Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cycling Fermi arc electrons with Weyl orbits

An Author Correction to this article was published on 07 September 2021

Abstract

The Weyl orbit refers to a new type of cyclotron orbit recently proposed in Weyl semimetals. This is a surface–bulk hybrid orbit that can be modulated by thickness and external fields. Recently, the Weyl orbit has been used to realize the 3D quantum Hall effect, and subsequent rapid progress in experiments promise a new understanding of higher-dimension quantum Hall physics. In this Perspective, we review the theoretical background and the current experimental status of the Weyl orbit, present the extension of Weyl orbit physics in realizing the 3D quantum Hall effect and further discuss the opportunities in tuning topological quantum states and realizing device applications provided by the concept of the Weyl orbit.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematics of Fermi arcs and Weyl orbits.
Fig. 2: Quantum transport of the Weyl orbit in Dirac and Weyl semimetals.
Fig. 3: Quantum Hall effect of the Weyl orbit in Cd3As2.
Fig. 4: Emergent quantum phenomena and device applications based on the Weyl orbit.

References

  1. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011). Theoretical proposition of Weyl semimetal candidate and Fermi arc surface states.

    Article  ADS  Google Scholar 

  2. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018). This is a comprehensive review of Weyl and Dirac semimetals.

    Article  ADS  MathSciNet  Google Scholar 

  3. Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5, 5161 (2014). This paper proposed the concept of the Weyl orbit.

    Article  ADS  Google Scholar 

  4. Zhang, Y., Bulmash, D., Hosur, P., Potter, A. C. & Vishwanath, A. Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals. Sci. Rep. 6, 23741 (2016).

    Article  ADS  Google Scholar 

  5. Wang, C. M., Sun, H.-P., Lu, H.-Z. & Xie, X. C. 3D quantum Hall effect of Fermi arcs in topological semimetals. Phys. Rev. Lett. 119, 136806 (2017). This paper proposed the 3D quantum Hall effect based on the Weyl orbit.

    Article  ADS  Google Scholar 

  6. Li, H., Liu, H., Jiang, H. & Xie, X. C. 3D quantum Hall effect and a global picture of edge states in Weyl semimetals. Phys. Rev. Lett. 125, 036602 (2020).

    Article  ADS  Google Scholar 

  7. Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 117, 610–624 (1928).

    ADS  MATH  Google Scholar 

  8. Weyl, H. Elektron und Gravitation. I. Z. Phys. 56, 330–352 (1929).

    Article  ADS  MATH  Google Scholar 

  9. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  10. Huang, S.-M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015). Weng et al. (Phys. Rev. X, 2015) and Huang et al. (Nat. Commun., 2015) proposed the inversion-symmetry-breaking Weyl semimetal TaAs class.

    Article  ADS  Google Scholar 

  11. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  12. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015). Xu et al. (Science, 2015a) and Lv et al. (Phys. Rev. X, 2015) report the experimental evidence of Fermi arcs in Weyl semimetals.

    Google Scholar 

  13. Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

    Article  Google Scholar 

  14. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  Google Scholar 

  15. Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Article  Google Scholar 

  16. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    Article  ADS  Google Scholar 

  17. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  18. Ahn, J. & Yang, B.-J. Unconventional topological phase transition in two-dimensional systems with space-time inversion symmetry. Phys. Rev. Lett. 118, 156401 (2017).

    Article  ADS  Google Scholar 

  19. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  Google Scholar 

  20. Borisenko, S. et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Nat. Commun. 10, 3424 (2019).

    Article  ADS  Google Scholar 

  21. Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    Article  ADS  Google Scholar 

  22. Chang, G. et al. Topological Hopf and chain link semimetal states and their application to Co2MnGa. Phys. Rev. Lett. 119, 156401 (2017).

    Article  ADS  Google Scholar 

  23. Xu, Q. et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. B 97, 235416 (2018).

    Article  ADS  Google Scholar 

  24. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  ADS  Google Scholar 

  25. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    Article  ADS  Google Scholar 

  26. Ma, J.-Z. et al. Spin fluctuation induced Weyl semimetal state in the paramagnetic phase of EuCd2As2. Sci. Adv. 5, eaaw4718 (2019).

    Article  ADS  Google Scholar 

  27. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  ADS  Google Scholar 

  28. Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).

    Article  ADS  Google Scholar 

  29. Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

    Article  ADS  Google Scholar 

  30. Koepernik, K. et al. TaIrTe4: a ternary type-II Weyl semimetal. Phys. Rev. B 93, 201101 (2016).

    Article  ADS  Google Scholar 

  31. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  32. Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    Article  ADS  Google Scholar 

  33. Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019).

    Article  ADS  Google Scholar 

  34. Belopolski, I. et al. Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points. Nat. Commun. 8, 942 (2017).

    Article  ADS  Google Scholar 

  35. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Article  Google Scholar 

  36. Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    Article  ADS  Google Scholar 

  37. Liu, D. F. et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365, 1282–1285 (2019).

    Article  ADS  Google Scholar 

  38. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    Article  ADS  Google Scholar 

  39. Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).

    Article  ADS  Google Scholar 

  40. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    Article  Google Scholar 

  41. Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

    Article  ADS  Google Scholar 

  42. Fang, C., Gilbert, M. J., Dai, X. & Bernevig, B. A. Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 108, 266802 (2012).

    Article  ADS  Google Scholar 

  43. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  44. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013). The above two papers predict the most widely studied Dirac semimetal candidates, Na3Bi and Cd3As2.

    Article  ADS  Google Scholar 

  45. Yang, B. J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).

    Article  ADS  Google Scholar 

  46. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014). An ARPES study of Dirac semimetals.

    Article  ADS  Google Scholar 

  47. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13, 677–681 (2014).

    Article  ADS  Google Scholar 

  48. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 5, 3786 (2014).

    Article  ADS  Google Scholar 

  49. Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    Article  ADS  Google Scholar 

  50. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  Google Scholar 

  51. Yu, R., Weng, H., Fang, Z., Dai, X. & Hu, X. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 115, 036807 (2015).

    Article  ADS  Google Scholar 

  52. Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

    Article  ADS  Google Scholar 

  53. Yan, M. et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 8, 257 (2017).

    Article  ADS  Google Scholar 

  54. Morimoto, T. & Furusaki, A. Weyl and Dirac semimetals with Z2 topological charge. Phys. Rev. B 89, 235127 (2014).

    Article  ADS  Google Scholar 

  55. Xu, S.-Y. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2015).

    Article  ADS  Google Scholar 

  56. Nielsen, H. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  57. Zyuzin, A. A. & Burkov, A. A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012).

    Article  ADS  Google Scholar 

  58. Wang, Z. & Zhang, S.-C. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107 (2013).

    Article  ADS  Google Scholar 

  59. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 4807–4813 (2012).

    Google Scholar 

  60. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

    Article  Google Scholar 

  62. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  63. Zhang, C.-L. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016).

    Article  ADS  Google Scholar 

  64. Zhang, C. et al. Room-temperature chiral charge pumping in Dirac semimetals. Nat. Commun. 8, 13741 (2017).

    Article  ADS  Google Scholar 

  65. Li, H. et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun. 7, 10301 (2016).

    Article  ADS  Google Scholar 

  66. Li, C. Z. et al. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat. Commun. 6, 10137 (2015).

    Article  ADS  Google Scholar 

  67. Yuan, X. et al. The discovery of dynamic chiral anomaly in a Weyl semimetal NbAs. Nat. Commun. 11, 1259 (2020).

    Article  ADS  Google Scholar 

  68. Yang, K.-Y., Lu, Y.-M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    Article  ADS  Google Scholar 

  69. Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

    Article  ADS  Google Scholar 

  70. Liang, T. et al. Anomalous Hall effect in ZrTe5. Nat. Phys. 14, 451–455 (2018).

    Article  Google Scholar 

  71. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  Google Scholar 

  72. Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

    Article  Google Scholar 

  73. Liang, T. et al. Anomalous Nernst effect in the Dirac semimetal Cd3As2. Phys. Rev. Lett. 118, 136601 (2017).

    Article  ADS  Google Scholar 

  74. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  ADS  Google Scholar 

  75. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).

    Article  Google Scholar 

  76. Chen, R. Y. et al. Magnetoinfrared spectroscopy of Landau levels and Zeeman splitting of three-dimensional massless Dirac fermions in ZrTe5. Phys. Rev. Lett. 115, 176404 (2015).

    Article  ADS  Google Scholar 

  77. Akrap, A. et al. Magneto-optical signature of massless Kane electrons in Cd3As2. Phys. Rev. Lett. 117, 136401 (2016).

    Article  ADS  Google Scholar 

  78. Polatkan, S. et al. Magneto-optics of a Weyl semimetal beyond the conical band approximation: case study of TaP. Phys. Rev. Lett. 124, 176402 (2020).

    Article  ADS  Google Scholar 

  79. Okamura, Y. et al. Giant magneto-optical responses in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 4619 (2020).

    Article  ADS  Google Scholar 

  80. Jiang, Y. et al. Landau quantization in coupled Weyl points: a case study of semimetal NbP. Nano Lett. 18, 7726–7731 (2018).

    Article  ADS  Google Scholar 

  81. Yuan, X. et al. Chiral Landau levels in Weyl semimetal NbAs with multiple topological carriers. Nat. Commun. 9, 1854 (2018).

    Article  ADS  Google Scholar 

  82. Son, D. T. & Yamamoto, N. Berry curvature, triangle anomalies, and the chiral magnetic effect in Fermi liquids. Phys. Rev. Lett. 109, 181602 (2012).

    Article  ADS  Google Scholar 

  83. Grushin, A. G. Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semi-metals. Phys. Rev. D 86, 045001 (2012).

    Article  ADS  Google Scholar 

  84. Song, Z. & Dai, X. Hear the sound of Weyl fermions. Phys. Rev. X 9, 021053 (2019).

    Google Scholar 

  85. Xiang, J. et al. Giant magnetic quantum oscillations in the thermal conductivity of TaAs: indications of chiral zero sound. Phys. Rev. X 9, 031036 (2019).

    Google Scholar 

  86. Zhang, Y. et al. Photogalvanic effect in Weyl semimetals from first principles. Phys. Rev. B 97, 241118 (2018).

    Article  ADS  Google Scholar 

  87. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article  Google Scholar 

  88. Chan, C.-K., Lindner, N. H., Refael, G. & Lee, P. A. Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104 (2017).

    Article  ADS  Google Scholar 

  89. Kharzeev, D. E., Kikuchi, Y., Meyer, R. & Tanizaki, Y. Giant photocurrent in asymmetric Weyl semimetals from the helical magnetic effect. Phys. Rev. B 98, 014305 (2018).

    Article  ADS  Google Scholar 

  90. Wang, Q. et al. Robust edge photocurrent response on layered type II Weyl semimetal WTe2. Nat. Commun. 10, 5736 (2019).

    Article  ADS  Google Scholar 

  91. Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

    Article  ADS  Google Scholar 

  92. Ji, Z. et al. Spatially dispersive circular photogalvanic effect in a Weyl semimetal. Nat. Mater. 18, 955–962 (2019).

    Article  ADS  Google Scholar 

  93. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).

    Article  ADS  Google Scholar 

  94. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  ADS  Google Scholar 

  95. Kaushik, S., Kharzeev, D. E. & Philip, E. J. Chiral magnetic photocurrent in Dirac and Weyl materials. Phys. Rev. B 99, 075150 (2019).

    Article  ADS  Google Scholar 

  96. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  ADS  Google Scholar 

  97. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  ADS  Google Scholar 

  98. Zhang, Y., Sun, Y. & Yan, B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101 (2018).

    Article  ADS  Google Scholar 

  99. Vafek, O. & Vishwanath, A. Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).

    Article  ADS  Google Scholar 

  100. Burkov, A. A. Chiral anomaly and transport in Weyl metals. J. Phys. Condens. Matter 27, 113201 (2015).

    Article  ADS  Google Scholar 

  101. Hosur, P. & Qi, X. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

    Article  ADS  Google Scholar 

  102. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article  ADS  Google Scholar 

  103. Burkov, A. A. Weyl metals. Annu. Rev. Condens. Matter Phys. 9, 359–378 (2018).

    Article  ADS  Google Scholar 

  104. Hasan, M. Z., Xu, S.-Y., Belopolski, I. & Huang, S.-M. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Condens. Matter Phys. 8, 289–309 (2017).

    Article  ADS  Google Scholar 

  105. Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).

    Article  ADS  Google Scholar 

  106. Burkov, A. A. Topological semimetals. Nat. Mater. 15, 1145–1148 (2016).

    Article  ADS  Google Scholar 

  107. Fang, C., Weng, H., Dai, X. & Fang, Z. Topological nodal line semimetals. Chin. Phys. B 25, 117106 (2016).

    Article  ADS  Google Scholar 

  108. Wang, A.-Q., Ye, X.-G., Yu, D.-P. & Liao, Z.-M. Topological semimetal nanostructures: from properties to topotronics. ACS Nano 14, 3755–3778 (2020).

    Article  Google Scholar 

  109. Zhang, C., Lu, H.-Z., Shen, S.-Q., Chen, Y. P. & Xiu, F. Towards the manipulation of topological states of matter: a perspective from electron transport. Sci. Bull. 63, 580–594 (2018).

    Article  Google Scholar 

  110. Lu, H.-Z. & Shen, S.-Q. Quantum transport in topological semimetals under magnetic fields. Front. Phys. 12, 127201 (2017).

    Article  ADS  Google Scholar 

  111. Sun, H.-P. & Lu, H.-Z. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys. 14, 33405 (2019).

    Article  ADS  Google Scholar 

  112. Gao, H., Venderbos, J. W. F., Kim, Y. & Rappe, A. M. Topological semimetals from first principles. Annu. Rev. Mater. Res. 49, 153–183 (2019).

    Article  ADS  Google Scholar 

  113. Hu, J., Xu, S.-Y., Ni, N. & Mao, Z. Transport of topological semimetals. Annu. Rev. Mater. Res. 49, 207–252 (2019).

    Article  ADS  Google Scholar 

  114. Bernevig, A., Weng, H., Fang, Z. & Dai, X. Recent progress in the study of topological semimetals. J. Phys. Soc. Jpn. 87, 041001 (2018).

    Article  ADS  Google Scholar 

  115. Wang, S., Lin, B.-C., Wang, A.-Q., Yu, D.-P. & Liao, Z.-M. Quantum transport in Dirac and Weyl semimetals: a review. Adv. Phys. X 2, 518–544 (2017).

    Google Scholar 

  116. Schoop, L. M., Pielnhofer, F. & Lotsch, B. V. Chemical principles of topological semimetals. Chem. Mater. 30, 3155–3176 (2018).

    Article  Google Scholar 

  117. Zhang, Y. Cyclotron orbit knot and tunable-field quantum Hall effect. Phys. Rev. Res. 1, 022005 (2019).

    Article  Google Scholar 

  118. Peri, V., Dubček, T., Valenti, A., Ilan, R. & Huber, S. D. Weyl orbits without an external magnetic field. Phys. Rev. B 101, 235117 (2020).

    Article  ADS  Google Scholar 

  119. Kourtis, S., Li, J., Wang, Z., Yazdani, A. & Bernevig, B. A. Universal signatures of Fermi arcs in quasiparticle interference on the surface of Weyl semimetals. Phys. Rev. B 93, 041109 (2016).

    Article  ADS  Google Scholar 

  120. Batabyal, R. et al. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions. Sci. Adv. 2, e1600709 (2016).

    Article  ADS  Google Scholar 

  121. Zheng, H. et al. Atomic-scale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy. ACS Nano 10, 1378–1385 (2016).

    Article  Google Scholar 

  122. Inoue, H. et al. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184–1187 (2016).

    Article  ADS  Google Scholar 

  123. Analytis, J. G. et al. Two-dimensional surface state in the quantum limit of a topological insulator. Nat. Phys. 6, 960–964 (2010).

    Article  Google Scholar 

  124. Peng, H. et al. Aharonov–Bohm interference in topological insulator nanoribbons. Nat. Mater. 9, 225–229 (2010).

    Article  ADS  Google Scholar 

  125. Kong, D. et al. Ambipolar field effect in the ternary topological insulator (BixSb1−x)2Te3 by composition tuning. Nat. Nanotechnol. 6, 705–709 (2011).

    Article  ADS  Google Scholar 

  126. Zhang, J. et al. Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011).

    Article  ADS  Google Scholar 

  127. Xiu, F. et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 6, 216–221 (2011).

    Article  ADS  Google Scholar 

  128. Moll, P. J. W. et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature 535, 266–270 (2016). A transport study of the Weyl orbit.

    Article  ADS  Google Scholar 

  129. Zhang, C. et al. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat. Commun. 8, 1272 (2017). Report of quantum Hall effect in Cd3As2.

    Article  ADS  Google Scholar 

  130. Zheng, G. et al. Recognition of Fermi-arc states through the magnetoresistance quantum oscillations in Dirac semimetal Cd3As2 nanoplates. Phys. Rev. B 96, 121407 (2017).

    Article  ADS  Google Scholar 

  131. Zhang, C. et al. Ultrahigh conductivity in Weyl semimetal NbAs nanobelts. Nat. Mater. 18, 482–488 (2019). This work shows that the Fermi arc structure can supress electron scattering and achieve ultrahigh conductivity.

    Article  ADS  Google Scholar 

  132. Zhang, C. et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature 565, 331–336 (2019). This paper presents evidences of 3D quantum Hall effect based on Weyl orbits.

    Article  ADS  Google Scholar 

  133. Schumann, T. et al. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett. 120, 016801 (2018).

    Article  ADS  Google Scholar 

  134. Li, P. et al. Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 8, 2150 (2017).

    Article  ADS  Google Scholar 

  135. Nair, N. L. et al. Signatures of possible surface states in TaAs. Phys. Rev. B 102, 075402 (2020).

    Article  ADS  Google Scholar 

  136. Resta, G., Pi, S.-T., Wan, X. & Savrasov, S. Y. High surface conductivity of Fermi-arc electrons in Weyl semimetals. Phys. Rev. B 97, 085142 (2018).

    Article  ADS  Google Scholar 

  137. Wang, L.-X., Li, C.-Z., Yu, D.-P. & Liao, Z.-M. Aharonov–Bohm oscillations in Dirac semimetal Cd3As2 nanowires. Nat. Commun. 7, 10769 (2016).

    Article  ADS  Google Scholar 

  138. Lin, B.-C. et al. Gate-tuned Aharonov-Bohm interference of surface states in a quasiballistic Dirac semimetal nanowire. Phys. Rev. B 95, 235436 (2017).

    Article  ADS  Google Scholar 

  139. Jauregui, L. A., Pettes, M. T., Rokhinson, L. P., Shi, L. & Chen, Y. P. Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon. Nat. Nanotechnol. 11, 345–351 (2016).

    Article  ADS  Google Scholar 

  140. Halperin, B. I. Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn. J. Appl. Phys. 26, 1913 (1987).

    Article  Google Scholar 

  141. Koshino, M., Aoki, H., Kuroki, K., Kagoshima, S. & Osada, T. Hofstadter butterfly and integer quantum Hall effect in three dimensions. Phys. Rev. Lett. 86, 1062–1065 (2001).

    Article  ADS  Google Scholar 

  142. Bernevig, B. A., Hughes, T. L., Raghu, S. & Arovas, D. P. Theory of the three-dimensional quantum Hall effect in graphite. Phys. Rev. Lett. 99, 146804 (2007).

    Article  ADS  Google Scholar 

  143. Uchida, M. et al. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat. Commun. 8, 2274 (2017).

    Article  ADS  Google Scholar 

  144. Nishihaya, S. et al. Gate-tuned quantum Hall states in Dirac semimetal (Cd1−xZnx)3As2. Sci. Adv. 4, eaar5668 (2018).

    Article  ADS  Google Scholar 

  145. Nishihaya, S. et al. Quantized surface transport in topological Dirac semimetal films. Nat. Commun. 10, 2564 (2019). This paper shows the distinct quantum Hall origins in Cd3As2 films at different thickness regimes.

    Article  ADS  Google Scholar 

  146. Galletti, L. et al. Two-dimensional Dirac fermions in thin films of Cd3As2. Phys. Rev. B 97, 115132 (2018).

    Article  ADS  Google Scholar 

  147. Goyal, M. et al. Surface states of strained thin films of the Dirac semimetal Cd3As2. Phys. Rev. Mater. 3, 064204 (2019).

    Article  Google Scholar 

  148. Lin, B.-C. et al. Observation of an odd-integer quantum Hall effect from topological surface states in Cd3As2. Phys. Rev. Lett. 122, 036602 (2019).

    Article  ADS  Google Scholar 

  149. Nishihaya, S. et al. Intrinsic coupling between spatially-separated surface Fermi-arcs in Weyl orbit quantum Hall states. Nat. Commun. 12, 2572 (2021). This paper shows the coupling between Fermi arcs of opposite surfaces in the quantum Hall state of Cd3As2.

    Article  ADS  Google Scholar 

  150. Xu, Y., Miotkowski, I. & Chen, Y. P. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators. Nat. Commun. 7, 11434 (2016).

    Article  ADS  Google Scholar 

  151. Kealhofer, D. A. et al. Basal-plane growth of cadmium arsenide by molecular beam epitaxy. Phys. Rev. Mater. 3, 031201 (2019).

    Article  Google Scholar 

  152. Kealhofer, D. A., Galletti, L., Schumann, T., Suslov, A. & Stemmer, S. Topological insulator state and collapse of the quantum Hall effect in a three-dimensional Dirac semimetal heterojunction. Phys. Rev. X 10, 011050 (2020).

    Google Scholar 

  153. Kargarian, M., Randeria, M. & Lu, Y.-M. Are the surface Fermi arcs in Dirac semimetals topologically protected? Proc. Natl Acad. Sci. USA 113, 8648 (2016).

    Article  ADS  Google Scholar 

  154. Arribi, P. V. et al. Topological surface states in strained Dirac semimetal thin films. Phys. Rev. B 102, 155141 (2020).

    Article  ADS  Google Scholar 

  155. Baum, Y., Berg, E., Parameswaran, S. A. & Stern, A. Current at a distance and resonant transparency in Weyl semimetals. Phys. Rev. X 5, 041046 (2015).

    Google Scholar 

  156. Hou, Z. & Sun, Q.-F. Nonlocal correlation mediated by Weyl orbits. Phys. Rev. Res. 2, 023236 (2020).

    Article  Google Scholar 

  157. Bulmash, D. & Qi, X.-L. Quantum oscillations in Weyl and Dirac semimetal ultrathin films. Phys. Rev. B 93, 081103 (2016).

    Article  ADS  Google Scholar 

  158. Ominato, Y. & Koshino, M. Magnetotransport in Weyl semimetals in the quantum limit: role of topological surface states. Phys. Rev. B 93, 245304 (2016).

    Article  ADS  Google Scholar 

  159. Liu, T., Pikulin, D. I. & Franz, M. Quantum oscillations without magnetic field. Phys. Rev. B 95, 041201 (2017).

    Article  ADS  Google Scholar 

  160. Behrends, J., Roy, S., Kolodrubetz, M. H., Bardarson, J. H. & Grushin, A. G. Landau levels, Bardeen polynomials, and Fermi arcs in Weyl semimetals: lattice-based approach to the chiral anomaly. Phys. Rev. B 99, 140201 (2019).

    Article  ADS  Google Scholar 

  161. Ilan, R., Grushin, A. G. & Pikulin, D. I. Pseudo-electromagnetic fields in 3D topological semimetals. Nat. Rev. Phys. 2, 29–41 (2020).

    Article  Google Scholar 

  162. Bovenzi, N., Breitkreiz, M., O’Brien, T. E., Tworzydło, J. & Beenakker, C. W. J. Twisted Fermi surface of a thin-film Weyl semimetal. New J. Phys. 20, 023023 (2018).

    Article  ADS  Google Scholar 

  163. Yang, G. & Zhang, Y. Quantum-limit Hall effect with large carrier density in topological semimetals. Phys. Rev. B 103, L241104 (2021).

    Article  ADS  Google Scholar 

  164. Wang, H. et al. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals. Nat. Mater. 15, 38–42 (2016).

    Article  ADS  Google Scholar 

  165. Aggarwal, L. et al. Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2. Nat. Mater. 15, 32–37 (2016).

    Article  ADS  Google Scholar 

  166. Bachmann, M. D. et al. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering. Sci. Adv. 3, e1602983 (2017).

    Article  ADS  Google Scholar 

  167. Huang, C. et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2. Nat. Commun. 10, 2217 (2019).

    Article  ADS  Google Scholar 

  168. Huang, C. et al. Inducing strong superconductivity in WTe2 by a proximity effect. ACS Nano 12, 7185–7196 (2018).

    Article  Google Scholar 

  169. Pan, X.-C. et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nat. Commun. 6, 7805 (2015).

    Article  ADS  Google Scholar 

  170. Wang, A.-Q. et al. 4π-Periodic supercurrent from surface states in Cd3As2 nanowire-based Josephson junctions. Phys. Rev. Lett. 121, 237701 (2018).

    Article  ADS  Google Scholar 

  171. Wang, S., Lin, B.-C., Zheng, W.-Z., Yu, D. & Liao, Z.-M. Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire. Phys. Rev. Lett. 120, 257701 (2018).

    Article  ADS  Google Scholar 

  172. Li, C.-Z. et al. Reducing electronic transport dimension to topological hinge states by increasing geometry size of Dirac semimetal Josephson junctions. Phys. Rev. Lett. 124, 156601 (2020).

    Article  ADS  Google Scholar 

  173. Li, C.-Z. et al. Fermi-arc supercurrent oscillations in Dirac semimetal Josephson junctions. Nat. Commun. 11, 1150 (2020).

    Article  ADS  Google Scholar 

  174. He, L. et al. Pressure-induced superconductivity in the three-dimensional topological Dirac semimetal Cd3As2. NPJ Quant. Mater. 1, 16014 (2016).

    Article  Google Scholar 

  175. Aggarwal, L. et al. Mesoscopic superconductivity and high spin polarization coexisting at metallic point contacts on Weyl semimetal TaAs. Nat. Commun. 8, 13974 (2017).

    Article  ADS  Google Scholar 

  176. Wang, H. et al. Discovery of tip induced unconventional superconductivity on Weyl semimetal. Sci. Bull. 62, 425–430 (2017).

    Article  Google Scholar 

  177. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

    Article  ADS  Google Scholar 

  178. Wang, W. et al. Evidence for an edge supercurrent in the Weyl superconductor MoTe2. Science 368, 534–537 (2020).

    Article  ADS  Google Scholar 

  179. Song, J. C. W. & Rudner, M. S. Fermi arc plasmons in Weyl semimetals. Phys. Rev. B 96, 205443 (2017).

    Article  ADS  Google Scholar 

  180. Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29, 1606202 (2017).

    Article  Google Scholar 

  181. li, g et al. Carbon-tailored semimetal MoP as an efficient hydrogen evolution electrocatalyst in both alkaline and acid media. Adv. Energy Mater. 8, 1801258 (2018).

    Article  Google Scholar 

  182. Li, G. et al. Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation. Sci. Adv. 5, eaaw9867 (2019).

    Article  ADS  Google Scholar 

  183. Li, J. et al. Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family. Sci. China Mater. 61, 23–29 (2018).

    Article  Google Scholar 

  184. He, Yuan. et al. Topologically nontrivial 1T′-MoTe2 as highly efficient hydrogen evolution electrocatalyst. J. Phys. Mater. 4, 014001 (2021).

    Article  Google Scholar 

  185. Zhao, G.-Q., Rui, W. B., Wang, C. M., Lu, H.-Z. & Xie, X. C. Quantized Hall conductance in 3D topological nodal-line semimetals without chiral symmetry. Preprint at https://arxiv.org/abs/2004.01386 (2020).

  186. Shi, L. & Song, J. C. Large optical conductivity of Dirac semimetal Fermi arc surface states. Phys. Rev. B 96, 081410 (2017).

    Article  ADS  Google Scholar 

  187. Chang, G. et al. Unconventional photocurrents from surface Fermi arcs in topological chiral semimetals. Phys. Rev. Lett. 124, 166404 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.X. was supported by the National Natural Science Foundation of China (grant nos. 11934005 and 11874116), National Key Research and Development Program of China (grant nos. 2017YFA0303302 and 2018YFA0305601), the Science and Technology Commission of Shanghai (grant no. 19511120500), the Shanghai Municipal Science and Technology Major Project (grant no. 2019SHZDZX01) and the Program of Shanghai Academic/Technology Research Leader (grant no. 20XD1400200). C.Z. was sponsored by Shanghai Sailing Program (grant no. 20YF1402300), Natural Science Foundation of Shanghai (grant no. 20ZR1407500) and the start-up grant at Fudan University. Y.Z. was supported by the start-up grant at Peking University.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and F.X. drafted the manuscript and all the authors contributed to finalizing the manuscript.

Corresponding author

Correspondence to Faxian Xiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Hongming Weng and Yan Sun for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, Y., Lu, HZ. et al. Cycling Fermi arc electrons with Weyl orbits. Nat Rev Phys 3, 660–670 (2021). https://doi.org/10.1038/s42254-021-00344-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00344-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing