Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physical limits in electromagnetism

Abstract

Photonic devices play an increasingly important role in advancing physics and engineering. Although improvements in nanofabrication and computational methods have driven progress in expanding the range of achievable optical characteristics, they have also greatly increased design complexity. These developments motivate the study of fundamental limits on optical response. Here we review recent progress in our understanding of these limits with special focus on an emerging theoretical framework that combines computational optimization with conservation laws to yield physical limits capturing all relevant wave effects. Results pertaining to canonical electromagnetic problems such as thermal emission, scattering cross-sections, Purcell enhancement and power routing are presented. Finally, we identify areas where further research is needed, including conceptual extensions and efficient numerical schemes for handling large-scale problems.

Key points

  • Limits provide a rigorous theoretical basis to quantify the trade-offs and scaling laws associated with almost any common design parameter (device footprint, material choices, fixed separations and so on).

  • Limits may guide practical design efforts and complement computational inverse design methods by confirming the achievement of near-optimality or clarifying possibilities for further improvement.

  • Inverse design methods, such as topology optimization, involve a large number of degrees of freedom subject to non-convex constraints (Maxwell’s wave equations); although gradient-based methods can efficiently find local optima, it is generally infeasible to determine the global optimum.

  • Many limits are derived by simplifying the design problem in some fashion: for example, by working with geometric optics, maximizing per-mode contributions ignoring inter-mode constraints, only enforcing a subset of the relevant physics and so on.

  • Mathematical optimization theory formalizes the notion of simplified (‘relaxed’) physics and offers tools for bounding the design performance in such settings. In turn, these values bound realistic design performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applications of photonics and computational design.
Fig. 2: Overview of representative electromagnetic limits.
Fig. 3: Schematic of scattering theory.
Fig. 4: Bounds on angle-integrated absorption based on the conservation of resistive power.
Fig. 5: Bounds on scattering cross-sections based on the conservation of total power.
Fig. 6: Impact of localized constraints.
Fig. 7: From performance bounds to structural optimization.

Similar content being viewed by others

References

  1. Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2006).

  2. Oh, S.-H. et al. Nanophotonic biosensors harnessing van der Waals materials. Nat. Commun. https://www.nature.com/articles/s41467-021-23564-4 (2021).

  3. Zhang, S. et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics 10, 259–293 (2021).

    Article  ADS  Google Scholar 

  4. Garnett, E. C., Ehrler, B., Polman, A. & Alarcon-Llado, E. Photonics for photovoltaics: advances and opportunities. ACS Photonics 8, 61–70 (2020).

    Article  Google Scholar 

  5. Brunner, D., Marandi, A., Bogaerts, W. & Ozcan, A. Photonics for computing and computing for photonics. Nanophotonics 9, 4053–4054 (2020).

    Article  Google Scholar 

  6. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics https://www.nature.com/articles/s41566-020-00754-y (2021).

  7. Dory, C. et al. Inverse-designed diamond photonics. Nat. Commun. 10, 3309 (2019).

    Article  ADS  Google Scholar 

  8. Chakravarthi, S. et al. Inverse-designed photon extractors for optically addressable defect qubits. Optica 7, 1805–1811 (2020).

    Article  ADS  Google Scholar 

  9. Liu, K., Sun, S., Majumdar, A. & Sorger, V. J. Fundamental scaling laws in nanophotonics. Sci. Rep. 6, 37419 (2016).

    Article  ADS  Google Scholar 

  10. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 2008).

  11. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  12. Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015).

    Article  ADS  Google Scholar 

  13. Jacob, Z. et al. Engineering photonic density of states using metamaterials. Appl. Phys. B 100, 215–218 (2010).

    Article  ADS  Google Scholar 

  14. Sreekanth, K. V., Krishna, K. H., De Luca, A. & Strangi, G. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Sci. Rep. 4, 6340 (2014).

    Article  Google Scholar 

  15. Popov, V., Lavrinenko, A. V. & Novitsky, A. Operator approach to effective medium theory to overcome a breakdown of Maxwell garnett approximation. Phys. Rev. B 94, 085428 (2016).

    Article  ADS  Google Scholar 

  16. Schneider, P.-I. et al. Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction. ACS Photonics 6, 2726–2733 (2019).

    Article  Google Scholar 

  17. Lalau-Keraly, C. M., Bhargava, S., Miller, O. D. & Yablonovitch, E. Adjoint shape optimization applied to electromagnetic design. Opt. Express 21, 21693 (2013).

    Article  ADS  Google Scholar 

  18. Liang, X. & Johnson, S. G. Formulation for scalable optimization of microcavities via the frequency-averaged local density of states. Opt. Express 21, 30812–30841 (2013).

    Article  ADS  Google Scholar 

  19. Christiansen, R. E. & Sigmund, O. Inverse design in photonics by topology optimization: tutorial. J. Opt. Soc. Am. B 38, 496–509 (2021).

    Article  ADS  Google Scholar 

  20. Liu, D., Tan, Y., Khoram, E. & Yu, Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365–1369 (2018).

    Article  Google Scholar 

  21. Jiang, J., Chen, M. & Fan, J. A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. https://www.nature.com/articles/s41578-020-00260-1 (2021).

  22. Wang, F., Christiansen, R. E., Yu, Y., Mørk, J. & Sigmund, O. Maximizing the quality factor to mode volume ratio for ultra-small photonic crystal cavities. Appl. Phys. Lett. 113, 241101 (2018).

    Article  ADS  Google Scholar 

  23. Albrechtsen, M. et al. Nanometer-scale photon confinement inside dielectrics. Preprint at https://arxiv.org/abs/2108.01681 (2021).

  24. Betzig, E., Lewis, A., Harootunian, A., Isaacson, M. & Kratschmer, E. Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophys. J. 49, 269–279 (1986).

    Article  Google Scholar 

  25. Sánchez, E. J., Novotny, L. & Xie, X. S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 (1999).

    Article  ADS  Google Scholar 

  26. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  27. Vicidomini, G., Bianchini, P. & Diaspro, A. STED super-resolved microscopy. Nat. Methods 15, 173–182 (2018).

    Article  Google Scholar 

  28. Bates, M., Jones, S. A. & Zhuang, X. Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging. Cold Spring Harbor Protocols http://cshprotocols.cshlp.org/content/2013/6/pdb.top075143 (2013).

  29. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  Google Scholar 

  30. López, A. L. & Andreev, V. M. Concentrator Photovoltaics, Vol. 130 (Springer, 2007).

  31. Henry, C. H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980).

    Article  ADS  Google Scholar 

  32. Luque, A. & Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014 (1997).

    Article  ADS  Google Scholar 

  33. Guo, Y., Cortes, C. L., Molesky, S. & Jacob, Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012).

    Article  ADS  Google Scholar 

  34. Thompson, D. et al. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature 561, 216–221 (2018).

    Article  ADS  Google Scholar 

  35. Molesky, S., Venkataram, P. S., Jin, W. & Rodriguez, A. W. Fundamental limits to radiative heat transfer: theory. Phys. Rev. B 101, 035408 (2020).

    Article  ADS  Google Scholar 

  36. Gustafsson, M., Schab, K., Jelinek, L. & Capek, M. Upper bounds on absorption and scattering. New J. Phys. 22, 073013 (2020).

    Article  MathSciNet  Google Scholar 

  37. Kuang, Z., Zhang, L. & Miller, O. D. Maximal single-frequency electromagnetic response. Optica 7, 1746–1757 (2020).

    Article  ADS  Google Scholar 

  38. Molesky, S., Chao, P. & Rodriguez, A. W. Hierarchical mean-field \({\mathbb{T}}\) operator bounds on electromagnetic scattering: Upper bounds on near-field radiative purcell enhancement. Phys. Rev. Res. 2, 043398 (2020).

    Article  Google Scholar 

  39. Kuang, Z. & Miller, O. D. Computational bounds to light–matter interactions via local conservation laws. Phys. Rev. Lett. 125, 263607 (2020).

    Article  ADS  Google Scholar 

  40. Molesky, S. et al. \({\mathbb{T}}\)-operator limits on optical communication: metaoptics, computation, and input–output transformations. Phys. Rev. Res. 4, 013020 (2022).

    Article  Google Scholar 

  41. Angeris, G., VučkoviĆ, J. & Boyd, S. Heuristic methods and performance bounds for photonic design. Opt. Express 29, 2827–2854 (2021).

    Article  ADS  Google Scholar 

  42. Brillouin, L. Wave Propagation and Group Velocity, Vol. 8 (Academic, 2013).

  43. Schulz-DuBois, E. Energy transport velocity of electromagnetic propagation in dispersive media. Proc. IEEE 57, 1748–1757 (1969).

    Article  Google Scholar 

  44. Loudon, R. The propagation of electromagnetic energy through an absorbing dielectric. J. Phys. A 3, 233 (1970).

    Article  ADS  Google Scholar 

  45. Yaghjian, A. D. Internal energy, Q-energy, Poynting’s theorem, and the stress dyadic in dispersive material. IEEE Trans. Antennas Propag. 55, 1495–1505 (2007).

    Article  ADS  Google Scholar 

  46. Glasgow, S., Ware, M. & Peatross, J. Poynting’s theorem and luminal total energy transport in passive dielectric media. Phys. Rev. E 64, 046610 (2001).

    Article  ADS  Google Scholar 

  47. Welters, A., Avniel, Y. & Johnson, S. G. Speed-of-light limitations in passive linear media. Phys. Rev. A 90, 023847 (2014).

    Article  ADS  Google Scholar 

  48. Tucker, R., Pei-Cheng, K. & Chang-Hasnain, C. Slow-light optical buffers: capabilities and fundamental limitations. J. Lightw. Technol. 23, 4046–4066 (2005).

    Article  ADS  Google Scholar 

  49. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  50. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  51. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711 (1999).

    Article  ADS  Google Scholar 

  52. Soljacic, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052 (2002).

    Article  ADS  Google Scholar 

  53. Povinelli, M. L., Johnson, S. G. & Joannopoulos, J. D. Slow-light, band-edge waveguides for tunable time delays. Opt. Express 13, 7145–7159 (2005).

    Article  ADS  Google Scholar 

  54. Miller, D. A. B. Fundamental limit for optical components. J. Opt. Soc. Am. B 24, A1–A18 (2007).

    Article  ADS  Google Scholar 

  55. Miller, D. A. B. Fundamental limit to linear one-dimensional slow light structures. Phys. Rev. Lett. 99, 203903 (2007).

    Article  ADS  Google Scholar 

  56. Fleury, R., Monticone, F. & Alù, A. Invisibility and cloaking: origins, present, and future perspectives. Phys. Rev. Applied 4, 037001 (2015).

    Article  ADS  Google Scholar 

  57. Pendry, J. B. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Hashemi, H., Oskooi, A., Joannopoulos, J. D. & Johnson, S. G. General scaling limitations of ground-plane and isolated-object cloaks. Phys. Rev. A 84, 023815 (2011).

    Article  ADS  Google Scholar 

  59. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

  60. Lee, K. K., Avniel, Y. & Johnson, S. G. Rigorous sufficient conditions for index-guided modes in microstructured dielectric waveguides. Opt. Express 16, 9261 (2008).

    Article  ADS  Google Scholar 

  61. Rechtsman, M. C. & Torquato, S. Method for obtaining upper bounds on photonic band gaps. Phys. Rev. B 80, 155126 (2009).

    Article  ADS  Google Scholar 

  62. Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nat. Photonics 7, 177–187 (2013).

    Article  ADS  Google Scholar 

  63. Yu, S., Qiu, C.-W., Chong, Y., Torquato, S. & Park, N. Engineered disorder in photonics. Nat. Rev. Mater. 6, 226–243 (2021).

    Article  ADS  Google Scholar 

  64. Pick, A. et al. General theory of spontaneous emission near exceptional points. Opt. Express 25, 12325 (2017).

    Article  ADS  Google Scholar 

  65. Miller, O. D. et al. Fundamental limits to optical response in absorptive systems. Opt. Express 24, 3329–3364 (2016).

    Article  ADS  Google Scholar 

  66. Barnett, S. M. & Loudon, R. Sum rule for modified spontaneous emission rates. Phys. Rev. Lett. 77, 2444–2446 (1996).

    Article  ADS  Google Scholar 

  67. Scheel, S. Sum rule for local densities of states in absorbing dielectrics. Phys. Rev. A 78, 013841 (2008).

    Article  ADS  Google Scholar 

  68. Markvart, T. The thermodynamics of optical étendue. J. Opt. A 10, 015008 (2007).

    Article  Google Scholar 

  69. Ries, H. Thermodynamic limitations of the concentration of electromagnetic radiation. J. Opt. Soc. Am. 72, 380–385 (1982).

    Article  ADS  Google Scholar 

  70. Zhang, H., Hsu, C. W. & Miller, O. D. Scattering concentration bounds: brightness theorems for waves. Optica 6, 1321–1327 (2019).

    Article  ADS  Google Scholar 

  71. Chung, H. & Miller, O. D. High-na achromatic metalenses by inverse design. Opt. Express 28, 6945–6965 (2020).

    Article  ADS  Google Scholar 

  72. Banerji, S. et al. Imaging with flat optics: metalenses or diffractive lenses? Optica 6, 805–810 (2019).

    Article  ADS  Google Scholar 

  73. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. https://www.nature.com/articles/s41565-017-0034-6 (2018).

  74. Lin, Z. & Johnson, S. G. Overlapping domains for topology optimization of large-area metasurfaces. Opt. Express 27, 32445 (2019).

    Article  ADS  Google Scholar 

  75. Shrestha, S., Overvig, A. C., Lu, M., Stein, A. & Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. https://www.nature.com/articles/s41377-018-0078-x (2018).

  76. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    Article  ADS  Google Scholar 

  77. Presutti, F. & Monticone, F. Focusing on bandwidth: achromatic metalens limits. Optica 7, 624 (2020).

    Article  ADS  Google Scholar 

  78. Kirchhoff, G. in Von Kirchhoff bis Planck, 131–151 (Springer, 1978).

  79. Onnes, H. K. & Ehrenfest, P. Simplified deduction of the formula from the theory of combinations which Planck uses as the basis of his radiation-theory. Proc. KNAW 17, 870–873 (1914).

  80. Robitaille, P.-M. Kirchhoff’s law of thermal emission: 150 years. Prog. Phys. 4, 3–13 (2009).

    Google Scholar 

  81. Miller, D. A., Zhu, L. & Fan, S. Universal modal radiation laws for all thermal emitters. Proc. Natl Acad. Sci. USA 114, 4336–4341 (2017).

    Article  ADS  Google Scholar 

  82. Ellis, A., McCarthy, M., Al Khateeb, M., Sorokina, M. & Doran, N. Performance limits in optical communications due to fiber nonlinearity. Adv. Opt. Photonics 9, 429–503 (2017).

    Article  ADS  Google Scholar 

  83. Mizuno, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA 106, 6044–6047 (2009).

    Article  ADS  Google Scholar 

  84. Yoon, J. et al. Broadband epsilon-near-zero perfect absorption in the near-infrared. Sci. Rep. 5, 22941 (2015).

    Article  Google Scholar 

  85. Magdi, S., Ji, D., Gan, Q. & Swillam, M. A. Broadband absorption enhancement in organic solar cells using refractory plasmonic ceramics. J. Nanophotonics 11, 016001 (2017).

    Article  ADS  Google Scholar 

  86. Venkataram, P. S., Molesky, S., Jin, W. & Rodriguez, A. W. Fundamental limits to radiative heat transfer: the limited role of nanostructuring in the near-field. Phys. Rev. Lett. 124, 013904 (2020).

    Article  ADS  Google Scholar 

  87. Yablonovitch, E. Statistical ray optics. Journal of the Optical Society of America 72, 899–907 (1982).

    Article  ADS  Google Scholar 

  88. Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

    Article  ADS  Google Scholar 

  89. Dienerowitz, M., Mazilu, M. & Dholakia, K. Optical manipulation of nanoparticles: a review. J. Nanophotonics 2, 021875 (2008).

    Article  Google Scholar 

  90. Macchi, A., Veghini, S. & Pegoraro, F. Light sail acceleration reexamined. Phys. Rev. Lett. 103, 085003 (2009).

    Article  ADS  Google Scholar 

  91. Kenneth, O. & Klich, I. Opposites attract: a theorem about the Casimir force. Phys. Rev. Lett. 97, 160401 (2006).

    Article  ADS  Google Scholar 

  92. Venkataram, P. S., Molesky, S., Chao, P. & Rodriguez, A. W. Fundamental limits to attractive and repulsive Casimir–Polder forces. Phys. Rev. A 101, 052115 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  93. Gustafsson, M. & Nordebo, S. Optimal antenna currents for Q, superdirectivity, and radiation patterns using convex optimization. IEEE Trans. Antennas Propag. 61, 1109–1118 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. Gustafsson, M. & Capek, M. Maximum gain, effective area, and directivity. IEEE Trans. Antennas Propag. 67, 5282 (2019).

    Article  ADS  Google Scholar 

  95. Capek, M., Gustafsson, M. & Schab, K. Minimization of antenna quality factor. IEEE Trans. Antennas Propag. 65, 4115–4123 (2017).

  96. Capek, M. et al. Optimal planar electric dipole antennas: searching for antennas reaching the fundamental bounds on selected metrics. IEEE Antennas Propag. Mag. 61, 19–29 (2019).

    Article  ADS  Google Scholar 

  97. Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge Univ. Press, 2004).

  98. Zhao, Q., Zhang, L. & Miller, O. D. Minimum dielectric-resonator mode volumes. Preprint at https://arXiv.org/abs/2008.13241 (2020).

  99. Goh, H. & Alù, A. Nonlocal scatterer for compact wave-based analog computing. Phys. Rev. Lett. 128, 073201 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  100. Bérenger, J.-P. On the Huygens absorbing boundary conditions for electromagnetics. J. Comput. Phys. 226, 354–378 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Lindell, I. V. & Sihvola, A. Boundary Conditions in Electromagnetics (Wiley, 2019).

  102. Tsang, L., Kong, J. A. & Ding, K.-H. Scattering of electromagnetic waves: theories and applications, Vol. 27 (Wiley, 2004).

  103. Molesky, S., Chao, P., Jin, W. & Rodriguez, A. W. Global \({\mathbb{T}}\) operator bounds on electromagnetic scattering: upper bounds on far-field cross sections. Phys. Rev. Res. 2, 033172 (2020).

    Article  Google Scholar 

  104. Sun, L. & Chew, W. C. A novel formulation of the volume integral equation for electromagnetic scattering. Waves Random Complex Media 19, 162–180 (2009).

    Article  ADS  MATH  Google Scholar 

  105. Samokhin, A. B. Integral Equations and Iteration Methods in Electromagnetic Scattering (de Gruyter, 2013).

  106. Costabel, M., Darrigrand, E. & Sakly, H. The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body. C. R. Math. 350, 93–197 (2012).

  107. Polimeridis, A. G., Reid, M. T. H., Johnson, S. G., White, J. K. & Rodriguez, A. W. On the computation of power in volume integral equation formulations. IEEE Trans. Antennas Propag. 63, 611–620 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. Polimeridis, A. G. et al. Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: incandescence and luminescence in arbitrary geometries. Phys. Rev. B 92, 134202 (2015).

    Article  ADS  Google Scholar 

  109. Liu, Q. S., Sun, S. & Chew, W. C. A potential-based integral equation method for low-frequency electromagnetic problems. IEEE Trans. Antennas Propag. 66, 1413–1426 (2018).

    Article  ADS  Google Scholar 

  110. Lippmann, B. A. & Schwinger, J. Variational principles for scattering processes. Phys. Rev. 79, 469 (1950).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bureau Standards 45, 255–282 (1950).

  112. Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2012).

  113. Kanwal, R. P. Linear Integral Equations (Springer, 2013).

  114. Krüger, M., Bimonte, G., Emig, T. & Kardar, M. Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects. Phys. Rev. B 86, 115423 (2012).

    Article  ADS  Google Scholar 

  115. Dyson, F. J. The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736 (1949).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Gell-Mann, M. & Goldberger, M. The formal theory of scattering. Phys. Rev. 91, 398 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. Van Kampen, N. S-matrix and causality condition. I. Maxwell field. Phys. Rev. 89, 1072 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  118. Landau, L. D. & Lifshitz, E. M. Statistical Physics, Vol. 5 (Elsevier, 2013).

  119. Rudin, W. Functional Analysis (McGraw-Hill Education, 1991).

    MATH  Google Scholar 

  120. Rudin, W. Real and Complex Analysis (McGraw-Hill Education, 2006).

    MATH  Google Scholar 

  121. Miller, O. D. et al. Fundamental limits to extinction by metallic nanoparticles. Phys. Rev. Lett. 112, 123903 (2014).

    Article  ADS  Google Scholar 

  122. Molesky, S., Jin, W., Venkataram, P. S. & Rodriguez, A. W. \({\mathbb{T}}\)-operator bounds on angle-integrated absorption and thermal radiation for arbitrary objects. Phys. Rev. Lett. 123, 257401 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  123. Chew, W. C. A new look at reciprocity and energy conservation theorems in electromagnetics. IEEE Trans. Antennas Propag. 56, 970–975 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. Valagiannopoulos, C. A. & Alú, A. The role of reactive energy in the radiation by a dipole antenna. IEEE Trans. Antennas Propag. 63, 3736–3741 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. Jackson, J. D. Classical Electrodynamics (AAPT, 1999).

  126. Vercruysse, D. et al. Directional fluorescence emission by individual v-antennas explained by mode expansion. ACS Nano 8, 8232–8241 (2014).

    Article  Google Scholar 

  127. Shahpari, M. & Thiel, D. V. Fundamental limitations for antenna radiation efficiency. IEEE Trans. Antennas Propag. 66, 3894–3901 (2018).

    Article  ADS  Google Scholar 

  128. Siegel, R. & Spuckler, C. M. Refractive index effects on radiation in an absorbing, emitting, and scattering laminated layer. J. Heat Transfer 115, 194–200 (1993).

    Article  ADS  Google Scholar 

  129. Yu, Z., Raman, A. & Fan, S. Thermodynamic upper bound on broadband light coupling with photonic structures. Phys. Rev. Lett. 109, 173901 (2012).

    Article  ADS  Google Scholar 

  130. Callahan, D. M., Munday, J. N. & Atwater, H. A. Solar cell light trapping beyond the ray optic limit. Nano Lett. 12, 214–218 (2012).

    Article  ADS  Google Scholar 

  131. Mokkapati, S. & Catchpole, K. Nanophotonic light trapping in solar cells. J. Appl. Phys. 112, 101101 (2012).

    Article  ADS  Google Scholar 

  132. Miroshnichenko, A. E. & Tribelsky, M. I. Ultimate absorption in light scattering by a finite obstacle. Phys. Rev. Lett. 120, 033902 (2018).

    Article  ADS  Google Scholar 

  133. Niv, A., Gharghi, M., Gladden, C., Miller, O. D. & Zhang, X. Near-field electromagnetic theory for thin solar cells. Phys. Rev. Lett. 109, 138701 (2012).

    Article  ADS  Google Scholar 

  134. Miller, O. D. & Yablonovitch, E. Photon extraction: the key physics for approaching solar cell efficiency limits. Proc. SPIE 8808, 880807 (2013).

  135. Xu, Y., Gong, T. & Munday, J. N. The generalized Shockley–Queisser limit for nanostructured solar cells. Sci. Rep. 5, 13536 (2015).

    Article  ADS  Google Scholar 

  136. Schab, K. et al. Trade-offs in absorption and scattering by nanophotonic structures. Opt. Express 28, 36584–36599 (2020).

    Article  ADS  Google Scholar 

  137. Capek, M., Jelinek, L. & Masek, M. Fundamental bounds for multi-port antennas. In Proc. 15th European Conference on Antennas and Propagation (EuCAP), https://doi.org/10.23919/EuCAP51087.2021.9411454 (IEEE, 2021).

  138. Shim, H., Fan, L., Johnson, S. G. & Miller, O. D. Fundamental limits to near-field optical response over any bandwidth. Phys. Rev. X 9, 011043 (2019).

    Google Scholar 

  139. Zhang, H., Kuang, Z., Puri, S. & Miller, O. D. Conservation-law-based global bounds to quantum optimal control. Phys. Rev. Lett. 127, 110506 (2021).

  140. Li, J. et al. Recent progress in mode-division multiplexed passive optical networks with low modal crosstalk. Opt. Fiber Technol. 35, 28–36 (2017).

    Article  ADS  Google Scholar 

  141. Yang, Z. et al. Density-matrix formalism for modal coupling and dispersion in mode-division multiplexing communications systems. Opt. Express 28, 18658–18680 (2020).

    Article  ADS  Google Scholar 

  142. Feng, C. et al. Wavelength-division-multiplexing (WDM)-based integrated electronic–photonic switching network (EPSN) for high-speed data processing and transportation. Nanophotonics 9, 4579–4588 (2020).

    Article  Google Scholar 

  143. Staude, I., Pertsch, T. & Kivshar, Y. S. All-dielectric resonant meta-optics lightens up. ACS Photonics 6, 802–814 (2019).

    Article  Google Scholar 

  144. Lin, Z. et al. End-to-end inverse design for inverse scattering for imaging and polarimetry. Preprint at https://arxiv.org/abs/2006.09145 (2020).

  145. Phan, T. et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl. 8, 1–9 (2019).

    Article  Google Scholar 

  146. Christiansen, R. E. et al. Fullwave Maxwell inverse design of axisymmetric, tunable, and multi-scale multi-wavelength metalenses. Opt. Express 28, 33854–33868 (2020).

    Article  ADS  Google Scholar 

  147. Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  148. Li, L. et al. Intelligent metasurface imager and recognizer. Light Sci. Appl. 8, 1–9 (2019).

    Article  ADS  Google Scholar 

  149. Rajabalipanah, H., Abdolali, A., Iqbal, S., Zhang, L. & Cui, T. J. How do space-time digital metasurfaces serve to perform analog signal processing? Preprint at https://arXiv.org/abs/2002.06773 (2020).

  150. Kravtsov, Y. A., Rytov, S. & Tatarskiĭ, V. Statistical problems in diffraction theory. Sov. Phys. Usp. 18, 118 (1975).

    Article  ADS  Google Scholar 

  151. Rytov, S. M., Kravtsov, Y. A. & Tatarskii, V. I. Principles of Statistical Radiophysics 2. Correlation Theory of Random Processes (Springer, 1988).

  152. Kubo, R. The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255 (1966).

    Article  ADS  MATH  Google Scholar 

  153. Mörters, P. & Peres, Y. Brownian Motion, Vol. 30 (Cambridge Univ. Press, 2010).

  154. Marconi, U. M. B., Puglisi, A., Rondoni, L. & Vulpiani, A. Fluctuation–dissipation: response theory in statistical physics. Phys. Rep. 461, 111–195 (2008).

    Article  ADS  Google Scholar 

  155. Landauer, R. Johnson–Nyquist noise derived from quantum mechanical transmission. Physica D 38, 226–229 (1989).

    Article  ADS  Google Scholar 

  156. Bimonte, G., Emig, T., Kardar, M. & Krüger, M. Nonequilibrium fluctuational quantum electrodynamics: heat radiation, heat transfer, and force. Annu. Rev. Condens. Matter Phys. 8, 119–143 (2017).

    Article  ADS  Google Scholar 

  157. Miller, O. D., Johnson, S. G. & Rodriguez, A. W. Shape-independent limits to near-field radiative heat transfer. Phys. Rev. Lett. 115, 204302 (2015).

    Article  ADS  Google Scholar 

  158. Xu, H. J., Xing, Z. B., Wang, F. & Cheng, Z. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem. Eng. Sci. 195, 462–483 (2019).

    Article  Google Scholar 

  159. Beck, A. & Eldar, Y. C. Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17, 844–860 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  160. Angeris, G., Vučković, J. & Boyd, S. P. Computational bounds for photonic design. ACS Photonics 6, 1232 (2019).

    Article  Google Scholar 

  161. Gustafsson, M., Capek, M. & Schab, K. Tradeoff between antenna efficiency and Q-factor. IEEE Trans. Antennas Propag. 67, 2482–2493 (2019).

    Article  ADS  Google Scholar 

  162. Chu, L. J. Physical limitations of omni-directional antennas. J. Appl. Phys. 19, 1163–1175 (1948).

    Article  ADS  Google Scholar 

  163. Harrington, R. F. Effect of antenna size on gain, bandwidth, and efficiency. J. Res. Natl Bureau Standards D 64, 1 (1960).

    MATH  Google Scholar 

  164. McLean, J. S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Trans. Antennas Propag. 44, 672 (1996).

    Article  ADS  Google Scholar 

  165. Capek, M. & Jelinek, L. Optimal composition of modal currents for minimal quality factor Q. IEEE Trans. Antennas Propag. 64, 5230–5242 (2016).

    Article  ADS  Google Scholar 

  166. Hulst, H. C. & van de Hulst, H. C. Light Scattering by Small Particles (Courier, 1981).

  167. Harrington, R., Mautz, J. & Chang, Y. Characteristic modes for dielectric and magnetic bodies. IEEE Trans. Antennas Propag. 20, 194–198 (1972).

    Article  ADS  Google Scholar 

  168. Trivedi, R. et al. Bounds for scattering from absorptionless electromagnetic structures. Phys. Rev. Applied 14, 014025 (2020).

    Article  ADS  Google Scholar 

  169. Angeris, G., Vučković, J. & Boyd, S. Convex restrictions in physical design. Sci. Rep. 11, 1–10 (2021).

    Article  Google Scholar 

  170. Men, H., Lee, K. Y., Freund, R. M., Peraire, J. & Johnson, S. G. Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Opt. Express 22, 22632–22648 (2014).

    Article  ADS  Google Scholar 

  171. Lin, Z. et al. Topology-optimized dual-polarization Dirac cones. Phys. Rev. B 97, 081408 (2018).

    Article  ADS  Google Scholar 

  172. Guest, J. K., Prévost, J. H. & Belytschko, T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61, 238–254 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  173. Zhou, M., Lazarov, B. S., Wang, F. & Sigmund, O. Minimum length scale in topology optimization by geometric constraints. Computer Methods Appl. Mech. Eng. 293, 266–282 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  174. Lazarov, B. S., Wang, F. & Sigmund, O. Length scale and manufacturability in density-based topology optimization. Arch. Appl. Mech. 86, 189–218 (2016).

    Article  ADS  Google Scholar 

  175. Li, Q., Chen, W., Liu, S. & Tong, L. Structural topology optimization considering connectivity constraint. Struct. Multidiscipl. Optim. 54, 971–984 (2016).

    Article  MathSciNet  Google Scholar 

  176. Aaronson, S. Guest column: NP-complete problems and physical reality. ACM SIGACT News 36, 30–52 (2005).

    Article  Google Scholar 

  177. Jelinek, L., Gustafsson, M., Capek, M. & Schab, K. Fundamental bounds on the performance of monochromatic passive cloaks. Opt. Express 29, 24068 (2021).

    Article  ADS  Google Scholar 

  178. Johnson, S. G. et al. The NLopt nonlinear optimization package. Version 2.6.2 (2019); http://github.com/stevengj/nlopt

  179. Sebbag, Y., Talker, E., Naiman, A., Barash, Y. & Levy, U. Demonstration of an integrated nanophotonic chip-scale alkali vapor magnetometer using inverse design. Light Sci. Appl. 10, 54 (2021).

    Article  ADS  Google Scholar 

  180. Kudyshev, Z. A., Kildishev, A. V., Shalaev, V. M. & Boltasseva, A. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Appl. Phys. Rev. 7, 021407 (2020).

    Article  ADS  Google Scholar 

  181. Fleury, R., Soric, J. & Alù, A. Physical bounds on absorption and scattering for cloaked sensors. Phys. Rev. B 89, 045122 (2014).

    Article  ADS  Google Scholar 

  182. Miller, D. A. B. Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. Appl. Opt. 39, 1681–1699 (2000).

    Article  ADS  Google Scholar 

  183. Gustafsson, M., Sohl, C. & Kristensson, G. Physical limitations on antennas of arbitrary shape. Proc. R. Soc. A 463, 2589 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  184. Hamilton, A. C. & Courtial, J. Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit. New J. Phys. 11, 013042 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Science Foundation under the Emerging Frontiers in Research and Innovation (EFRI) programme, grant no. EFMA-1640986, the Cornell Center for Materials Research (MRSEC) through award no. DMR-1719875, and the Defense Advanced Research Projects Agency (DARPA) under grant agreements no. HR00112090011, no. HR00111820046 and no. HR0011047197. R.K.D. acknowledges financial support from the Princeton Presidential Postdoctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Alejandro W. Rodriguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, P., Strekha, B., Kuate Defo, R. et al. Physical limits in electromagnetism. Nat Rev Phys 4, 543–559 (2022). https://doi.org/10.1038/s42254-022-00468-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00468-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing