Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Manipulating polaritons at the extreme scale in van der Waals materials

A Publisher Correction to this article was published on 22 July 2022

This article has been updated

Abstract

Polaritons, originating from the interactions between photons and material excitations, have attracted attention because of their strong field compression and deeply subdiffractional scales. For practical applications, it is crucial to manipulate polaritons efficiently, but doing so has remained challenging because of the relatively poor tunability of traditional polaritonic media. Fortunately, in the past decade, polaritons hosted by van der Waals (vdW) materials have allowed new opportunities to tackle this difficulty. We review the state of the art in the manipulation of polaritons at the extreme scale in vdW materials. Benefiting from the large and expanding catalogue of vdW materials and associated architectures and techniques, more accessible manipulation strategies are expected, not only offering control of light at the nanoscale with new degrees of freedom, but also offering insight into nanophotonics, meta-optics, topological physics and quantum materials.

Key points

  • Van der Waals materials and relevant techniques make it possible to engineer polaritons conveniently and effectively at the deep-subwavelength scale.

  • The inherent properties of polaritonic materials play a dominant role in polariton behaviours, because of the part-light, part-matter nature of polaritons.

  • Owing to tight electromagnetic field compression, polaritons are highly sensitive to various physical stimuli.

  • The dispersion relations of polaritons indicate potential tuning pathways, such as dielectric environment.

  • Combining individual polariton modes, regardless of their types, can greatly enrich the toolbox for polariton manipulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic summary of manipulation strategies for polaritons in van der Waals platforms.
Fig. 2: Manipulating polaritons by directly modifying van der Waals materials.
Fig. 3: Geometry-based approaches to tailoring polaritons in van der Waals materials.
Fig. 4: Polaritonic responses to physical stimuli.
Fig. 5: Dielectric environment control for the modification and functionalization of polaritons.
Fig. 6: Interactions of polaritons in van der Waals platforms.

Similar content being viewed by others

Change history

References

  1. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1192 (2016).

    Article  Google Scholar 

  2. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  ADS  Google Scholar 

  3. Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020).

    Article  Google Scholar 

  4. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2014).

    Article  ADS  Google Scholar 

  5. Dufferwiel, S. et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).

    Article  ADS  Google Scholar 

  6. Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2017).

  7. Maier, S. A. Plasmonics: Fundamentals and Applications Vol. 1 (Springer, 2007).

  8. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  ADS  Google Scholar 

  9. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  ADS  Google Scholar 

  10. Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).

    Article  ADS  Google Scholar 

  11. Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).

    Article  Google Scholar 

  12. Lee, I. H., Yoo, D., Avouris, P., Low, T. & Oh, S. H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).

    Article  ADS  Google Scholar 

  13. Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photonics 15, 197–202 (2020).

    Article  ADS  Google Scholar 

  14. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article  ADS  Google Scholar 

  15. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    Article  ADS  Google Scholar 

  16. Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).

    Article  ADS  Google Scholar 

  17. Chaudhary, K. et al. Polariton nanophotonics using phase-change materials. Nat. Commun. 10, 4487 (2019).

    Article  ADS  Google Scholar 

  18. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article  ADS  Google Scholar 

  19. Duan, J. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).

    Article  ADS  Google Scholar 

  20. Martín-Sánchez, J. et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Sci. Adv. 7, eabj0127 (2021).

    Article  ADS  Google Scholar 

  21. He, M. et al. Ultrahigh-resolution, label-free hyperlens imaging in the mid-IR. Nano Lett. 21, 7921–7928 (2021).

    Article  ADS  Google Scholar 

  22. Zheng, Z. et al. Controlling and focusing of in-plane hyperbolic phonon polaritons in α-MoO3 with plasmonic antenna. Adv. Mater. 34, 2104164 (2021).

    Article  Google Scholar 

  23. Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    Article  ADS  Google Scholar 

  24. Dolado, I. et al. Nanoscale guiding of infrared light with hyperbolic volume and surface polaritons in van der Waals material ribbons. Adv. Mater. 32, 1906530 (2020).

    Article  Google Scholar 

  25. He, M. et al. Guided mid-IR and near-IR light within a hybrid hyperbolic-material/silicon waveguide heterostructure. Adv. Mater. 33, 2004305 (2021).

    Article  Google Scholar 

  26. Zhao, W. et al. Nanoimaging of low-loss plasmonic waveguide modes in a graphene nanoribbon. Nano Lett. 21, 3106–3111 (2021).

    Article  ADS  Google Scholar 

  27. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  ADS  Google Scholar 

  28. Nikitin, A. Y. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photonics 10, 239–243 (2016).

    Article  ADS  Google Scholar 

  29. Zheng, Z. et al. Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures. Light Sci. Appl. 6, e17057 (2017).

    Article  Google Scholar 

  30. Tamagnone, M. et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).

    Article  ADS  Google Scholar 

  31. Dai, Z. et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat. Commun. 11, 6086 (2020).

    Article  ADS  Google Scholar 

  32. Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016).

    Article  ADS  Google Scholar 

  33. Woessner, A. et al. Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons. Nat. Photonics 11, 421–424 (2017).

    Article  ADS  Google Scholar 

  34. Guo, X. et al. Efficient all-optical plasmonic modulators with atomically thin van der Waals heterostructures. Adv. Mater. 32, 1907105 (2020).

    Article  Google Scholar 

  35. Wu, Y. et al. Efficient and tunable reflection of phonon polaritons at built-in intercalation interfaces. Adv. Mater. 33, 2008070 (2021).

    Article  Google Scholar 

  36. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).

    Article  ADS  Google Scholar 

  37. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Article  ADS  Google Scholar 

  38. Hu, G., Krasnok, A., Mazor, Y., Qiu, C. W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

    Article  ADS  Google Scholar 

  39. Tielrooij, K. J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018).

    Article  ADS  Google Scholar 

  40. Basov, D. N. & Fogler, M. M. Quantum materials: the quest for ultrafast plasmonics. Nat. Nanotechnol. 12, 187–188 (2017).

    Article  ADS  Google Scholar 

  41. Novoselov, K. S., Carvalho, A. M. A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  42. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  43. Passler, N. C. & Paarmann, A. Generalized 4×4 matrix formalism for light propagation in anisotropic stratified media: study of surface phonon polaritons in polar dielectric heterostructures. J. Opt. Soc. Am. B 34, 2128–2139 (2017).

    Article  ADS  Google Scholar 

  44. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  45. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  46. Chen, P.-Y. & Alù, A. Atomically thin surface cloak using graphene monolayers. ACS Nano 5, 5855–5863 (2011).

    Article  Google Scholar 

  47. Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  ADS  Google Scholar 

  48. Álvarez-Pérez, G., Voronin, K. V., Volkov, V. S., Alonso-González, P. & Nikitin, A. Y. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys. Rev. B 100, 235408 (2019).

    Article  ADS  Google Scholar 

  49. Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der Waals semiconductor α-MoO3 from near- and far-field correlative studies. Adv. Mater. 32, 1908176 (2020).

    Article  Google Scholar 

  50. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  ADS  Google Scholar 

  51. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  ADS  Google Scholar 

  52. Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352–356 (2011).

    Article  ADS  Google Scholar 

  53. Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Article  Google Scholar 

  54. Nowak, D. et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2, e1501571 (2016).

    Article  ADS  Google Scholar 

  55. Wang, L. et al. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy. Sci. Adv. 3, e1700255 (2017).

    Article  ADS  Google Scholar 

  56. Wang, H., Wang, L., Jakob, D. S. & Xu, X. G. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode. Nat. Commun. 9, 2005 (2018).

    Article  ADS  Google Scholar 

  57. Brown, L. V. et al. Nanoscale mapping and spectroscopy of nonradiative hyperbolic modes in hexagonal boron nitride nanostructures. Nano Lett. 18, 1628–1636 (2018).

    Article  ADS  Google Scholar 

  58. Ramer, G. et al. High-Q dark hyperbolic phonon-polaritons in hexagonal boron nitride nanostructures. Nanophotonics 9, 1457–1467 (2020).

    Article  Google Scholar 

  59. Pavlidis, G. et al. Experimental confirmation of long hyperbolic polariton lifetimes in monoisotopic (10B) hexagonal boron nitride at room temperature. Appl. Mater. 9, 091109 (2021).

    Article  ADS  Google Scholar 

  60. Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science 372, 1181–1186 (2021).

    Article  ADS  Google Scholar 

  61. Govyadinov, A. A. et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun. 8, 95 (2017).

    Article  ADS  Google Scholar 

  62. Dong, W. et al. Broad-spectral-range sustainability and controllable excitation of hyperbolic phonon polaritons in α-MoO3. Adv. Mater. 32, 2002014 (2020).

    Article  Google Scholar 

  63. Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    Article  ADS  Google Scholar 

  64. Qi, R. et al. Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes. Nat. Commun. 12, 1179 (2021).

    Article  ADS  Google Scholar 

  65. Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article  ADS  Google Scholar 

  66. Epstein, I. et al. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Mater. 7, 035031 (2020).

    Article  Google Scholar 

  67. Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).

    Article  ADS  Google Scholar 

  68. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    Article  Google Scholar 

  69. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  ADS  Google Scholar 

  70. Fei, Z. et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nat. Nanotechnol. 8, 821–825 (2013).

    Article  ADS  Google Scholar 

  71. Jiang, B. Y. et al. Tunable plasmonic reflection by bound 1D electron states in a 2D Dirac metal. Phys. Rev. Lett. 117, 086801 (2016).

    Article  ADS  Google Scholar 

  72. Jiang, B. Y. et al. Plasmon reflections by topological electronic boundaries in bilayer graphene. Nano Lett. 17, 7080–7085 (2017).

    Article  ADS  Google Scholar 

  73. Fei, Z., Ni, G. X., Jiang, B. Y., Fogler, M. M. & Basov, D. N. Nanoplasmonic phenomena at electronic boundaries in graphene. ACS Photonics 4, 2971–2977 (2017).

    Article  Google Scholar 

  74. Zheng, Z. et al. Chemically-doped graphene with improved surface plasmon characteristics: an optical near-field study. Nanoscale 8, 16621–16630 (2016).

    Article  Google Scholar 

  75. Vuong, T. Q. P. et al. Isotope engineering of van der Waals interactions in hexagonal boron nitride. Nat. Mater. 17, 152–158 (2018).

    Article  ADS  Google Scholar 

  76. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article  ADS  Google Scholar 

  77. Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).

    Article  ADS  Google Scholar 

  78. Wu, Y. et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nat. Commun. 11, 2646 (2020).

    Article  ADS  Google Scholar 

  79. Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    Article  ADS  Google Scholar 

  80. Xu, Q. et al. Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light Sci. Appl. 6, e16204 (2017).

    Article  Google Scholar 

  81. Duan, J. et al. Optically unraveling the edge chirality-dependent band structure and plasmon damping in graphene edges. Adv. Mater. 30, 1800367 (2018).

    Article  Google Scholar 

  82. Wang, X. et al. A nano-imaging study of graphene edge plasmons with chirality-dependent dispersions. Adv. Optical Mater. 9, 2100207 (2021).

    Article  Google Scholar 

  83. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article  ADS  Google Scholar 

  84. Fei, Z. et al. Tunneling plasmonics in bilayer graphene. Nano Lett. 15, 4973–4978 (2015).

    Article  ADS  Google Scholar 

  85. Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    Article  ADS  Google Scholar 

  86. Zhang, J. et al. Light-induced irreversible structural phase transition in trilayer graphene. Light Sci. Appl. 9, 174 (2020).

    Article  ADS  Google Scholar 

  87. Hesp, N. C. H. et al. Observation of interband collective excitations in twisted bilayer graphene. Nat. Phys. 17, 1162–1168 (2021).

    Article  Google Scholar 

  88. Hu, F. et al. Real-space imaging of the tailored plasmons in twisted bilayer graphene. Phys. Rev. Lett. 119, 247402 (2017).

    Article  ADS  Google Scholar 

  89. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  90. Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    Article  ADS  Google Scholar 

  91. Ni, G. X. et al. Soliton superlattices in twisted hexagonal boron nitride. Nat. Commun. 10, 4360 (2019).

    Article  ADS  Google Scholar 

  92. Jin, C. et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  ADS  Google Scholar 

  93. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  ADS  Google Scholar 

  94. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  ADS  Google Scholar 

  95. Jing, R. et al. Terahertz response of monolayer and few-layer WTe2 at the nanoscale. Nat. Commun. 12, 5594 (2021).

    Article  ADS  Google Scholar 

  96. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  ADS  Google Scholar 

  97. Dai, S. et al. Phonon polaritons in monolayers of hexagonal boron nitride. Adv. Mater. 31, 1806603 (2019).

    Article  Google Scholar 

  98. Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).

    Article  Google Scholar 

  99. de Oliveira, T. V. A. G. et al. Nanoscale-confined terahertz polaritons in a van der Waals crystal. Adv. Mater. 33, 2005777 (2021).

    Article  Google Scholar 

  100. Nikitin, A. Y. et al. Nanofocusing of hyperbolic phonon polaritons in a tapered boron nitride slab. ACS Photonics 3, 924–929 (2016).

    Article  Google Scholar 

  101. Nikitin, A. Y., López-Tejeira, F. & Martín-Moreno, L. Scattering of surface plasmon polaritons by one-dimensional inhomogeneities. Phys. Rev. B 75, 035129 (2007).

    Article  ADS  Google Scholar 

  102. Garcia-Pomar, J. L., Nikitin, A. Y. & Martin-Moreno, L. Scattering of graphene plasmons by defects in the graphene sheet. ACS Nano 7, 4988–4994 (2013).

    Article  Google Scholar 

  103. Slipchenko, T. M., Nesterov, M. L., Hillenbrand, R., Nikitin, A. Y. & Martín-Moreno, L. Graphene plasmon reflection by corrugations. ACS Photonics 4, 3081–3088 (2017).

    Article  Google Scholar 

  104. Vantasin, S., Tanaka, Y. Y. & Shimura, T. Launching and control of graphene plasmons by nanoridge structures. ACS Photonics 5, 1050–1057 (2017).

    Article  Google Scholar 

  105. Smirnova, D., Mousavi, S. H., Wang, Z., Kivshar, Y. S. & Khanikaev, A. B. Trapping and guiding surface plasmons in curved graphene landscapes. ACS Photonics 3, 875–880 (2016).

    Article  Google Scholar 

  106. Duan, J. et al. Launching phonon polaritons by natural boron nitride wrinkles with modifiable dispersion by dielectric environments. Adv. Mater. 29, 1702494 (2017).

    Article  Google Scholar 

  107. Gilburd, L. et al. Hexagonal boron nitride self-launches hyperbolic phonon polaritons. J. Phys. Chem. Lett. 8, 2158–2162 (2017).

    Article  Google Scholar 

  108. Lingstädt, R. et al. Interaction of edge exciton polaritons with engineered defects in the hyperbolic material Bi2Se3. Commun. Mater. 2, 5 (2021).

    Article  Google Scholar 

  109. Fei, Z. et al. Edge and surface plasmons in graphene nanoribbons. Nano Lett. 15, 8271–8276 (2015).

    Article  ADS  Google Scholar 

  110. Hu, F. et al. Imaging the localized plasmon resonance modes in graphene nanoribbons. Nano Lett. 17, 5423–5428 (2017).

    Article  ADS  Google Scholar 

  111. Li, P. et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett. 17, 228–235 (2017).

    Article  ADS  Google Scholar 

  112. Dai, S. et al. Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride. Adv. Mater. 30, 1706358 (2018).

    Article  Google Scholar 

  113. Huang, W. et al. Van der Waals phonon polariton microstructures for configurable infrared electromagnetic field localizations. Adv. Sci. 8, 2004872 (2021).

    Article  Google Scholar 

  114. Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    Article  ADS  Google Scholar 

  115. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1289 (2013).

    Article  Google Scholar 

  116. Dai, Z. et al. Artificial metaphotonics born naturally in two dimensions. Chem. Rev. 120, 6197–6246 (2020).

    Article  Google Scholar 

  117. Gomez-Diaz, J. S., Tymchenko, M. & Alù, A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 114, 233901 (2015).

    Article  ADS  Google Scholar 

  118. Li, P. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun. 11, 3663 (2020).

    Article  ADS  Google Scholar 

  119. Pan, D., Yu, R., Xu, H. & Garcia de Abajo, F. J. Topologically protected Dirac plasmons in a graphene superlattice. Nat. Commun. 8, 1243 (2017).

    Article  ADS  Google Scholar 

  120. Xiong, L. et al. Programmable Bloch polaritons in graphene. Sci. Adv. 7, eabe8087 (2021).

    Article  ADS  Google Scholar 

  121. Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).

    Article  ADS  Google Scholar 

  122. Alfaro-Mozaz, F. J. et al. Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. Nat. Commun. 10, 42 (2019).

    Article  ADS  Google Scholar 

  123. Alfaro-Mozaz, F. J. et al. Hyperspectral nanoimaging of van der Waals polaritonic crystals. Nano Lett. 21, 7109–7115 (2021).

    Article  ADS  Google Scholar 

  124. Yang, J. et al. Near-field excited archimedean-like tiling patterns in phonon-polaritonic crystals. ACS Nano 15, 9134–9142 (2021).

    Article  Google Scholar 

  125. Wang, L. et al. Manipulating phonon polaritons in low loss 11B enriched hexagonal boron nitride with polarization control. Nanoscale 12, 8188–8193 (2020).

    Article  Google Scholar 

  126. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 9, 674–678 (2015).

    Article  ADS  Google Scholar 

  127. Pons-Valencia, P. et al. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. Nat. Commun. 10, 3242 (2019).

    Article  ADS  Google Scholar 

  128. Zhang, Y. et al. Tunable Cherenkov radiation of phonon polaritons in silver nanowire/hexagonal boron nitride heterostructures. Nano Lett. 20, 2770–2777 (2020).

    Article  ADS  Google Scholar 

  129. Xiong, L. et al. Polaritonic vortices with a half-integer charge. Nano Lett. 21, 9256–9261 (2021).

    Article  ADS  Google Scholar 

  130. Wagner, M. et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy. Nano Lett. 14, 894–900 (2014).

    Article  ADS  Google Scholar 

  131. Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photonics 10, 244–247 (2016).

    Article  ADS  Google Scholar 

  132. Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).

    Article  ADS  Google Scholar 

  133. Spann, B. T. et al. Photoinduced tunability of the reststrahlen band in 4H-SiC. Phys. Rev. B 93, 085205 (2016).

    Article  ADS  Google Scholar 

  134. Dunkelberger, A. D. et al. Active tuning of surface phonon polariton resonances via carrier photoinjection. Nat. Photonics 12, 50–56 (2017).

    Article  ADS  Google Scholar 

  135. Sternbach, A. J. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).

    Article  ADS  Google Scholar 

  136. Guo, Q. et al. Electrothermal control of graphene plasmon-phonon polaritons. Adv. Mater. 29, 1700566 (2017).

    Article  Google Scholar 

  137. Cuscó, R., Gil, B., Cassabois, G. & Artús, L. Temperature dependence of Raman-active phonons and anharmonic interactions in layered hexagonal BN. Phys. Rev. B 94, 155435 (2016).

    Article  ADS  Google Scholar 

  138. Negishi, H., Negishi, S., Kuroiwa, Y., Sato, N. & Aoyagi, S. Anisotropic thermal expansion of layered MoO3 crystals. Phys. Rev. B 69, 064111 (2004).

    Article  ADS  Google Scholar 

  139. Huang, S. et al. From anomalous to normal: temperature dependence of the band gap in two-dimensional black phosphorus. Phys. Rev. Lett. 125, 156802 (2020).

    Article  ADS  Google Scholar 

  140. Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    Article  ADS  Google Scholar 

  141. Vincent, T. et al. Strongly absorbing nanoscale infrared domains within strained bubbles at hBN-graphene interfaces. ACS Appl. Mater. Interfaces 12, 57638–57648 (2020).

    Article  Google Scholar 

  142. Huber, A. J., Ziegler, A., Köck, T. & Hillenbrand, R. Infrared nanoscopy of strained semiconductors. Nat. Nanotechnol. 4, 153–157 (2009).

    Article  ADS  Google Scholar 

  143. Dobrik, G. et al. Large-area nanoengineering of graphene corrugations for visible-frequency graphene plasmons. Nat. Nanotechnol. 17, 61–66 (2021).

    Article  ADS  Google Scholar 

  144. Hu, H. et al. Flexible and electrically tunable plasmons in graphene–mica heterostructures. Adv. Sci. 5, 1800175 (2018).

    Article  Google Scholar 

  145. Lyu, B. et al. Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride. Nano Lett. 19, 1982–1989 (2019).

    Article  ADS  Google Scholar 

  146. Gigler, A. M. et al. Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy. Opt. Express 17, 22351–22357 (2009).

    Article  ADS  Google Scholar 

  147. Fei, Z. et al. Ultraconfined plasmonic hotspots inside graphene nanobubbles. Nano Lett. 16, 7842–7848 (2016).

    Article  ADS  Google Scholar 

  148. Fali, A. et al. Refractive index-based control of hyperbolic phonon-polariton propagation. Nano Lett. 19, 7725–7734 (2019).

    Article  ADS  Google Scholar 

  149. Li, P. et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    Article  ADS  Google Scholar 

  150. Sumikura, H. et al. Highly confined and switchable mid-infrared surface phonon polariton resonances of planar circular cavities with a phase change material. Nano Lett. 19, 2549–2554 (2019).

    Article  ADS  Google Scholar 

  151. Chen, C. et al. Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials. ACS Photonics 7, 3499–3506 (2020).

    Article  Google Scholar 

  152. Dai, S. et al. Phase-change hyperbolic heterostructures for nanopolaritonics: a case study of hBN/VO2. Adv. Mater. 31, 1900251 (2019).

    Article  Google Scholar 

  153. Chaudhary, K. et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).

    Article  ADS  Google Scholar 

  154. Hu, H. et al. Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).

    Article  ADS  Google Scholar 

  155. Kim, K. S. et al. The effect of adjacent materials on the propagation of phonon polaritons in hexagonal boron nitride. J. Phys. Chem. Lett. 8, 2902–2908 (2017).

    Article  Google Scholar 

  156. Dai, S. et al. Hyperbolic phonon polaritons in suspended hexagonal boron nitride. Nano Lett. 19, 1009–1014 (2019).

    Article  ADS  Google Scholar 

  157. Maia, F. C. B. et al. Anisotropic flow control and gate modulation of hybrid phonon-polaritons. Nano Lett. 19, 708–715 (2019).

    Article  ADS  Google Scholar 

  158. Yang, J. et al. Boundary-induced auxiliary features in scattering-type near-field Fourier transform infrared spectroscopy. ACS Nano 14, 1123–1132 (2020).

    Article  Google Scholar 

  159. Schwartz, J. J. et al. Substrate-mediated hyperbolic phonon polaritons in MoO3. Nanophotonics 10, 1517–1527 (2021).

    Article  Google Scholar 

  160. Zheng, Z. et al. Tunable hyperbolic phonon polaritons in a suspended van der Waals α-MoO3 with gradient gaps. Adv. Optical Mater. 10, 2102057 (2021).

    Article  Google Scholar 

  161. Dubrovkin, A. M., Qiang, B., Krishnamoorthy, H. N. S., Zheludev, N. I. & Wang, Q. J. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics. Nat. Commun. 9, 1762 (2018).

    Article  ADS  Google Scholar 

  162. Dubrovkin, A. M. et al. Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons. Nat. Commun. 11, 1863 (2020).

    Article  ADS  Google Scholar 

  163. Duan, J. et al. Active and passive tuning of ultra-narrow resonances in polaritonic nanoantennas. Adv. Mater. 34, e2104954 (2021).

    Article  Google Scholar 

  164. Wang, H., Janzen, E., Wang, L., Edgar, J. H. & Xu, X. G. Probing mid-infrared phonon polaritons in the aqueous phase. Nano Lett. 20, 3986–3991 (2020).

    Article  ADS  Google Scholar 

  165. O’Callahan, B. T. et al. In liquid infrared scattering scanning near-field optical microscopy for chemical and biological nanoimaging. Nano Lett. 20, 4497–4504 (2020).

    Article  ADS  Google Scholar 

  166. Li, J. et al. Antenna enhanced infrared photoinduced force imaging in aqueous environment with super-resolution and hypersensitivity. CCS Chem. 3, 2717–2726 (2021).

    Google Scholar 

  167. Virmani, D. et al. Amplitude- and phase-resolved infrared nanoimaging and nanospectroscopy of polaritons in a liquid environment. Nano Lett. 21, 1360–1367 (2021).

    Article  ADS  Google Scholar 

  168. Principi, A. et al. Plasmon losses due to electron–phonon scattering: the case of graphene encapsulated in hexagonal boron nitride. Phys. Rev. B 90, 165408 (2014).

    Article  ADS  Google Scholar 

  169. Liao, B. et al. A multibeam interference model for analyzing complex near-field images of polaritons in 2D van der Waals microstructures. Adv. Funct. Mater. 29, 1904662 (2019).

    Article  Google Scholar 

  170. Lin, X. et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proc. Natl Acad. Sci. USA 114, 6717–6721 (2017).

    Article  ADS  Google Scholar 

  171. Zhang, Q. et al. Negative refraction inspired polariton lens in van der Waals lateral heterojunctions. Appl. Phys. Lett. 114, 221101 (2019).

    Article  ADS  Google Scholar 

  172. Nong, J. et al. Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons. Opt. Express 26, 1633–1644 (2018).

    Article  ADS  Google Scholar 

  173. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  ADS  Google Scholar 

  174. Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article  ADS  Google Scholar 

  175. Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

    Article  ADS  Google Scholar 

  176. Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

    Article  ADS  Google Scholar 

  177. Duan, J. et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Sci. Adv. 7, eabf2690 (2021).

    Article  ADS  Google Scholar 

  178. Zhang, Q. et al. Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces. Nano Lett. 21, 3112–3119 (2021).

    Article  ADS  Google Scholar 

  179. Brar, V. W. et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

    Article  ADS  Google Scholar 

  180. Kumar, A., Low, T., Fung, K. H., Avouris, P. & Fang, N. X. Tunable light–matter interaction and the role of hyperbolicity in graphene-hBN system. Nano Lett. 15, 3172–3180 (2015).

    Article  ADS  Google Scholar 

  181. Yang, X. et al. Far-field spectroscopy and near-field optical imaging of coupled plasmon-phonon polaritons in 2D van der Waals heterostructures. Adv. Mater. 28, 2931–2938 (2016).

    Article  Google Scholar 

  182. Guo, X. et al. High-efficiency modulation of coupling between different polaritons in an in-plane graphene/hexagonal boron nitride heterostructure. Nanoscale 11, 2703–2709 (2019).

    Article  Google Scholar 

  183. Zeng, Y. et al. Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals. Nano Lett. 22, 4260–4268 (2022).

    Article  ADS  Google Scholar 

  184. Álvarez-Pérez, G. et al. Active tuning of highly anisotropic phonon polaritons in van der Waals crystal slabs by gated graphene. ACS Photonics 9, 383–390 (2022).

    Article  Google Scholar 

  185. Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Preprint at arXiv https://arxiv.org/abs/2201.00930 (2022).

  186. Caldwell, J. D. et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat. Nanotechnol. 11, 9–15 (2016).

    Article  ADS  Google Scholar 

  187. Zhang, H. et al. Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nat. Commun. 11, 3552 (2020).

    Article  ADS  Google Scholar 

  188. Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

    Article  ADS  Google Scholar 

  189. Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    Article  ADS  Google Scholar 

  190. Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).

    Article  ADS  Google Scholar 

  191. Menabde, S. G. et al. Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nat. Commun. 12, 938 (2021).

    Article  ADS  Google Scholar 

  192. Yuan, Z. et al. Extremely confined acoustic phonon polaritons in monolayer-hBN/metal heterostructures for strong light-matter interactions. ACS Photonics 7, 2610–2617 (2020).

    Article  Google Scholar 

  193. Lee, I. H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article  ADS  Google Scholar 

  194. Zhao, W. et al. Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021).

    Article  ADS  Google Scholar 

  195. Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021).

    Article  ADS  Google Scholar 

  196. Yan, H. Plasmons dragged by drifting electrons. Nature 594, 498 (2021).

    Article  ADS  Google Scholar 

  197. Berkowitz, M. E. et al. Hyperbolic Cooper-pair polaritons in planar graphene/cuprate plasmonic cavities. Nano Lett. 21, 308–316 (2021).

    Article  ADS  Google Scholar 

  198. Macêdo, R. & Camley, R. E. Engineering terahertz surface magnon-polaritons in hyperbolic antiferromagnets. Phys. Rev. B 99, 014437 (2019).

    Article  ADS  Google Scholar 

  199. Yan, H. et al. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett. 12, 3766–3771 (2012).

    Article  ADS  Google Scholar 

  200. Crassee, I. et al. Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. Nano Lett. 12, 2470–2474 (2012).

    Article  ADS  Google Scholar 

  201. Slipchenko, T. M., Poumirol, J. M., Kuzmenko, A. B., Nikitin, A. Y. & Martín-Moreno, L. Interband plasmon polaritons in magnetized charge-neutral graphene. Commun. Phys. 4, 110 (2021).

    Article  Google Scholar 

  202. MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article  ADS  Google Scholar 

  203. Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

    Article  ADS  Google Scholar 

  204. Bliokh, K. Y., Leykam, D., Lein, M. & Nori, F. Topological non-Hermitian origin of surface Maxwell waves. Nat. Commun. 10, 580 (2019).

    Article  ADS  Google Scholar 

  205. Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).

    Article  ADS  Google Scholar 

  206. Jin, D. et al. Infrared topological plasmons in graphene. Phys. Rev. Lett. 118, 245301 (2017).

    Article  ADS  Google Scholar 

  207. You, J. W., Lan, Z. & Panoiu, N. C. Four-wave mixing of topological edge plasmons in graphene metasurfaces. Sci. Adv. 6, eaaz3910 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC, CE170100039 and DE220100154) and Shenzhen Nanshan District Pilotage Team Program (LHTD20170006). P.L. acknowledges support from the National Natural Science Foundation of China (grant no. 62075070) and the Innovation Fund of WNLO. P.A.-G. acknowledges support from the European Research Council under starting grant no. 715496, 2DNANOPTICA and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant no. PID2019-111156GB-I00). J.D.C. acknowledges support from the Office of Naval Research, grant no. N000142212035.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Peining Li, Pablo Alonso-González, Joshua D. Caldwell or Qiaoliang Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Trond Andersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Isofrequency contour

(IFC). A slice of the polariton dispersion surface by a plane of constant frequency in momentum space.

Drude weight

A useful quantity to estimate the strength of the Drude response at different conditions; also known as charge stiffness.

Ghost PhPs

A class of surface polaritons with the ability to possess the characteristics of propagating and evanescent waves simultaneously.

Meron

A kind of vortex-type non-trivial topological spin texture, whose topological charge (±1/2) is half of that in a skyrmion (±1).

Rabi splitting

Energy separation at the avoided crossing in scattering spectra, as the signature of the strong coupling regime of light–matter interactions.

Canalization

Polariton canalization is a propagation mode of polaritons realized in the canalization regime, resulting in highly oriented and nearly diffraction-free transport.

Landau damping

A polariton decay process resulting from the generation of an electron−hole pair by a quantized plasmon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Duan, J., Ma, W. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat Rev Phys 4, 578–594 (2022). https://doi.org/10.1038/s42254-022-00472-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00472-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing