Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Topology and geometry under the nonlinear electromagnetic spotlight

Abstract

For many materials, a precise knowledge of their dispersion spectra is insufficient to predict their ordered phases and physical responses. Instead, these materials are classified by the geometrical and topological properties of their wavefunctions. A key challenge is to identify and implement experiments that probe or control these quantum properties. In this Review, we describe recent progress in this direction, focusing on nonlinear electromagnetic responses that arise directly from quantum geometry and topology. We give an overview of the field by discussing theoretical ideas, experiments and the materials that drive them. We conclude by discussing how these techniques can be combined with device architectures to uncover, probe and ultimately control quantum phases with emergent topological and correlated properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of nonlinear approaches and their applications in studying new materials and quantum phases.
Fig. 2: Summary of second-order nonlinear processes.
Fig. 3: Nonlinear responses in topological insulators and inversion-breaking Weyl semimetals.

figure adapted with permission from ref. 70, APS (a); ref. 30, Springer Nature Ltd (b); ref. 78, Springer Nature Ltd (c); ref. 76, Springer Nature Ltd (d, top); ref. 32, APS (d, bottom).

Fig. 4: Nonlinear responses enabled by Berry curvature dipole and valley-contrasting Berry curvature.

figure adapted from ref. 66, Springer Nature Ltd (c); ref. 62, Springer Nature Ltd (d); ref. 64, AAAS (e); ref. 58, Springer Nature Ltd (f).

Similar content being viewed by others

References

  1. Göppert-Mayer, M. Über elementarakte mit zweiquantensprüngen. Ann. Phys. 401, 273–294 (1931).

    Article  Google Scholar 

  2. Liu, J., Xia, F., Xiao, D., García de Abajo, F. J. & Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020).

    Article  CAS  Google Scholar 

  3. Boyd, R. W. Nonlinear Optics (Academic, 2020).

  4. Harter, J. W., Zhao, Z. Y., Yan, J. Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7. Science 356, 295–299 (2017).

    Article  CAS  Google Scholar 

  5. Xu, S.-Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).

    Article  CAS  Google Scholar 

  6. Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    Article  CAS  Google Scholar 

  7. McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article  CAS  Google Scholar 

  8. Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Article  Google Scholar 

  9. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    Article  CAS  Google Scholar 

  10. Moessner, R. & Sondhi, S. L. Equilibration and order in quantum Floquet matter. Nat. Phys. 13, 424–428 (2017).

    Article  CAS  Google Scholar 

  11. Basov, D., Averitt, R. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  CAS  Google Scholar 

  12. Vaswani, C. et al. Light-driven Raman coherence as a nonthermal route to ultrafast topology switching in a Dirac semimetal. Phys. Rev. X 10, 021013 (2020).

    CAS  Google Scholar 

  13. Wen, X.-G. Choreographed entanglement dances: topological states of quantum matter. Science 363, eaal3099 (2019).

    Article  CAS  Google Scholar 

  14. Armitage, N., Mele, E. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  CAS  Google Scholar 

  15. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  CAS  Google Scholar 

  16. Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

    Article  CAS  Google Scholar 

  17. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  Google Scholar 

  18. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  Google Scholar 

  19. Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

    Article  CAS  Google Scholar 

  20. Ni, Z. et al. Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi. Nat. Commun. 12, 154 (2020).

  21. Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    Article  Google Scholar 

  22. Flicker, F. et al. Chiral optical response of multifold fermions. Phys. Rev. B 98, 155145 (2018).

    Article  CAS  Google Scholar 

  23. Ni, Z. et al. Linear and nonlinear optical responses in the chiral multifold semimetal RhSi. npj Quantum Mater. 5, 96 (2020).

    Article  CAS  Google Scholar 

  24. Ahn, J., Guo, G.-Y. & Nagaosa, N. Low-frequency divergence and quantum geometry of the bulk photovoltaic effect in topological semimetals. Phys. Rev. 10, 041041 (2020).

    Article  CAS  Google Scholar 

  25. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Article  Google Scholar 

  26. de Juan, F. et al. Difference frequency generation in topological semimetals. Phys. Rev. Res. 2, 012017 (2020).

    Article  Google Scholar 

  27. Holder, T., Kaplan, D. & Yan, B. Consequences of time-reversal-symmetry breaking in the lightmatter interaction: Berry curvature, quantum metric, and diabatic motion. Phys. Rev. Res. 2, 033100 (2020).

    Article  CAS  Google Scholar 

  28. Zhang, Y. et al. Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3. Nat. Commun. 10, 3783 (2019).

    Article  Google Scholar 

  29. Fregoso, B. M., Morimoto, T. & Moore, J. E. Quantitative relationship between polarization differences and the zone-averaged shift photocurrent. Phys. Rev. B 96, 075421 (2017).

    Article  Google Scholar 

  30. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  CAS  Google Scholar 

  31. Tan, L. Z. & Rappe, A. M. Upper limit on shift current generation in extended systems. Phys. Rev. B 100, 085102 (2019).

    Article  CAS  Google Scholar 

  32. Patankar, S. et al. Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs. Phys. Rev. B 98, 165113 (2018).

    Article  CAS  Google Scholar 

  33. Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).

    Article  Google Scholar 

  34. Kim, K. W., Morimoto, T. & Nagaosa, N. Shift charge and spin photocurrents in Dirac surface states of topological insulator. Phys. Rev. B 95, 035134 (2017).

    Article  Google Scholar 

  35. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

  36. Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    Article  Google Scholar 

  37. Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    Article  CAS  Google Scholar 

  38. Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).

    Article  Google Scholar 

  39. Genkin, V. & Mednis, P. Contribution to the theory of nonlinear effects in crystals with account taken of partially filled bands. Sov. Phys. JETP 27, 609 (1968).

    Google Scholar 

  40. Glazov, M. & Ganichev, S. High frequency electric field induced nonlinear effects in graphene. Phys. Rep. 535, 101–138 (2014).

    Article  CAS  Google Scholar 

  41. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in timereversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  42. Morimoto, T., Zhong, S., Orenstein, J. & Moore, J. E. Semiclassical theory of nonlinear magnetooptical responses with applications to topological Dirac/Weyl semimetals. Phys. Rev. B 94, 245121 (2016).

    Article  Google Scholar 

  43. Golub, L., Ivchenko, E. & Spivak, B. Semiclassical theory of the circular photogalvanic effect in gyrotropic systems. Phys. Rev. B 102, 085202 (2020).

    Article  CAS  Google Scholar 

  44. Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010).

    Article  CAS  Google Scholar 

  45. Matsyshyn, O. & Sodemann, I. Nonlinear Hall acceleration and the quantum rectification sum rule. Phys. Rev. Lett. 123, 246602 (2019).

    Article  CAS  Google Scholar 

  46. Parker, D. E., Morimoto, T., Orenstein, J. & Moore, J. E. Diagrammatic approach to nonlinear optical response with application to Weyl semimetals. Phys. Rev. B 99, 045121 (2019).

    Article  CAS  Google Scholar 

  47. Cheng, J. L., Sipe, J. E., Wu, S. W. & Guo, C. Intraband divergences in third order optical response of 2D systems. APL Photonics 4, 034201 (2019).

    Article  Google Scholar 

  48. Fregoso, B. M., Muniz, R. A. & Sipe, J. E. Jerk current: a novel bulk photovoltaic effect. Phys. Rev. Lett. 121, 176604 (2018).

    Article  CAS  Google Scholar 

  49. Lee, C. H. et al. Enhanced higher harmonic generation from nodal topology. Phys. Rev. B 102, 035138 (2020).

    Article  CAS  Google Scholar 

  50. Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

    Article  CAS  Google Scholar 

  51. Luu, T. T. & Wörner, H. J. Measurement of the Berry curvature of solids using high-harmonic spectroscopy. Nat. Commun. 9, 916 (2018).

    Article  Google Scholar 

  52. Murakami, Y., Eckstein, M. & Werner, P. High-harmonic generation in Mott insulators. Phys. Rev. Lett. 121, 057405 (2018).

    Article  CAS  Google Scholar 

  53. Bauer, D. & Hansen, K. K. High-harmonic generation in solids with and without topological edge states. Phys. Rev. Lett. 120, 177401 (2018).

    Article  CAS  Google Scholar 

  54. Chacón, A. et al. Circular dichroism in higher-order harmonic generation: heralding topological phases and transitions in Chern insulators. Phys. Rev. B 102, 134115 (2020).

    Article  Google Scholar 

  55. Jia, L. et al. High harmonic generation in magnetically-doped topological insulators. Phys. Rev. B 100, 125144 (2019).

    Article  CAS  Google Scholar 

  56. Shen, Y. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519–525 (1989).

    Article  CAS  Google Scholar 

  57. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    Article  CAS  Google Scholar 

  58. Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015).

    Article  CAS  Google Scholar 

  59. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  CAS  Google Scholar 

  60. Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).

    Article  CAS  Google Scholar 

  61. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article  CAS  Google Scholar 

  62. Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900–906 (2018).

    Article  CAS  Google Scholar 

  63. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).

    Article  CAS  Google Scholar 

  64. Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    Article  CAS  Google Scholar 

  65. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  CAS  Google Scholar 

  66. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous hall effect in few-layer wte2. Nat. Mater. 18, 324–328 (2019).

    Article  CAS  Google Scholar 

  67. Duan, J. et al. Identification of helicity-dependent photocurrents from topological surface states in Bi2Se3 gated by ionic liquid. Sci. Rep. 4, 4889 (2014).

    Article  CAS  Google Scholar 

  68. McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).

    Article  CAS  Google Scholar 

  69. Pan, Y. et al. Helicity dependent photocurrent in electrically gated (Bi1−xSbx)2Te3 thin films. Nat. Commun. 8, 1037 (2017).

    Article  Google Scholar 

  70. Okada, K. N. et al. Enhanced photogalvanic current in topological insulators via Fermi energy tuning. Phys. Rev. B 93, 081403 (2016).

    Article  Google Scholar 

  71. Tan, L. Z. & Rappe, A. M. Enhancement of the bulk photovoltaic effect in topological insulators. Phys. Rev. Lett. 116, 237402 (2016).

    Article  Google Scholar 

  72. Ogawa, N. et al. Zero-bias photocurrent in ferromagnetic topological insulator. Nat. Commun. 7, 12246 (2016).

    Article  CAS  Google Scholar 

  73. Chan, C.-K., Lindner, N. H., Refael, G. & Lee, P. A. Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104 (2017).

    Article  Google Scholar 

  74. König, E. J., Xie, H.-Y., Pesin, D. A. & Levchenko, A. Photogalvanic effect in Weyl semimetals. Phys. Rev. B 96, 075123 (2017).

    Article  Google Scholar 

  75. Zhang, Y. et al. Photogalvanic effect in Weyl semimetals from first principles. Phys. Rev. B 97, 241118 (2018).

    Article  CAS  Google Scholar 

  76. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).

    Article  CAS  Google Scholar 

  77. Sirica, N. et al. Tracking ultrafast photocurrents in the Weyl semimetal TaAs using THz emission spectroscopy. Phys. Rev. Lett. 122, 197401 (2019).

    Article  CAS  Google Scholar 

  78. Gao, Y. et al. Chiral terahertz wave emission from the weyl semimetal TaAs. Nat. Commun. 11, 720 (2020).

    Article  CAS  Google Scholar 

  79. Sirica, N. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Preprint at https://arxiv.org/abs/2005.10308 (2020).

  80. Ji, Z. et al. Spatially dispersive circular photogalvanic effect in a Weyl semimetal. Nat. Mater. 18, 955–962 (2019).

    Article  CAS  Google Scholar 

  81. Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    Article  CAS  Google Scholar 

  82. Soavi, G. et al. Broadband, electrically tunable third-harmonic generation in graphene. Nat. Nanotechnol. 13, 583–588 (2018).

    Article  CAS  Google Scholar 

  83. Mikhailov, S. A. Quantum theory of third-harmonic generation in graphene. Phys. Rev. B 90, 241301 (2014).

    Article  Google Scholar 

  84. Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

    Article  CAS  Google Scholar 

  85. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  86. Zhou, B. T., Zhang, C.-P. & Law, K. T. Highly tunable nonlinear hall effects induced by spin-orbit couplings in strained polar transition-metal dichalcogenides. Phys. Rev. Appl. 13, 024053 (2020).

    Article  CAS  Google Scholar 

  87. Yang, X. et al. Lightwave-driven gapless superconductivity and forbidden quantum beats by terahertz symmetry breaking. Nat. Photonics 13, 707–713 (2019).

    Article  CAS  Google Scholar 

  88. Fei, R., Tan, L. Z. & Rappe, A. M. Shift-current bulk photovoltaic effect influenced by quasiparticle and exciton. Phys. Rev. B 101, 045104 (2020).

    Article  CAS  Google Scholar 

  89. Chan, Y. H., Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Exciton shift currents: DC conduction with sub bandgap photo excitations. Preprint at https://arxiv.org/abs/1904.12813 (2019).

  90. Kishida, H. et al. Gigantic optical nonlinearity in one-dimensional Mott–Hubbard insulators. Nature 405, 929–932 (2000).

    Article  CAS  Google Scholar 

  91. Silva, R. E. F., Blinov, I. V., Rubtsov, A. N., Smirnova, O. & Ivanov, M. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems. Nat. Photonics 12, 266–270 (2018).

    Article  CAS  Google Scholar 

  92. Avdoshkin, A., Kozii, V. & Moore, J. E. Interactions remove the quantization of the chiral photocurrent at Weyl points. Phys. Rev. Lett. 124, 196603 (2020).

    Article  CAS  Google Scholar 

  93. Mandal, I. Effect of interactions on the quantization of the chiral photocurrent for double-Weyl semimetals. Symmetry 12, 919 (2020).

    Article  Google Scholar 

  94. Grushin, A. G. & Palumbo, G. Fermionic dualities with axial gauge fields. Phys. Rev. B 102, 115146 (2020).

  95. Seki, S., Yu, X., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    Article  CAS  Google Scholar 

  96. Wang, Y. et al. The range of non-Kitaev terms and fractional particles in 𝛼-RuCl3. npj Quantum Mater. 5, 14 (2020).

    Article  CAS  Google Scholar 

  97. Sheridan, E. et al. Gate-tunable optical nonlinearities and extinction in graphene/LaAlO3/SrTiO3 nanostructures. Nano Lett. 20, 6966–6973 (2020).

    Article  CAS  Google Scholar 

  98. Ventura, G. B., Passos, D. J., Lopes dos Santos, J. M. B., Viana Parente Lopes, J. M. & Peres, N. M. R. Gauge covariances and nonlinear optical responses. Phys. Rev. B 96, 035431 (2017).

    Article  Google Scholar 

  99. Ibañez Azpiroz, J., Tsirkin, S. S. & Souza, I. Ab initio calculation of the shift photocurrent by Wannier interpolation. Phys. Rev. B 97, 245143 (2018).

    Article  Google Scholar 

  100. Plank, H. et al. Photon drag effect in (Bi1−𝑥Sb𝑥)2Te3 three-dimensional topological insulators. Phys. Rev. B 93, 125434 (2016).

    Article  Google Scholar 

  101. Luo, L. et al. Ultrafast manipulation of topologically enhanced surface transport driven by midinfrared and terahertz pulses in Bi2Se3. Nat. Commun. 10, 607 (2019).

    Article  CAS  Google Scholar 

  102. Gullans, M., Chang, D. E., Koppens, F. H. L., de Abajo, F. J. G. & Lukin, M. D. Single-photon nonlinear optics with graphene plasmons. Phys. Rev. Lett. 111, 247401 (2013).

    Article  CAS  Google Scholar 

  103. Belinicher, V., Ivchenko, E. & Pikus, G. Transient photocurrent in gyrotropic crystals. Sov. Phys. Semicond. 20, 558–561 (1986).

    Google Scholar 

  104. Sotome, M. et al. Spectral dynamics of shift current in ferroelectric semiconductor SbSI. Proc. Natl Acad. Sci. USA 116, 1929–1933 (2019).

    Article  CAS  Google Scholar 

  105. Golub, L. E. & Ivchenko, E. L. Circular and magnetoinduced photocurrents in Weyl semimetals. Phys. Rev. B 98, 075305 (2018).

    Article  CAS  Google Scholar 

  106. Nandy, S. & Sodemann, I. Symmetry and quantum kinetics of the nonlinear Hall effect. Phys. Rev. B 100, 195117 (2019).

    Article  CAS  Google Scholar 

  107. König, E. J., Dzero, M., Levchenko, A. & Pesin, D. A. Gyrotropic Hall effect in Berry-curved materials. Phys. Rev. B 99, 155404 (2019).

    Article  Google Scholar 

  108. Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time reversal symmetry. Nat. Commun. 10, 3047 (2019).

    Article  CAS  Google Scholar 

  109. Xiao, C., Du, Z. & Niu, Q. Theory of nonlinear hall effects: modified semiclassics from quantum kinetics. Phys. Rev. B 100, 165422 (2019).

    Article  CAS  Google Scholar 

  110. Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726–729 (2015).

    Article  CAS  Google Scholar 

  111. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  CAS  Google Scholar 

  112. Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019).

    Article  CAS  Google Scholar 

  113. Liu, D. et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365, 1282–1285 (2019).

    Article  CAS  Google Scholar 

  114. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    Article  CAS  Google Scholar 

  115. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    Article  CAS  Google Scholar 

  116. Huang, S.-M. et al. New type of Weyl semimetal with quadratic double Weyl fermions. Proc. Natl Acad. Sci. USA 113, 1180–1185 (2016).

    Article  CAS  Google Scholar 

  117. Schröter, N. B. M. et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2019).

    Article  Google Scholar 

  118. Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    Article  CAS  Google Scholar 

  119. Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    Article  CAS  Google Scholar 

  120. Takane, D. et al. Observation of chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi. Phys. Rev. Lett. 122, 076402 (2019).

    Article  CAS  Google Scholar 

  121. Chang, G. et al. Unconventional photocurrents from surface Fermi arcs in topological chiral semimetals. Phys. Rev. Lett. 124, 166404 (2020).

    Article  CAS  Google Scholar 

  122. Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. van der waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019).

    Article  CAS  Google Scholar 

  123. Song, J. C. & Gabor, N. M. Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol. 13, 986–993 (2018).

    Article  CAS  Google Scholar 

  124. Sarma, S. D., Adam, S., Hwang, E. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407 (2011).

    Article  Google Scholar 

  125. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    Article  CAS  Google Scholar 

  126. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    Article  CAS  Google Scholar 

  127. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  CAS  Google Scholar 

  128. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  CAS  Google Scholar 

  129. Deng, Y. et al. Gate-tunable room-temperature ferromagnetismin two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  CAS  Google Scholar 

  130. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    Article  CAS  Google Scholar 

  131. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    Article  CAS  Google Scholar 

  132. Liu, C. et al. Robust axion insulator and chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    Article  CAS  Google Scholar 

  133. Fei, R., Song, W. & Yang, L. Giant photogalvanic effect and second-harmonic generation in magnetic axion insulators. Phys. Rev. B 102, 035440 (2020).

    Article  CAS  Google Scholar 

  134. Wang, Y. et al. Modulation doping via a two-dimensional atomic crystalline acceptor. Nano Lett. 20, 8446–8452 (2020).

    Article  CAS  Google Scholar 

  135. Island, J. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der waals proximity effect. Nature 571, 85–89 (2019).

    Article  CAS  Google Scholar 

  136. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  137. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  CAS  Google Scholar 

  138. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  CAS  Google Scholar 

  139. Sung, J. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).

    Article  CAS  Google Scholar 

  140. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

  141. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

  142. Herzig Sheinfux, H. & Koppens, F. H. The rise of twist-optics. Nano Lett. 20, 6935–6936 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. de Juan (Donostia International Physics Center), J. Song (Nanyang Technological University), S. Xu (Harvard University) and Y. Zhang (Massachusetts Institute of Technology) for discussions and critical reading of the manuscript. K.S.B. is grateful for the primary support of the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0018675. Q.M. is supported by the Center for the Advancement of Topological Semimetals, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, through the Ames Laboratory under contract DE-AC02-07CH11358 (manuscript preparation and writing). A.G.G. is supported by the ANR under the grant ANR-18-CE30-0001-01 and by the European Union Horizon 2020 research and innovation programme under grant agreement no. 829044 (SCHINES).

Author information

Authors and Affiliations

Authors

Contributions

K.S.B. conceived of the project. All authors wrote the manuscript together.

Corresponding author

Correspondence to Kenneth S. Burch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Grushin, A.G. & Burch, K.S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021). https://doi.org/10.1038/s41563-021-00992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00992-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing