Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Tackling the subsampling problem to infer collective properties from limited data

Abstract

Despite the development of large-scale data-acquisition techniques, experimental observations of complex systems are often limited to a tiny fraction of the system under study. This spatial subsampling is particularly severe in neuroscience, in which only a tiny fraction of millions or even billions of neurons can be individually recorded. Spatial subsampling may lead to substantial systematic biases when inferring the collective properties of the entire system naively from a subsampled part. To overcome such biases, powerful mathematical tools have been developed. In this Perspective, we give an overview of some issues arising from subsampling and review approaches developed in recent years to tackle the subsampling problem. These approaches enable one to correctly assess phenomena such as graph structures, collective dynamics of animals, neural network activity or the spread of disease from observing only a tiny fraction of the system. However, existing approaches are still far from having solved the subsampling problem in general, and we also outline what we believe are the main open challenges. Solving these challenges alongside the development of large-scale recording techniques will enable further fundamental insights into the workings of complex and living systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classes of subsampling.
Fig. 2: Sampling of dynamical observables.
Fig. 3: Scaling solutions for subsampled observations.
Fig. 4: Scaling theory can reveal macroscopic properties of collective dynamics despite windowed sampling.
Fig. 5: Subsampling-invariant measures.
Fig. 6: Reconstruction of a network under subsampling.

Similar content being viewed by others

References

  1. Muñoz, M. A. Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. Phys. 90, 031001 (2018).

    Article  MathSciNet  Google Scholar 

  2. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article  MATH  Google Scholar 

  3. Gollub, J. P. & Langer, J. S. Pattern formation in nonequilibrium physics. Rev. Mod. Phys. 71, S396–S403 (1999).

    Article  Google Scholar 

  4. Cross, M. & Greenside, H. Pattern Formation and Dynamics in Nonequilibrium Systems 1st edn (Cambridge Univ. Press, 2009).

  5. Desai, R. C. & Kapral, R. Dynamics of Self-Organized and Self-Assembled Structures (Cambridge Univ. Press, 2009).

  6. Halatek, J. & Frey, E. Rethinking pattern formation in reaction–diffusion systems. Nat. Phys. 14, 507–514 (2018).

    Article  Google Scholar 

  7. Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. & Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).

    Article  Google Scholar 

  8. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).

    Article  MathSciNet  Google Scholar 

  9. Cavagna, A., Giardina, I. & Grigera, T. S. The physics of flocking: correlation as a compass from experiments to theory. Phys. Rep. 728, 1–62 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  10. Rahmani, P., Peruani, F. & Romanczuk, P. Topological flocking models in spatially heterogeneous environments. Commun. Phys. 4, 206 (2021).

    Article  Google Scholar 

  11. Christensen, K. & Moloney, N. R. Complexity and Criticality (World Scientific, 2005).

  12. Araújo, N., Grassberger, P., Kahng, B., Schrenk, K. & Ziff, R. Recent advances and open challenges in percolation. Eur. Phys. J. Spec. Top. 223, 2307–2321 (2014).

    Article  Google Scholar 

  13. Korchinski, D. J., Orlandi, J. G., Son, S.-W. & Davidsen, J. Criticality in spreading processes without timescale separation and the critical brain hypothesis. Phys. Rev. X 11, 021059 (2021).

    Google Scholar 

  14. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).

    Article  Google Scholar 

  15. Jensen, H. J. Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems (Cambridge Univ. Press, 1998).

  16. Dickman, R., Munoz, M. A., Vespignani, A. & Zapperi, S. Paths to self-organized criticality. Braz. J. Phys. 30, 27–41 (2000).

    Article  Google Scholar 

  17. Aschwanden, M. Self-Organized Criticality in Astrophysics: The Statistics of Nonlinear Processes in the Universe (Springer, 2011).

  18. Pruessner, G. Self-Organised Criticality: Theory, Models and Characterisation (Cambridge Univ. Press, 2012).

  19. Hesse, J. & Gross, T. Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 8, 166 (2014).

    Article  Google Scholar 

  20. Zeraati, R., Priesemann, V. & Levina, A. Self-organization toward criticality by synaptic plasticity. Front. Phys. 9, 619661 (2021).

    Article  Google Scholar 

  21. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  22. Stumpf, M. P. H., Wiuf, C. & May, R. M. Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc. Natl Acad. Sci. USA 102, 4221–4224 (2005).

    Article  Google Scholar 

  23. Serafino, M. et al. True scale-free networks hidden by finite size effects. Proc. Natl Acad. Sci. USA 118, e2013825118 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  24. Morstatter, F., Pfeffer, J., Liu, H. & Carley, K. M. Is the sample good enough? Comparing data from Twitter’s Streaming API with Twitter’s Firehose. Proc. Int. AAAI Conf. Weblogs Soc. Media 7, 400–408 (2013).

    Article  Google Scholar 

  25. Priesemann, V., Munk, M. H. & Wibral, M. Subsampling effects in neuronal avalanche distributions recorded in vivo. BMC Neurosci. 10, 40 (2009).

    Article  Google Scholar 

  26. Magni, A., Durin, G., Zapperi, S. & Sethna, J. P. Visualization of avalanches in magnetic thin films: temporal processing. J. Stat. Mech. Theory Exp. 2009, P01020 (2009).

    Article  Google Scholar 

  27. Chen, Y.-J., Papanikolaou, S., Sethna, J. P., Zapperi, S. & Durin, G. Avalanche spatial structure and multivariable scaling functions: sizes, heights, widths, and views through windows. Phys. Rev. E 84, 061103 (2011).

    Article  Google Scholar 

  28. Zierenberg, J., Wilting, J., Priesemann, V. & Levina, A. Description of spreading dynamics by microscopic network models and macroscopic branching processes can differ due to coalescence. Phys. Rev. E 101, 022301 (2020).

    Article  MathSciNet  Google Scholar 

  29. Neto, J. P., Spitzner, F. P. & Priesemann, V. A unified picture of neuronal avalanches arises from the understanding of sampling effects. Preprint at https://arxiv.org/abs/1910.09984 (2020).

  30. Zhao, S. et al. Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: a data-driven modelling analysis of the early outbreak. J. Clin. Med. 9, 388 (2020).

    Article  Google Scholar 

  31. Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170009 (2018).

    Article  Google Scholar 

  32. de Aguiar, M. A. M. et al. Revealing biases in the sampling of ecological interaction networks. PeerJ 7, e7566 (2019).

    Article  Google Scholar 

  33. Levina, A. & Priesemann, V. Subsampling scaling. Nat. Commun. 8, 15140 (2017).

    Article  Google Scholar 

  34. Priesemann, V. et al. Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci. 8, 108 (2014).

    Article  Google Scholar 

  35. Ribeiro, T. L., Ribeiro, S., Belchior, H., Caixeta, F. & Copelli, M. Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches. PLoS One 9, e94992 (2014).

    Article  Google Scholar 

  36. Priesemann, V., Valderrama, M., Wibral, M. & Quyen, M. L. V. Neuronal avalanches differ from wakefulness to deep sleep–evidence from intracranial depth recordings in humans. PLoS Comput. Biol. 9, e1002985 (2013).

    Article  Google Scholar 

  37. Wilting, J. & Priesemann, V. Inferring collective dynamical states from widely unobserved systems. Nat. Commun. 9, 2325 (2018).

    Article  Google Scholar 

  38. Sznajd-Weron, K. Sznajd model and its applications. Acta Phys. Pol. B 36, 2537–2547 (2005).

    Google Scholar 

  39. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009).

    Article  Google Scholar 

  40. Dinkelberg, A., O’Sullivan, D. J., Quayle, M. & MacCarron, P. Detect opinion-based groups and reveal polarisation in survey data. Preprint at https://arxiv.org/abs/2104.14427 (2021).

  41. Voitalov, I., van der Hoorn, P., van der Hofstad, R. & Krioukov, D. Scale-free networks well done. Phys. Rev. Res. 1, 033034 (2019).

    Article  Google Scholar 

  42. Stumpf, M. P. H. & Porter, M. A. Critical truths about power laws. Science 335, 665–666 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  43. Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).

    Article  Google Scholar 

  44. Hu, P. & Lau, W. C. A survey and taxonomy of graph sampling. Preprint at https://arxiv.org/abs/1308.5865 (2013).

  45. Leskovec, J. & Faloutsos, C. in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’06) 631–636 (Association for Computing Machinery, 2006).

  46. Sekara, V., Stopczynski, A. & Lehmann, S. Fundamental structures of dynamic social networks. Proc. Natl Acad. Sci. USA 113, 9977–9982 (2016).

    Article  Google Scholar 

  47. Génois, M. & Barrat, A. Can co-location be used as a proxy for face-to-face contacts? EPJ Data Sci. 7, 11 (2018).

    Article  Google Scholar 

  48. Hillman, E. M. C. Optical brain imaging in vivo: techniques and applications from animal to man. J. Biomed. Opt. 12, 051402 (2007).

    Article  Google Scholar 

  49. Skocek, O. et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods 15, 429–432 (2018).

    Article  Google Scholar 

  50. Wang, S., Gartzke, S., Schreckenberg, M. & Guhr, T. Quasi-stationary states in temporal correlations for traffic systems: Cologne orbital motorway as an example. J. Stat. Mech. Theory Exp. 2020, 103404 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  51. Tsitsvero, M., Barbarossa, S. & Di Lorenzo, P. Signals on graphs: uncertainty principle and sampling. IEEE Trans. Signal Process. 64, 4845–4860 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  52. Turner, N. L. et al. Reconstruction of neocortex: organelles, compartments, cells, circuits, and activity. Cell 185, 1082–1100.e24 (2022).

    Article  Google Scholar 

  53. Takens, F. in Dynamical Systems and Turbulence, Warwick 1980 Vol. 898 (eds Rand, D. & Young, L.-S.) 366–381 (Springer, 1981).

  54. Sauer, T., Yorke, J. A. & Casdagli, M. Embedology. J. Stat. Phys. 65, 579–616 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  55. Sauer, T. D. Attractor reconstruction. Scholarpedia 1, 1727 (2006).

    Article  Google Scholar 

  56. Whitney, H. Differentiable manifolds. Ann. Math. 37, 645–680 (1936).

    Article  MathSciNet  MATH  Google Scholar 

  57. Shalizi, C. R. & Thomas, A. C. Homophily and contagion are generically confounded in observational social network studies. Sociol. Methods Res. 40, 211–239 (2011).

    Article  MathSciNet  Google Scholar 

  58. Kantz, H. & Schreiber, T. Nonlinear Time Series Analysis (Cambridge Univ. Press, 2004).

  59. Wibral, M., Lizier, J. T. & Priesemann, V. Bits from brains for biologically inspired computing. Front. Robot. AI 2, 5 (2015).

    Article  Google Scholar 

  60. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    Article  Google Scholar 

  61. Wilting, J. & Priesemann, V. Between perfectly critical and fully irregular: a reverberating model captures and predicts cortical spike propagation. Cereb. Cortex 29, 2759–2770 (2019).

    Article  Google Scholar 

  62. Dhar, D. Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64, 1613–1616 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  63. Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  64. Perković, O., Dahmen, K. A. & Sethna, J. P. Disorder-induced critical phenomena in hysteresis: numerical scaling in three and higher dimensions. Phys. Rev. B 59, 6106–6119 (1999).

    Article  Google Scholar 

  65. Sethna, J. Statistical Mechanics: Entropy, Order Parameters, and Complexity 2nd edn (Oxford Univ. Press, 2006).

  66. Khanin, R. & Wit, E. How scale-free are biological networks. J. Comput. Biol. 13, 810–818 (2006).

    Article  MathSciNet  Google Scholar 

  67. Holme, P. Rare and everywhere: perspectives on scale-free networks. Nat. Commun. 10, 1016 (2019).

    Article  Google Scholar 

  68. Willinger, W., Alderson, D., Doyle, J. C. & Li, L. in Proceedings of the 2004 Winter Simulation Conference, 2004 Vol. 1, 130–141 (IEEE, 2004).

  69. Levina, A. A Mathematical Approach to Self-organized Criticality in Neural Networks PhD thesis, Univ. Göttingen (2008).

  70. Girardi-Schappo, M., Kinouchi, O. & Tragtenberg, M. H. R. Critical avalanches and subsampling in map-based neural networks coupled with noisy synapses. Phys. Rev. E 88, 024701 (2013).

    Article  Google Scholar 

  71. Wilting, J. et al. Operating in a reverberating regime enables rapid tuning of network states to task requirements. Front. Syst. Neurosci. 12, 55 (2018).

    Article  Google Scholar 

  72. Girardi-Schappo, M., Brochini, L., Costa, A. A., Carvalho, T. T. A. & Kinouchi, O. Synaptic balance due to homeostatically self-organized quasicritical dynamics. Phys. Rev. Res. 2, 012042 (2020).

    Article  Google Scholar 

  73. Dhar, D. The Abelian sandpile and related models. Phys. A Stat. Mech. Appl. 263, 4–25 (1999).

    Article  Google Scholar 

  74. Martin, D. A. et al. Box scaling as a proxy of finite size correlations. Sci. Rep. 11, 15937 (2021).

    Article  Google Scholar 

  75. Cavagna, A. et al. Scale-free correlations in starling flocks. Proc. Natl Acad. Sci. USA 107, 11865–11870 (2010).

    Article  Google Scholar 

  76. Grigera, T. S. Correlation functions as a tool to study collective behaviour phenomena in biological systems. J. Phys. Complex. 2, 045016 (2021).

    Article  Google Scholar 

  77. Fraiman, D. & Chialvo, D. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations. Front. Physiol. 3, 307 (2012).

    Article  Google Scholar 

  78. Tagliazucchi, E., Balenzuela, P., Fraiman, D. & Chialvo, D. Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 3, 15 (2012).

    Article  Google Scholar 

  79. Carvalho, T. T. A. et al. Subsampled directed-percolation models explain scaling relations experimentally observed in the brain. Front. Neural Circuits 14, 576727 (2021).

    Article  Google Scholar 

  80. Meshulam, L., Gauthier, J. L., Brody, C. D., Tank, D. W. & Bialek, W. Coarse graining, fixed points, and scaling in a large population of neurons. Phys. Rev. Lett. 123, 178103 (2019).

    Article  Google Scholar 

  81. Nicoletti, G., Suweis, S. & Maritan, A. Scaling and criticality in a phenomenological renormalization group. Phys. Rev. Res. 2, 023144 (2020).

    Article  Google Scholar 

  82. Morrell, M. C., Sederberg, A. J. & Nemenman, I. Latent dynamical variables produce signatures of spatiotemporal criticality in large biological systems. Phys. Rev. Lett. 126, 118302 (2021).

    Article  Google Scholar 

  83. Harris, T. E. The Theory of Branching Processes (Springer, 1963).

  84. Kersting, G. A unifying approach to branching processes in a varying environment. J. Appl. Probab. 57, 196–220 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  85. Heyde, C. C. & Seneta, E. Estimation theory for growth and immigration rates in a multiplicative process. J. Appl. Probab. 9, 235–256 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  86. Wei, C. Z. & Winnicki, J. Estimation of the means in the branching process with immigration. Ann. Stat. 18, 1757–1773 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  87. de Heuvel, J., Wilting, J., Becker, M., Priesemann, V. & Zierenberg, J. Characterizing spreading dynamics of subsampled systems with nonstationary external input. Phys. Rev. E 102, 040301 (2020).

    Article  Google Scholar 

  88. Spitzner, F. P. et al. MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity. PLoS One 16, e0249447 (2021).

    Article  Google Scholar 

  89. Zeraati, R., Engel, T. A. & Levina, A. A flexible Bayesian framework for unbiased estimation of timescales. Nat. Comput. Sci. 2, 193–204 (2022).

    Article  Google Scholar 

  90. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    Article  Google Scholar 

  91. Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

    Google Scholar 

  92. Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).

    Article  Google Scholar 

  93. Raut, R. V., Snyder, A. Z. & Raichle, M. E. Hierarchical dynamics as a macroscopic organizing principle of the human brain. Proc. Natl Acad. Sci. USA 117, 20890–20897 (2020).

    Article  Google Scholar 

  94. Spitmaan, M., Seo, H., Lee, D. & Soltani, A. Multiple timescales of neural dynamics and integration of task-relevant signals across cortex. Proc. Natl Acad. Sci. USA 117, 22522–22531 (2020).

    Article  Google Scholar 

  95. Gao, R., van den Brink, R. L., Pfeffer, T. & Voytek, B. Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture. eLife 9, e61277 (2020).

    Article  Google Scholar 

  96. Skilling, Q. M., Ognjanovski, N., Aton, S. J. & Zochowski, M. Critical dynamics mediate learning of new distributed memory representations in neuronal networks. Entropy 21, 1043 (2019).

    Article  MathSciNet  Google Scholar 

  97. Cramer, B. et al. Control of criticality and computation in spiking neuromorphic networks with plasticity. Nat. Commun. 11, 2853 (2020).

    Article  Google Scholar 

  98. Dahmen, D., Grün, S., Diesmann, M. & Helias, M. Second type of criticality in the brain uncovers rich multiple-neuron dynamics. Proc. Natl Acad. Sci. USA 116, 13051–13060 (2019).

    Article  Google Scholar 

  99. Dahmen, D. et al. Global organization of neuronal activity only requires unstructured local connectivity. eLife 11, e68422 (2022).

    Article  Google Scholar 

  100. Dahmen, D. et al. Strong and localized recurrence controls dimensionality of neural activity across brain areas. Preprint at https://www.biorxiv.org/content/10.1101/2020.11.02.365072v3 (2022).

  101. Zeraati, R. et al. Attentional modulation of intrinsic timescales in visual cortex and spatial networks. Preprint at https://www.biorxiv.org/content/10.1101/2021.05.17.444537v1.abstract (2021).

  102. Hengen, K. B., Torrado Pacheco, A., McGregor, J. N., Van Hooser, S. D. & Turrigiano, G. G. Neuronal firing rate homeostasis is inhibited by sleep and promoted by wake. Cell 165, 180–191 (2016).

    Article  Google Scholar 

  103. Rowland, J. M. et al. Perception and propagation of activity through the cortical hierarchy is determined by neural variability. Preprint at https://www.biorxiv.org/content/10.1101/2021.12.28.474343v1.abstract (2021).

  104. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  Google Scholar 

  105. Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    Article  Google Scholar 

  106. Gallego, J. A. et al. Cortical population activity within a preserved neural manifold underlies multiple motor behaviors. Nat. Commun. 9, 4233 (2018).

    Article  Google Scholar 

  107. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365 (2019).

    Article  Google Scholar 

  108. Feulner, B. & Clopath, C. Neural manifold under plasticity in a goal driven learning behaviour. PLoS Comput. Biol. 17, e1008621 (2021).

    Article  Google Scholar 

  109. Gao, P. et al. A theory of multineuronal dimensionality, dynamics and measurement. Preprint at https://www.biorxiv.org/content/10.1101/214262v2.abstract (2017).

  110. Yu, B. M. et al. in Advances in Neural Information Processing Systems Vol. 18, 1545–1552 (MIT Press, 2006).

  111. Macke, J. H. et al. in Advances in Neural Information Processing Systems Vol. 24, 1350–1358 (Curran Associates, 2011).

  112. Butts, C. T. Network inference, error, and informant (in)accuracy: a Bayesian approach. Soc. Netw. 25, 103–140 (2003).

    Article  Google Scholar 

  113. Newman, M. E. J. Network structure from rich but noisy data. Nat. Phys. 14, 542–545 (2018).

    Article  Google Scholar 

  114. Young, J.-G., Cantwell, G. T. & Newman, M. E. J. Bayesian inference of network structure from unreliable data. J. Complex Netw. 8, cnaa046 (2021).

    Article  MathSciNet  Google Scholar 

  115. Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).

    Article  Google Scholar 

  116. Peixoto, T. P. Reconstructing networks with unknown and heterogeneous errors. Phys. Rev. X 8, 041011 (2018).

    Google Scholar 

  117. Peixoto, T. P. Network reconstruction and community detection from dynamics. Phys. Rev. Lett. 123, 128301 (2019).

    Article  Google Scholar 

  118. Hoffmann, T., Peel, L., Lambiotte, R. & Jones, N. S. Community detection in networks without observing edges. Sci. Adv. 6, eaav1478 (2020).

    Article  Google Scholar 

  119. Welch, W. J. Algorithmic complexity: three NP-hard problems in computational statistics. J. Stat. Comput. Simul. 15, 17–25 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  120. Ay, N. & Polani, D. Information flows in causal networks. Adv. Complex Syst. 11, 17–41 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  121. Peters, J., Janzing, D. & Schölkopf, B. Elements of Causal Inference: Foundations and Learning Algorithms (MIT Press, 2017).

  122. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059–1069 (2010).

    Article  Google Scholar 

  123. Seth, A. K., Barrett, A. B. & Barnett, L. Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35, 3293–3297 (2015).

    Article  Google Scholar 

  124. Stetter, O., Battaglia, D., Soriano, J. & Geisel, T. Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Comput. Biol. 8, e1002653 (2012).

    Article  MathSciNet  Google Scholar 

  125. Novelli, L., Wollstadt, P., Mediano, P., Wibral, M. & Lizier, J. T. Large-scale directed network inference with multivariate transfer entropy and hierarchical statistical testing. Netw. Neurosci. 3, 827–847 (2019).

    Article  Google Scholar 

  126. Wollstadt, P., Meyer, U. & Wibral, M. A Graph algorithmic approach to separate direct from indirect neural interactions. PLoS One 10, e0140530 (2015).

    Article  Google Scholar 

  127. Ramb, R. et al. The impact of latent confounders in directed network analysis in neuroscience. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20110612 (2013).

    MathSciNet  MATH  Google Scholar 

  128. Geiger, P., Zhang, K., Schoelkopf, B., Gong, M. & Janzing, D. in Proceedings of the 32nd International Conference on Machine Learning 1917–1925 (PMLR, 2015).

  129. Runge, J. Causal network reconstruction from time series: from theoretical assumptions to practical estimation. Chaos Interdiscip. J. Nonlinear Sci. 28, 075310 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  130. Spirtes, P., Glymour, C. N., Scheines, R. & Heckerman, D. Causation, Prediction, and Search (MIT Press, 2000).

  131. Elsegai, H., Shiells, H., Thiel, M. & Schelter, B. Network inference in the presence of latent confounders: the role of instantaneous causalities. J. Neurosci. Methods 245, 91–106 (2015).

    Article  Google Scholar 

  132. Shiells, H., Thiel, M., Wischik, C. & Schelter, B. The effect of latent confounding processes on the estimation of the strength of casual influences in chain-type networks. Med. Res. Arch. 5 (2017).

  133. Williams-García, R. V., Beggs, J. M. & Ortiz, G. Unveiling causal activity of complex networks. EPL Europhys. Lett. 119, 18003 (2017).

    Article  Google Scholar 

  134. Runge, J. et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 10, 2553 (2019).

    Article  Google Scholar 

  135. Schneidman, E., Still, S., Berry, M. J. & Bialek, W. Network information and connected correlations. Phys. Rev. Lett. 91, 238701 (2003).

    Article  Google Scholar 

  136. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006).

    Article  Google Scholar 

  137. Tkačik, G. et al. Searching for collective behavior in a large network of sensory neurons. PLoS Comput. Biol. 10, e1003408 (2014).

    Article  Google Scholar 

  138. Roudi, Y. & Hertz, J. Mean field theory for nonequilibrium network reconstruction. Phys. Rev. Lett. 106, 048702 (2011).

    Article  Google Scholar 

  139. Nguyen, H. C., Zecchina, R. & Berg, J. Inverse statistical problems: from the inverse Ising problem to data science. Adv. Phys. 66, 197–261 (2017).

    Article  Google Scholar 

  140. Lezon, T. R., Banavar, J. R., Cieplak, M., Maritan, A. & Fedoroff, N. V. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns. Proc. Natl Acad. Sci. USA 103, 19033–19038 (2006).

    Article  Google Scholar 

  141. Wang, H., Ma, C., Chen, H.-S., Lai, Y.-C. & Zhang, H.-F. Full reconstruction of simplicial complexes from binary contagion and Ising data. Nat. Commun. 13, 3043 (2022).

    Article  Google Scholar 

  142. Mézard, M. & Sakellariou, J. Exact mean-field inference in asymmetric kinetic Ising systems. J. Stat. Mech. Theory Exp. 2011, L07001 (2011).

    Article  Google Scholar 

  143. Zeng, H.-L., Alava, M., Aurell, E., Hertz, J. & Roudi, Y. Maximum likelihood reconstruction for Ising models with asynchronous updates. Phys. Rev. Lett. 110, 210601 (2013).

    Article  Google Scholar 

  144. Timme, M. & Casadiego, J. Revealing networks from dynamics: an introduction. J. Phys. A Math. Theor. 47, 343001 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  145. Bachschmid-Romano, L., Battistin, C., Opper, M. & Roudi, Y. Variational perturbation and extended Plefka approaches to dynamics on random networks: the case of the kinetic Ising model. J. Phys. A Math. Theor. 49, 434003 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  146. Donner, C. & Opper, M. Inverse Ising problem in continuous time: a latent variable approach. Phys. Rev. E 96, 062104 (2017).

    Article  MathSciNet  Google Scholar 

  147. Su, R.-Q., Wang, W.-X. & Lai, Y.-C. Detecting hidden nodes in complex networks from time series. Phys. Rev. E 85, 065201 (2012).

    Article  Google Scholar 

  148. Su, R.-Q., Lai, Y.-C., Wang, X. & Do, Y. Uncovering hidden nodes in complex networks in the presence of noise. Sci. Rep. 4, 3944 (2014).

    Article  Google Scholar 

  149. Chorin, A. J., Hald, O. H. & Kupferman, R. Optimal prediction and the Mori–Zwanzig representation of irreversible processes. Proc. Natl Acad. Sci. USA 97, 2968–2973 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  150. Rubin, K. J., Lawler, K., Sollich, P. & Ng, T. Memory effects in biochemical networks as the natural counterpart of extrinsic noise. J. Theor. Biol. 357, 245–267 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  151. Bravi, B. & Sollich, P. Statistical physics approaches to subnetwork dynamics in biochemical systems. Phys. Biol. 14, 045010 (2017).

    Article  Google Scholar 

  152. Bravi, B., Rubin, K. J. & Sollich, P. Systematic model reduction captures the dynamics of extrinsic noise in biochemical subnetworks. J. Chem. Phys. 153, 025101 (2020).

    Article  Google Scholar 

  153. Herrera-Delgado, E., Perez-Carrasco, R., Briscoe, J. & Sollich, P. Memory functions reveal structural properties of gene regulatory networks. PLoS Comput. Biol. 14, e1006003 (2018).

    Article  Google Scholar 

  154. Herrera-Delgado, E., Briscoe, J. & Sollich, P. Tractable nonlinear memory functions as a tool to capture and explain dynamical behaviors. Phys. Rev. Res. 2, 043069 (2020).

    Article  Google Scholar 

  155. Dunn, B. & Roudi, Y. Learning and inference in a nonequilibrium Ising model with hidden nodes. Phys. Rev. E 87, 022127 (2013).

    Article  Google Scholar 

  156. Bachschmid-Romano, L. & Opper, M. Inferring hidden states in a random kinetic Ising model: replica analysis. J. Stat. Mech. Theory Exp. 2014, P06013 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  157. Hoang, D.-T., Jo, J. & Periwal, V. Data-driven inference of hidden nodes in networks. Phys. Rev. E 99, 042114 (2019).

    Article  Google Scholar 

  158. Qiang, Y. et al. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Sci. Adv. 4, eaat0626 (2018).

    Article  Google Scholar 

  159. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    Article  Google Scholar 

  160. Hainmueller, T. & Bartos, M. Parallel emergence of stable and dynamic memory engrams in the hippocampus. Nature 558, 292–296 (2018).

    Article  Google Scholar 

  161. Gonzalez, W. G., Zhang, H., Harutyunyan, A. & Lois, C. Persistence of neuronal representations through time and damage in the hippocampus. Science 365, 821–825 (2019).

    Article  Google Scholar 

  162. Pearl, J. Causality (Cambridge Univ. Press, 2009).

  163. Marriott, F. H. C. & Pope, J. A. Bias in the estimation of autocorrelations. Biometrika 41, 390–402 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  164. Janke, W. in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms (eds Grotendorst, J., Marx, D. & Muramatsu, A.) 423–445 (John von Neumann Institute for Computing, 2002).

Download references

Acknowledgements

The authors thank D. Dahmen, M. Helias, M. Henkel and P. Sollich for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing this Perspective.

Corresponding author

Correspondence to Viola Priesemann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous referee(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levina, A., Priesemann, V. & Zierenberg, J. Tackling the subsampling problem to infer collective properties from limited data. Nat Rev Phys 4, 770–784 (2022). https://doi.org/10.1038/s42254-022-00532-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00532-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing