholar 

  87. Pu, Y., Johnston-Halperin, E., Awschalom, D. D. & Shi, J. Anisotropic thermopower and planar Nernst effect in Ga1–xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 97, 036601 (2006).

    ADS  Google Scholar 

  88. Böhnert, T., Vega, V., Michel, A.-K., Prida, V. M. & Nielsch, K. Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. Appl. Phys. Lett. 103, 092407 (2013).

    ADS  Google Scholar 

  89. Uchida, K.-i, Daimon, S., Iguchi, R. & Saitoh, E. Observation of anisotropic magneto-Peltier effect in nickel. Nature 558, 95–99 (2018).

    ADS  Google Scholar 

  90. Watzman, S. J. et al. Dirac dispersion generates unusually large Nernst effect in Weyl semimetals. Phys. Rev. B 97, 161404(R) (2018).

    ADS  Google Scholar 

  91. Fu, C. et al. Large Nernst power factor over a broad temperature range in polycrystalline Weyl semimetal NbP. Energy Environ. Sci. 11, 2813–2820 (2018).

    Google Scholar 

  92. Xiang, J. et al. Large transverse thermoelectric figure of merit in a topological Dirac semimetal. Sci. China Phys. Mech. Astron. 63, 237011 (2019).

    ADS  Google Scholar 

  93. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    ADS  Google Scholar 

  94. Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).

    Google Scholar 

  95. Reichlova, H. et al. Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa. Appl. Phys. Lett. 113, 212405 (2018).

    ADS  Google Scholar 

  96. Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic Kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mater. 31, e1806622 (2019).

    MathSciNet  Google Scholar 

  97. Ding, L. et al. Intrinsic anomalous Nernst effect amplified by disorder in a half-metallic semimetal. Phys. Rev. X 9, 041061 (2019).

    Google Scholar 

  98. Yang, H. et al. Giant anomalous Nernst effect in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. Mater. 4, 024202 (2020).

    Google Scholar 

  99. Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    ADS  Google Scholar 

  100. Chen, T. et al. Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. Sci. Adv. 8, eabk1480 (2022).

    ADS  Google Scholar 

  101. Pan, Y. et al. Giant anomalous Nernst signal in the antiferromagnet YbMnBi2. Nat. Mater. 21, 203–209 (2022).

    ADS  Google Scholar 

  102. Jaworski, C. M., Myers, R. C., Johnston-Halperin, E. & Heremans, J. P. Giant spin Seebeck effect in a non-magnetic material. Nature 487, 210–213 (2012).

    ADS  Google Scholar 

  103. Flipse, J. et al. Observation of the spin Peltier effect for magnetic insulators. Phys. Rev. Lett. 113, 027601 (2014).

    ADS  Google Scholar 

  104. Slachter, A., Bakker, F. L., Adam, J. P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nat. Phys. 6, 879–882 (2010).

    Google Scholar 

  105. Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K. & van Wees, B. J. Direct observation of the spin-dependent Peltier effect. Nat. Nanotechnol. 7, 166–168 (2012).

    ADS  Google Scholar 

  106. Boehnke, A. et al. Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes. Nat. Commun. 8, 1626 (2017).

    ADS  Google Scholar 

  107. Walter, M. et al. Seebeck effect in magnetic tunnel junctions. Nat. Mater. 10, 742–746 (2011).

    ADS  Google Scholar 

  108. Meyer, S. et al. Observation of the spin Nernst effect. Nat. Mater. 16, 977–981 (2017).

    Google Scholar 

  109. Uchida, K. et al. Longitudinal spin Seebeck effect: from fundamentals to applications. J. Phys.: Condens. Matter 26, 343202 (2014).

    Google Scholar 

  110. Uchida, K.-I et al. Thermoelectric generation based on spin Seebeck effects. Proc. IEEE 104, 1946–1973 (2016).

    Google Scholar 

  111. Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    ADS  Google Scholar 

  112. Daimon, S., Iguchi, R., Hioki, T., Saitoh, E. & Uchida, K. I. Thermal imaging of spin Peltier effect. Nat. Commun. 7, 13754 (2016).

    ADS  Google Scholar 

  113. Uchida, K. et al. Enhancement of the spin Peltier effect in multilayers. Phys. Rev. B 95, 184437 (2017).

    ADS  Google Scholar 

  114. Kikkawa, T. & Saitoh, E. Spin Seebeck effect: sensitive probe for elementary excitation, spin correlation, transport, magnetic order, and domains in solids. Annu. Rev. Condens. Matter Phys. 14, 129–151 (2023).

    ADS  Google Scholar 

  115. Ito, N. et al. Spin Seebeck effect in the layered ferromagnetic insulators CrSiTe3 and CrGeTe3. Phys. Rev. B 100, 060402 (2019).

    ADS  Google Scholar 

  116. Mallick, K., Wagh, A. A., Ionescu, A., Barnes, C. H. & Kumar, P. A. Role of spin mixing conductance in determining thermal spin pumping near the ferromagnetic phase transition in EuO1−x and La2NiMnO6. Phys. Rev. B 100, 224403 (2019).

    ADS  Google Scholar 

  117. Wang, H. et al. The bimodal distribution spin Seebeck effect enhancement in epitaxial Ni0.65Zn0.35Al0.8Fe1.2O4 thin film. Appl. Phys. Lett. 112, 142406 (2018).

    ADS  Google Scholar 

  118. Ramos, R. et al. Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets. Nat. Commun. 10, 5162 (2019).

    ADS  Google Scholar 

  119. Ortiz, V. H. et al. Ultrafast measurements of the interfacial spin Seebeck effect in Au and rare-earth iron-garnet bilayers. Phys. Rev. Mater. 5, 074401 (2021).

    Google Scholar 

  120. Lin, W. et al. Evidence for spin swapping in an antiferromagnet. Nat. Phys. 18, 800–805 (2022).

    Google Scholar 

  121. Xu, J. et al. Observation of vector spin Seebeck effect in a noncollinear antiferromagnet. Phys. Rev. Lett. 129, 117202 (2022).

    ADS  Google Scholar 

  122. Hirobe, D. et al. One-dimensional spinon spin currents. Nat. Phys. 13, 30–34 (2017).

    Google Scholar 

  123. Chen, Y. et al. Triplon current generation in solids. Nat. Commun. 12, 5199 (2021).

    ADS  Google Scholar 

  124. Hirobe, D. et al. Magnon pairs and spin-nematic correlation in the spin Seebeck effect. Phys. Rev. Lett. 123, 117202 (2019).

    ADS  Google Scholar 

  125. Kikkawa, T. et al. Observation of nuclear-spin Seebeck effect. Nat. Commun. 12, 4356 (2021).

    ADS  Google Scholar 

  126. Boona, S. R., Watzman, S. J. & Heremans, J. P. Research update: utilizing magnetization dynamics in solid-state thermal energy conversion. APL Mater. 4, 104502 (2016).

    ADS  Google Scholar 

  127. Boona, S. R., Jin, H. & Watzman, S. Transverse thermal energy conversion using spin and topological structures. J. Appl. Phys. 130, 171101 (2021).

    ADS  Google Scholar 

  128. Xing, W. et al. Spin Seebeck effect in quantum magnet Pb2V3O9. Appl. Phys. Lett. 120, 042402 (2022).

    ADS  Google Scholar 

  129. Xing, W. et al. Magnon transport in quasi-two-dimensional van der Waals antiferromagnets. Phys. Rev. X 9, 011026 (2019).

    Google Scholar 

  130. Oh, I. et al. A scalable molecule-based magnetic thin film for spin-thermoelectric energy conversion. Nat. Commun. 12, 1057 (2021).

    ADS  Google Scholar 

  131. Kim, M. Y., Park, S. J., Kim, G.-Y., Choi, S.-Y. & Jin, H. Designing efficient spin Seebeck-based thermoelectric devices via simultaneous optimization of bulk and interface properties. Energy Environ. Sci. 14, 3480–3491 (2021).

    Google Scholar 

  132. Lee, S. K. et al. Enhanced spin Seebeck effect in monolayer tungsten diselenide due to strong spin current injection at interface. Adv. Funct. Mater. 30, 2003192 (2020).

    ADS  Google Scholar 

  133. Bosu, S. et al. Spin Seebeck effect in thin films of the Heusler compound Co2MnSi. Phys. Rev. B 83, 224401 (2011).

    ADS  Google Scholar 

  134. Jiang, Z. L. et al. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states. Nat. Commun. 7, 11458 (2016).

    ADS  Google Scholar 

  135. Lee, W.-Y. et al. Enhanced spin Seebeck thermopower in Pt/Holey MoS2/Y3Fe5O12 hybrid structure. Nano Lett. 21, 189–196 (2020).

    ADS  Google Scholar 

  136. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    ADS  Google Scholar 

  137. Ramos, R. et al. Unconventional scaling and significant enhancement of the spin Seebeck effect in multilayers. Phys. Rev. B 92, 220407(R) (2015).

    ADS  Google Scholar 

  138. Nozue, T. et al. Fabrication of yttrium–iron–garnet/Pt multilayers for the longitudinal spin Seebeck effect. Appl. Phys. Lett. 113, 262402 (2018).

    ADS  Google Scholar 

  139. Lee, K.-D. et al. Thermoelectric signal enhancement by reconciling the spin seebeck and anomalous Nernst effects in ferromagnet/non-magnet multilayers. Sci. Rep. 5, 10249 (2015).

    ADS  Google Scholar 

  140. Kirihara, A. et al. Spin-current-driven thermoelectric coating. Nat. Mater. 11, 686–689 (2012).

    ADS  Google Scholar 

  141. Kirihara, A. et al. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films. Sci. Rep. 6, 23114 (2016).

    ADS  Google Scholar 

  142. Uchida, K.-I, Kirihara, A., Ishida, M., Takahashi, R. & Saitoh, E. Local spin-Seebeck effect enabling two-dimensional position sensing. Jpn. J. Appl. Phys. 50, 120211 (2011).

    ADS  Google Scholar 

  143. Boona, S. R., Myers, R. C. & Heremans, J. P. Spin caloritronics. Energy Environ. Sci. 7, 885–910 (2014).

    Google Scholar 

  144. Weiler, M. et al. Local charge and spin currents in magnetothermal landscapes. Phys. Rev. Lett. 108, 106602 (2012).

    ADS  Google Scholar 

  145. Ramos, R. et al. Observation of the spin Seebeck effect in epitaxial Fe3O4 thin films. Appl. Phys. Lett. 102, 072413 (2013).

    ADS  Google Scholar 

  146. Corte-León, H. et al. Magnetic scanning gate microscopy of CoFeB lateral spin valve. AIP Adv. 7 (2017).

  147. Boona, S. R., Vandaele, K., Boona, I. N., McComb, D. W. & Heremans, J. P. Observation of spin Seebeck contribution to the transverse thermopower in Ni-Pt and MnBi-Au bulk nanocomposites. Nat. Commun. 7, 13714 (2016).

    ADS  Google Scholar 

  148. Wooten, B. L., Vandaele, K., Boona, S. R. & Heremans, J. P. Combining spin-Seebeck and Nernst effects in aligned MnBi/Bi composites. Nanomaterials 10, 2083 (2020).

    Google Scholar 

  149. He, B. et al. Large magnon-induced anomalous Nernst conductivity in single-crystal MnBi. Joule 5, 3057–3067 (2021).

    Google Scholar 

  150. Scholz, K., Jandl, P., Birkholz, U. & Dashevskii, Z. Infinite stage Ettingshausen cooling in Bi‐Sb alloys. J. Appl. Phys. 75, 5406–5408 (1994).

    ADS  Google Scholar 

  151. Hirai, T. et al. Strain-induced cooling–heating switching of anisotropic magneto-Peltier effect. Appl. Phys. Lett. 118, 022403 (2021).

    ADS  Google Scholar 

  152. Nakayama, H. et al. Electric-field-induced on–off switching of anomalous Ettingshausen effect in ultrathin Co films. Appl. Phys. Exp. 12, 123003 (2019).

    ADS  Google Scholar 

  153. Wang, J., Takahashi, Y. K. & Uchida, K. I. Magneto-optical painting of heat current. Nat. Commun. 11, 2 (2020).

    ADS  Google Scholar 

  154. Uchida, K.-I & Iguchi, R. Spintronic thermal management. J. Phys. Soc. Jpn. 90, 122001 (2021).

    ADS  Google Scholar 

  155. Wang, X. et al. Spin-gapless semiconductors for future spintronics and electronics. Phys. Rep. 888, 1–57 (2020).

    ADS  Google Scholar 

  156. Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) through ARC Discovery projects (DP230102221, X.L.W. and DP210101436, C.Z.), ARC Professorial Future Fellowship Project (FT130100778, X.L.W.), ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET, CE170100039), Basic Science Centre Project of NSFC (No. 51788104) and a Linkage Infrastructure Equipment and Facilities (LIEF) Grant (LE120100069, X.L.W.).

Author information

Authors and Affiliations

Authors

Contributions

G.G. and X.W. designed the project and developed the outline of this work. All authors contributed to the discussion of content and the preparation of the manuscript in collaboration.

Corresponding author

Correspondence to Xiaolin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Ken-Ichi Uchida, Li-Dong Zhao and Xianhui Chen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Sang, L., Zhang, C. et al. The role of spin in thermoelectricity. Nat Rev Phys 5, 466–482 (2023). https://doi.org/10.1038/s42254-023-00604-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00604-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing