Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding planet formation using microgravity experiments

Abstract

In 2018, images were released of a planet being formed around the star PDS 70, offering a tantalizing glimpse into how planets come into being. However, many questions remain about how dust evolves into planets, and astrophysical observations are unable to provide all the answers. It is therefore necessary to perform experiments to reveal key details and, to avoid unwanted effects from the Earth’s gravitational pull, it is often necessary to perform such experiments in microgravity platforms. This Review sketches current models of planet formation and describes the experiments needed to test the models.

Key points

  • Planet formation remains hidden from observations, although new astronomical instruments show where planets form and under what conditions their growth begins.

  • Planet formation cannot be modelled or simulated from scratch, but theoretical studies rely on results from experiments, either as verification or as input parameters.

  • Many experiments require microgravity conditions, as the mechanisms to be investigated are too subtle to be studied in normal laboratory conditions.

  • Microgravity experiments cover a large variety of physical processes, including dust collisions, particle transport, wind erosion and the evolution of planetary surfaces.

  • Laboratory and microgravity experiments have shown that aggregation of solids has certain barriers, with growth being limited or even prevented by elastic rebound, fragmentation, wind erosion or impact erosion.

  • Microgravity experiments have revealed charge-driven growth by triboelectric processes as a possible mechanism to overcome the so-called bouncing barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PDS 70, a young star ~5 million years old with a planetary system in the making, where a planet embedded in a protoplanetary disk is directly imaged.
Fig. 2: Processes important during evolution from dust to planetary bodies that are accessible to laboratory and microgravity experiments.
Fig. 3: Examples of different collision outcomes.
Fig. 4: Observed and simulated clusters of charged grains.
Fig. 5: Wind erosion and its experimental measurement.

Similar content being viewed by others

References

  1. Keppler, M. et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70. Astron. Astrophys. 617, A44 (2018).

    Google Scholar 

  2. Haffert, S. Y. et al. Two accreting protoplanets around the young star PDS 70. Nat. Astron. 3, 749–754 (2019).

    ADS  Google Scholar 

  3. Filacchione, G. et al. Comet 67P/CG nucleus composition and comparison to other comets. Space Sci. Rev. 215, 19 (2019).

    ADS  Google Scholar 

  4. Filacchione, G. et al. An orbital water-ice cycle on comet 67P from colour changes. Nature 578, 49–52 (2020).

    ADS  Google Scholar 

  5. Brownlee, D. E. & Stardust Mission Team. Science results from the stardust comet sample return mission: large scale mixing in the solar nebula and the origin of crystalline silicates in circumstellar disks. Bull. Am. Astron. Soc. 38, 953 (2006).

    ADS  Google Scholar 

  6. Blum, J. et al. Evidence for the formation of comet 67P/Churyumov–Gerasimenko through gravitational collapse of a bound clump of pebbles. Mon. Not. Roy. Astr. Soc. 469, S755–S773 (2017).

    Google Scholar 

  7. Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu — a spinning top-shaped rubble pile. Science 364, 268–272 (2019).

    ADS  Google Scholar 

  8. Barnouin, O. S. et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nat. Geosci. 12, 247–252 (2019).

    ADS  Google Scholar 

  9. Weiss, B. P. & Elkins-Tanton, L. T. Differentiated planetesimals and the parent bodies of chondrites. Annu. Rev. Earth Planet. Sci. 41, 529–560 (2013).

    ADS  Google Scholar 

  10. Scott, E. R. D. & Krot, A. N. Chondrites and their components. Treatise Geochem. 1, 711 (2003).

    Google Scholar 

  11. Sears, D. W. G. The Origin of Chondrules and Chondrites (Cambridge Univ. Press, 2011).

  12. Bischoff, D., Gundlach, B., Neuhaus, M. & Blum, J. Experiments on cometary activity: ejection of dust aggregates from a sublimating water-ice surface. Mon. Not. Roy. Astron. Soc. 483, 1202–1210 (2019).

    ADS  Google Scholar 

  13. Benz, W., Slattery, W. L. & Cameron, A. G. W. Collisional stripping of Mercury’s mantle. Icarus 74, 516–528 (1988).

    ADS  Google Scholar 

  14. Helffrich, G., Brasser, R. & Shahar, A. The chemical case for Mercury mantle stripping. Prog. Earth Planet. Sci. 6, 66 (2019).

    ADS  Google Scholar 

  15. Stewart, S. T., Leinhardt, Z. M. & Humayun, M. Giant impacts, volatile loss, and the K/Th ratios on the Moon, Earth, and Mercury. Lunar Planet. Sci. Conf. 44, 2306 (2013).

    ADS  Google Scholar 

  16. Peplowski, P. N. et al. Radioactive elements on Mercury’s surface from MESSENGER: implications for the planet’s formation and evolution. Science 333, 1850 (2011).

    ADS  Google Scholar 

  17. McDonough, W.F. & Yoshizaki, T. Accretion disk’s magnetic field controlled the composition of the terrestrial planets. Preprint at arXiv https://arxiv.org/abs/2009.04311 (2020).

  18. Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).

    ADS  Google Scholar 

  19. Hendler, N. et al. The evolution of dust disk sizes from a homogeneous analysis of 1–10 Myr old stars. Astrophys. J. 895, 126 (2020).

    ADS  Google Scholar 

  20. Trapman, L., Rosotti, G., Bosman, A. D., Hogerheijde, M. R. & van Dishoeck, E. F. Observed sizes of planet-forming disks trace viscous spreading. Astron. Astrophys. 640, A5 (2020).

    Google Scholar 

  21. Andrews, S. M. & Birnstiel, T. in Handbook of Exoplanets (eds Deeg, H. & Belmonte, J.) 136 (Springer, 2018).

  22. Hayashi, C., Nakazawa, K. & Nakagawa, Y. in Protostars and Planets II (eds Black, D. C. & Matthews, M. S.) 1100–1153 (Univ. Arizona Press, 1985).

  23. Sanchis, E. et al. Measuring the ratio of the gas and dust emission radii of protoplanetary disks in the Lupus star-forming region. Preprint at arXiv https://arxiv.org/abs/2101.11307v1 (2021).

  24. Haisch, J., Karl, E., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Astrophys. J. Lett. 553, L153–L156 (2001).

    ADS  Google Scholar 

  25. Schib, O., Mordasini, C., Wenger, N., Marleau, G. D. & Helled, R. The influence of infall on the properties of protoplanetary discs. Statistics of masses, sizes, lifetimes, and fragmentation. Astron. Astrophys. 645, A43 (2021).

    Google Scholar 

  26. Hutchison, M. A. & Clarke, C. J. Dust delivery and entrainment in photoevaporative winds. Mon. Not. R. Astron. Soc. 501, 1127–1142 (2021).

    ADS  Google Scholar 

  27. Haworth, T. J. et al. Proplyds in the flame nebula NGC 2024. Mon. Not. R. Astron. Soc. 501, 3502–3514 (2021).

    ADS  Google Scholar 

  28. Weidenschilling, S. J. & Cuzzi, J. N. in Protostars and Planets III (eds Levy, E. H. & Lunine, J. I.) 1031 (Univ. Arizona Press, 1993).

  29. Johansen, A. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 547 (Univ. Arizona Press, 2014).

  30. Dominik, C. & Tielens, A. G. G. M. The physics of dust coagulation and the structure of dust aggregates in space. Astrophys. J. 480, 647–673 (1997).

    ADS  Google Scholar 

  31. Wada, K., Tanaka, H., Suyama, T., Kimura, H. & Yamamoto, T. Collisional growth conditions for dust aggregates. Astrophys. J. 702, 1490–1501 (2009).

    ADS  Google Scholar 

  32. Wada, K. et al. Growth efficiency of dust aggregates through collisions with high mass ratios. Astron. Astrophys. 559, A62 (2013).

    Google Scholar 

  33. Okuzumi, S., Tanaka, H., Kobayashi, H. & Wada, K. Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophys. J. 752, 106 (2012).

    ADS  Google Scholar 

  34. Wurm, G. & Blum, J. Experiments on preplanetary dust aggregation. Icarus 132, 125–136 (1998).

    ADS  Google Scholar 

  35. Wurm, G. & Blum, J. An experimental study on the structure of cosmic dust aggregates and their alignment by motion relative to gas. Astrophys. J. Lett. 529, L57–L60 (2000).

    ADS  Google Scholar 

  36. Weidling, R., Güttler, C., Blum, J. & Brauer, F. The physics of protoplanetesimal dust agglomerates. III. Compaction in multiple collisions. Astrophys. J. 696, 2036–2043 (2009).

    ADS  Google Scholar 

  37. Kelling, T. & Wurm, G. Self-sustained levitation of dust aggregate ensembles by temperature-gradient-induced overpressures. Phys. Rev. Lett. 103, 215502 (2009).

    ADS  Google Scholar 

  38. Kruss, M., Demirci, T., Koester, M., Kelling, T. & Wurm, G. Failed growth at the bouncing barrier in planetesimal formation. Astrophys. J. 827, 110 (2016).

    ADS  Google Scholar 

  39. Demirci, T. et al. Is there a temperature limit in planet formation at 1000 K? Astrophys. J. 846, 48 (2017).

    ADS  Google Scholar 

  40. Zsom, A., Ormel, C. W., Güttler, C., Blum, J. & Dullemond, C. P. The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys. 513, A57 (2010).

    ADS  Google Scholar 

  41. Drazkowska, J., Stammler, S. M. & Birnstiel, T. How dust fragmentation may be beneficial to planetary growth by pebble accretion. Astron. Astrophys. 647, A15 (2021).

    ADS  Google Scholar 

  42. Pinilla, P., Lenz, C. T. & Stammler, S. M. Growing and trapping pebbles with fragile collisions of particles in protoplanetary disks. Astron. Astrophys. 645, A70 (2021).

    ADS  Google Scholar 

  43. Windmark, F. et al. Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. Astron. Astrophys. 540, A73 (2012).

    Google Scholar 

  44. Teiser, J. & Wurm, G. High-velocity dust collisions: forming planetesimals in a fragmentation cascade with final accretion. Mon. Not. R. Astron. Soc. 393, 1584–1594 (2009).

    ADS  Google Scholar 

  45. Teiser, J. & Wurm, G. Decimetre dust aggregates in protoplanetary discs. Astron. Astrophys. 505, 351–359 (2009).

    ADS  Google Scholar 

  46. Meisner, T., Wurm, G. & Teiser, J. Experiments on centimeter-sized dust aggregates and their implications for planetesimal formation. Astron. Astrophys. 544, A138 (2012).

    ADS  Google Scholar 

  47. Meisner, T., Wurm, G., Teiser, J. & Schywek, M. Preplanetary scavengers: growing tall in dust collisions. Astron. Astrophys. 559, A123 (2013).

    ADS  Google Scholar 

  48. Weidenschilling, S. J. Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977).

    ADS  Google Scholar 

  49. Johansen, A. et al. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).

    ADS  Google Scholar 

  50. Chiang, E. & Youdin, A. N. Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010).

    ADS  Google Scholar 

  51. Dullemond, C. P. et al. The disk substructures at high angular resolution project (DSHARP). VI. Dust trapping in thin-ringed protoplanetary disks. Astrophys. J. Lett. 869, L46 (2018).

    ADS  Google Scholar 

  52. Pinilla, P., Pohl, A., Stammler, S. M. & Birnstiel, T. Dust density distribution and imaging analysis of different ice lines in protoplanetary disks. Astrophys. J. 845, 68 (2017).

    ADS  Google Scholar 

  53. Ros, K., Johansen, A., Riipinen, I. & Schlesinger, D. Effect of nucleation on icy pebble growth in protoplanetary discs. Astron. Astrophys. 629, A65 (2019).

    ADS  Google Scholar 

  54. Kataoka, A., Tanaka, H., Okuzumi, S. & Wada, K. Fluffy dust forms icy planetesimals by static compression. Astron. Astrophys. 557, L4 (2013).

    ADS  Google Scholar 

  55. Saito, E. & Sirono, S. I. Planetesimal formation by sublimation. Astrophys. J. 728, 20 (2011).

    ADS  Google Scholar 

  56. Lammer, H., Brasser, R., Johansen, A., Scherf, M. & Leitzinger, M. Formation of Venus, Earth and Mars: constrained by isotopes. Space Sci. Rev. 217, 7 (2021).

    ADS  Google Scholar 

  57. Dash, S. & Miguel, Y. Planet formation and disc mass dependence in a pebble-driven scenario for low-mass stars. Mon. Not. R. Astron. Soc. 499, 3510–3521 (2020).

    ADS  Google Scholar 

  58. Ndugu, N., Bitsch, B., Morbidelli, A., Crida, A. & Jurua, E. Probing the impact of varied migration and gas accretion rates for the formation of giant planets in the pebble accretion scenario. Mon. Not. R. Astron. Soc. 501, 2017–2028 (2021).

    ADS  Google Scholar 

  59. Lenz, C. T., Klahr, H., Birnstiel, T., Kretke, K. & Stammler, S. Constraining the parameter space for the solar nebula. The effect of disk properties on planetesimal formation. Astron. Astrophys. 640, A61 (2020).

    ADS  Google Scholar 

  60. Brügger, N., Burn, R., Coleman, G. A. L., Alibert, Y. & Benz, W. Pebbles versus planetesimals. The outcomes of population synthesis models. Astron. Astrophys. 640, A21 (2020).

    ADS  Google Scholar 

  61. Watt, L., Leinhardt, Z. & Su, K. Planetary embryo collisions and the wiggly nature of extreme debris disks. Mon. Not. R. Astron. Soc. 502, 2954–3002 (2021).

    ADS  Google Scholar 

  62. Krivov, A. V. & Wyatt, M. C. Solution to the debris disc mass problem: planetesimals are born small? Mon. Not. R. Astron. Soc. 500, 718–735 (2021).

    ADS  Google Scholar 

  63. Armitage, P. J. Astrophysics of Planet Formation (Cambridge Univ. Press, 2009).

  64. Lee, V., James, N. M., Waitukaitis, S. R. & Jaeger, H. M. Collisional charging of individual submillimeter particles: using ultrasonic levitation to initiate and track charge transfer. Phys. Rev. Mater. 2, 035602 (2018).

    Google Scholar 

  65. Demirci, T., Krause, C., Teiser, J. & Wurm, G. Onset of planet formation in the warm inner disk. Colliding dust aggregates at high temperatures. Astron. Astrophys. 629, A66 (2019).

    ADS  Google Scholar 

  66. Kruss, M. & Wurm, G. Seeding the formation of mercurys: an iron-sensitive bouncing barrier in disk magnetic fields. Astrophys. J. 869, 45 (2018).

    ADS  Google Scholar 

  67. Kruss, M., Musiolik, G., Demirci, T., Wurm, G. & Teiser, J. Wind erosion on Mars and other small terrestrial planets. Icarus 337, 113438 (2020).

    Google Scholar 

  68. Waitukaitis, S. R., Lee, V., Pierson, J. M., Forman, S. L. & Jaeger, H. M. Size-dependent same-material tribocharging in insulating grains. Phys. Rev. Lett. 112, 218001 (2014).

    ADS  Google Scholar 

  69. Blum, J. et al. Laboratory drop towers for the experimental simulation of dust-aggregate collisions in the early solar system. JOVE 88, e51541 (2014).

    Google Scholar 

  70. Sunday, C. et al. A novel facility for reduced-gravity testing: a setup for studying low-velocity collisions into granular surfaces. Rev. Sci. Instrum. 87, 084504 (2016).

    ADS  Google Scholar 

  71. Murdoch, N. et al. An experimental study of low-velocity impacts into granular material in reduced gravity. Mon. Not. R. Astron. Soc. 468, 1259–1272 (2017).

    ADS  Google Scholar 

  72. von Kampen, P., Kaczmarczik, U. & Rath, H. J. The new drop tower catapult system. Acta Astronaut. 59, 278–283 (2006).

    ADS  Google Scholar 

  73. Liu, T. Y., Wu, Q. P., Sun, B. Q. & Han, F. T. Microgravity level measurement of the Beijing drop tower using a sensitive accelerometer. Sci. Rep. 6, 31632 (2016).

    ADS  Google Scholar 

  74. Pletser, V. et al. European parabolic flight campaigns with Airbus ZERO-G: looking back at the A300 and looking forward to the A310. Adv. Space Res. 56, 1003–1013 (2015).

    ADS  Google Scholar 

  75. Güttler, C., von Borstel, I., Schräpler, R. & Blum, J. Granular convection and the Brazil nut effect in reduced gravity. Phys. Rev. E 87, 044201 (2013).

    ADS  Google Scholar 

  76. de Beule, C., Kelling, T., Wurm, G., Teiser, J. & Jankowski, T. From Planetesimals to dust: low-gravity experiments on recycling solids at the inner edges of protoplanetary disks. Astrophys. J. 763, 11 (2013).

    ADS  Google Scholar 

  77. Musiolik, G. et al. Saltation under Martian gravity and its influence on the global dust distribution. Icarus 306, 25–31 (2018).

    ADS  Google Scholar 

  78. Demirci, T. et al. Are Pebble pile planetesimals doomed? Mon. Not. R. Astron. Soc. 484, 2779–2785 (2019).

    ADS  Google Scholar 

  79. Opsomer, E., Ludewig, F. & Vandewalle, N. Dynamical clustering in driven granular gas. Europhys. Lett. 99, 40001 (2012).

    ADS  Google Scholar 

  80. Sack, A., Heckel, M., Kollmer, J. E., Zimber, F. & Pöschel, T. Energy dissipation in driven granular matter in the absence of gravity. Phys. Rev. Lett. 111, 018001 (2013).

    ADS  Google Scholar 

  81. Noirhomme, M. et al. Threshold of gas-like to clustering transition in driven granular media in low-gravity environment. Europhys. Lett. 123, 14003 (2018).

    ADS  Google Scholar 

  82. Harth, K., Trittel, T., Wegner, S. & Stannarius, R. Free cooling of a granular gas of rodlike particles in microgravity. Phys. Rev. Lett. 120, 214301 (2018).

    ADS  Google Scholar 

  83. Goldhirsch, I. & Zanetti, G. Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993).

    ADS  Google Scholar 

  84. Falcon, E. et al. Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys. Rev. Lett. 83, 440–443 (1999).

    ADS  Google Scholar 

  85. Blum, J. et al. The cosmic dust aggregation experiment CODAG. Meas. Sci. Technol. 10, 836–844 (1999).

    ADS  Google Scholar 

  86. Harth, K. et al. Granular gases of rod-shaped grains in microgravity. Phys. Rev. Lett. 110, 144102 (2013).

    ADS  Google Scholar 

  87. Brisset, J., Heißelmann, D., Kothe, S., Weidling, R. & Blum, J. Submillimetre-sized dust aggregate collision and growth properties. Experimental study of a multi-particle system on a suborbital rocket. Astron. Astrophys. 593, A3 (2016).

    ADS  Google Scholar 

  88. Brisset, J., Heißelmann, D., Kothe, S., Weidling, R. & Blum, J. Low-velocity collision behaviour of clusters composed of sub-millimetre sized dust aggregates. Astron. Astrophys. 603, A66 (2017).

    ADS  Google Scholar 

  89. Colwell, J. et al. Low-velocity impacts into regolith under microgravity conditions. Proc. Conf. Eng. Sci. Constr. Oper. Chall. Environ. https://doi.org/10.1061/9780784479971.010 (2016).

    Article  Google Scholar 

  90. Yu, P., Schröter, M. & Sperl, M. Velocity distribution of a homogeneously cooling granular gas. Phys. Rev. Lett. 124, 208007 (2020).

    ADS  Google Scholar 

  91. Brisset, J. et al. Multi-particle collisions in microgravity: coefficient of restitution and sticking threshold for systems of mm-sized particles. Astron. Astrophys. 631, A35 (2019).

    Google Scholar 

  92. Steinpilz, T., Jungmann, F., Joeris, K., Teiser, J. & Wurm, G. Measurements of dipole moments and a Q-patch model of collisionally charged grains. New J. Phys. 22, 093025 (2020).

    ADS  Google Scholar 

  93. Aumaître, S. et al. An instrument for studying granular media in low-gravity environment. Rev. Sci. Instrum. 89, 075103 (2018).

  94. Colwell, J. E. Low velocity impacts into dust: results from the COLLIDE-2 microgravity experiment. Icarus 164, 188–196 (2003).

    ADS  Google Scholar 

  95. Blum, J., Wurm, G. & Poppe, T. The CODAG sounding rocket experiment to study aggregation of thermally diffusing dust particles. Adv. Space Res. 23, 1267–1270 (1999).

    ADS  Google Scholar 

  96. Blum, J., Wurm, G., Poppe, T., Kempf, S. & Kozasa, T. First results from the cosmic dust aggregation experiment codag. Adv. Space Res. 29, 497–503 (2002).

    ADS  Google Scholar 

  97. Lightholder, J. et al. Asteroid origins satellite (AOSAT) I: an on-orbit centrifuge science laboratory. Acta Astronaut. 133, 81–94 (2017).

    ADS  Google Scholar 

  98. Jarmak, S. et al. CubeSat particle aggregation collision experiment (Q-PACE): design of a 3U CubeSat mission to investigate planetesimal formation. Acta Astronaut. 155, 131–142 (2019).

    ADS  Google Scholar 

  99. Tscharnuter, W. M., Schönke, J., Gail, H. P., Trieloff, M. & Lüttjohann, E. Protostellar collapse: rotation and disk formation. Astron. Astrophys. 504, 109–113 (2009).

    ADS  Google Scholar 

  100. Krause, M. & Blum, J. Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment. Phys. Rev. Lett. 93, 021103 (2004).

    ADS  Google Scholar 

  101. Blum, J., Wurm, G., Kempf, S. & Henning, T. The Brownian motion of dust particles in the solar nebula: an experimental approach to the problem of pre-planetary dust aggregation. Icarus 124, 441–451 (1996).

    ADS  Google Scholar 

  102. Blum, J. et al. Growth and form of planetary seedlings: results from a microgravity aggregation experiment. Phys. Rev. Lett. 85, 2426–2429 (2000).

    ADS  Google Scholar 

  103. Paszun, D. & Dominik, C. The influence of grain rotation on the structure of dust aggregates. Icarus 182, 274–280 (2006).

    ADS  Google Scholar 

  104. Blum, J. & Wurm, G. Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus 143, 138–146 (2000).

    ADS  Google Scholar 

  105. Teiser, J., Engelhardt, I. & Wurm, G. Porosities of protoplanetary dust agglomerates from collision experiments. Astrophys. J. 742, 5 (2011).

    ADS  Google Scholar 

  106. Kothe, S., Blum, J., Weidling, R. & Güttler, C. Free collisions in a microgravity many-particle experiment. III. The collision behavior of sub-millimeter-sized dust aggregates. Icarus 225, 75–85 (2013).

    ADS  Google Scholar 

  107. Weidling, R., Güttler, C. & Blum, J. Free collisions in a microgravity many-particle experiment. I. Dust aggregate sticking at low velocities. Icarus 218, 688–700 (2012).

    ADS  Google Scholar 

  108. Weidling, R. & Blum, J. Free collisions in a microgravity many-particle experiment. IV. - Three-dimensional analysis of collision properties. Icarus 253, 31–39 (2015).

    ADS  Google Scholar 

  109. Langkowski, D., Teiser, J. & Blum, J. The physics of protoplanetesimal dust agglomerates. II. Low-velocity collision properties. Astrophys. J. 675, 764–776 (2008).

    ADS  Google Scholar 

  110. Kruss, M., Teiser, J. & Wurm, G. Growing into and out of the bouncing barrier in planetesimal formation. Astron. Astrophys. 600, A103 (2017).

    ADS  Google Scholar 

  111. Kelling, T., Wurm, G. & Köster, M. Experimental study on bouncing barriers in protoplanetary disks. Astrophys. J. 783, 111 (2014).

    ADS  Google Scholar 

  112. Jankowski, T. et al. Crossing barriers in planetesimal formation: the growth of mm-dust aggregates with large constituent grains. Astron. Astrophys. 542, A80 (2012).

    Google Scholar 

  113. Beitz, E. et al. Low-velocity collisions of centimeter-sized dust aggregates. Astrophys. J. 736, 34 (2011).

    ADS  Google Scholar 

  114. Deckers, J. & Teiser, J. Colliding decimeter dust. Astrophys. J. 769, 151 (2013).

    ADS  Google Scholar 

  115. Deckers, J. & Teiser, J. Macroscopic dust in protoplanetary disks — from growth to destruction. Astrophys. J. 796, 99 (2014).

    ADS  Google Scholar 

  116. Kothe, S., Güttler, C. & Blum, J. The physics of protoplanetesimal dust agglomerates. V. Multiple impacts of dusty agglomerates at velocities above the fragmentation threshold. Astrophys. J. 725, 1242–1251 (2010).

    ADS  Google Scholar 

  117. Schräpler, R., Blum, J., Seizinger, A. E. & Kley, W. The physics of protoplanetesimal dust agglomerates. VII. The low-velocity collision behavior of large dust agglomerates. Astrophys. J. 758, 35 (2012).

    ADS  Google Scholar 

  118. Katsuragi, H. & Blum, J. Impact-induced energy transfer and dissipation in granular clusters under microgravity conditions. Phys. Rev. Lett. 121, 208001 (2018).

    ADS  Google Scholar 

  119. Husmann, T., Loesche, C. & Wurm, G. Self-sustained recycling in the inner dust ring of pre-transitional disks. Astrophys. J. 829, 111 (2016).

    ADS  Google Scholar 

  120. de Beule, C., Kelling, T., Wurm, G., Teiser, J. & Jankowski, T. From planetesimals to dust: low-gravity experiments on recycling solids at the inner edges of protoplanetary disks. Astrophys. J. 763, 11 (2013).

    ADS  Google Scholar 

  121. Wurm, G., Paraskov, G. & Krauss, O. Growth of planetesimals by impacts at ~ 25 m/s. Icarus 178, 253–263 (2005).

    ADS  Google Scholar 

  122. Teiser, J., Küpper, M. & Wurm, G. Impact angle influence in high velocity dust collisions during planetesimal formation. Icarus 215, 596–598 (2011).

    ADS  Google Scholar 

  123. Schräpler, R., Blum, J., Krijt, S. & Raabe, J. H. The physics of protoplanetary dust agglomerates. X. High-velocity collisions between small and large dust agglomerates as a growth barrier. Astrophys. J. 853, 74 (2018).

    ADS  Google Scholar 

  124. Simon, J. I. et al. Particle size distributions in chondritic meteorites: evidence for pre-planetesimal histories. Earth Planet. Sci. Lett. 494, 69–82 (2018).

    ADS  Google Scholar 

  125. Steinpilz, T. et al. Electrical charging overcomes the bouncing barrier in planet formation. Nat. Phys. 16, 225–229 (2019).

    Google Scholar 

  126. Steinpilz, T. et al. ARISE: a granular matter experiment on the International Space Station. Rev. Sci. Instrum. 90, 104503 (2019).

    ADS  Google Scholar 

  127. Jungmann, F., Steinpilz, T., Teiser, J. & Wurm, G. Sticking and restitution in collisions of charged sub-mm dielectric grains. J. Phys. Commun. 2, 095009 (2018).

    Google Scholar 

  128. Love, S. G., Pettit, D. R. & Messenger, S. R. Particle aggregation in microgravity: informal experiments on the international space station. Meteorit. Planet. Sci. 49, 732–739 (2014).

    ADS  Google Scholar 

  129. Marshall, J. R., Sauke, T. B. & Cuzzi, J. N. Microgravity studies of aggregation in particulate clouds. Geophys. Res. Lett. 32, L11202 (2005).

    ADS  Google Scholar 

  130. Teiser, J., Kruss, M., Jungmann, F. & Wurm, G. A smoking gun for planetesimal formation: charge-driven growth into a new size range. Astrophys. J. Lett. 908, L22 (2021).

    ADS  Google Scholar 

  131. Nuth, J. A., Berg, O., Faris, J. & Wasilewski, P. Magnetically enhanced coagulation of very small iron grains. Icarus 107, 155–163 (1994).

    ADS  Google Scholar 

  132. Dominik, C. & Nübold, H. Magnetic aggregation: dynamics and numerical modeling. Icarus 157, 173–186 (2002).

    ADS  Google Scholar 

  133. Nübold, H., Poppe, T., Dominik, C. & Glassmeier, K. H. Experiments concerning the influence of grain magnetization on preplanetary dust aggregation. Adv. Space Res. 29, 773–776 (2002).

    ADS  Google Scholar 

  134. Nübold, H., Poppe, T., Rost, M., Dominik, C. & Glassmeier, K. H. Magnetic aggregation. II. Laboratory and microgravity experiments. Icarus 165, 195–214 (2003).

    ADS  Google Scholar 

  135. Yu, P. et al. Magnetically excited granular matter in low gravity. Rev. Sci. Instrum. 90, 054501 (2019).

    ADS  Google Scholar 

  136. Opsomer, E. et al. Patterns in magnetic granular media at the crossover from two to three dimensions. Phys. Rev. E 102, 042907 (2020).

    ADS  Google Scholar 

  137. Hubbard, A. Explaining Mercury’s density through magnetic erosion. Icarus 241, 329–335 (2014).

    ADS  Google Scholar 

  138. Kruss, M. & Wurm, G. Composition and size dependent sorting in preplanetary growth: seeding the formation of Mercury-like planets. Planet. Sci. J. 1, 23 (2020).

    Google Scholar 

  139. Bogdan, T., Kollmer, J. E., Teiser, J., Kruss, M. & Wurm, G. Laboratory impact splash experiments to simulate asteroid surfaces. Icarus 341, 113646 (2020).

    Google Scholar 

  140. Bogdan, T., Teiser, J., Fischer, N., Kruss, M. & Wurm, G. Constraints on compound chondrule formation from laboratory high-temperature collisions. Icarus 319, 133–139 (2019).

    ADS  Google Scholar 

  141. Bischoff, A. et al. The allende multicompound chondrule (ACC) — Chondrule formation in a local super-dense region of the early solar system. Meteorit. Planet. Sci. 52, 906–924 (2017).

    ADS  Google Scholar 

  142. Nagashima, K., Tsukamoto, K., Satoh, H., Kobatake, H. & Dold, P. Reproduction of chondrules from levitated, hypercooled melts. J. Cryst. Growth 293, 193–197 (2006).

    ADS  Google Scholar 

  143. Poppe, T., Güttler, C. & Springborn, T. Thermal metamorphoses of cosmic dust aggregates: experiments by furnace, electrical gas discharge, and radiative heating. Earth Planets Space 62, 53–56 (2010).

    ADS  Google Scholar 

  144. Güttler, C., Poppe, T., Wasson, J. T. & Blum, J. Exposing metal and silicate charges to electrical discharges: did chondrules form by nebular lightning? Icarus 195, 504–510 (2008).

    ADS  Google Scholar 

  145. Beitz, E., Güttler, C., Weidling, R. & Blum, J. Free collisions in a microgravity many-particle experiment - II: the collision dynamics of dust-coated chondrules. Icarus 218, 701–706 (2012).

    ADS  Google Scholar 

  146. Beitz, E., Blum, J., Mathieu, R., Pack, A. & Hezel, D. C. Experimental investigation of the nebular formation of chondrule rims and the formation of chondrite parent bodies. Geochim. Cosmochim. Acta 116, 41–51 (2013).

    ADS  Google Scholar 

  147. Hatzes, A. P., Bridges, F. G. & Lin, D. N. C. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 1091–1115 (1988).

    ADS  Google Scholar 

  148. Bridges, F., Supulver, K. & Lin, D. N. C. in Granular Gases vol. 564 (eds Pöschel, T. & Luding, S.) 153–183 (Springer, 2001).

  149. Drążkowska, J. & Alibert, Y. Planetesimal formation starts at the snow line. Astron. Astrophys. 608, A92 (2017).

    ADS  Google Scholar 

  150. Gundlach, B., Kilias, S., Beitz, E. & Blum, J. Micrometer-sized ice particles for planetary-science experiments - I. Preparation, critical rolling friction force, and specific surface energy. Icarus 214, 717–723 (2011).

    ADS  Google Scholar 

  151. Aumatell, G. & Wurm, G. Ice aggregate contacts at the nm-scale. Mon. Not. R. Astron. Soc. 437, 690–702 (2014).

    ADS  Google Scholar 

  152. Heim, L. O., Blum, J., Preuss, M. & Butt, H. J. Adhesion and friction forces between spherical micrometer-sized particles. Phys. Rev. Lett. 83, 3328–3331 (1999).

    ADS  Google Scholar 

  153. Gundlach, B. & Blum, J. The stickiness of micrometer-sized water-ice particles. Astrophys. J. 798, 34 (2015).

    ADS  Google Scholar 

  154. Gundlach, B. et al. The tensile strength of ice and dust aggregates and its dependence on particle properties. Mon. Not. R. Astron. Soc. 479, 1273–1277 (2018).

    ADS  Google Scholar 

  155. Gärtner, S. et al. Micrometer-sized water ice particles for planetary science experiments: influence of surface structure on collisional properties. Astrophys. J. 848, 96 (2017).

    ADS  Google Scholar 

  156. Musiolik, G. & Wurm, G. Contacts of water ice in protoplanetary disks — laboratory experiments. Astrophys. J. 873, 58 (2019).

    ADS  Google Scholar 

  157. Kimura, H., Wada, K., Senshu, H. & Kobayashi, H. Cohesion of amorphous silica spheres: toward a better understanding of the coagulation growth of silicate dust aggregates. Astrophys. J. 812, 67 (2015).

    ADS  Google Scholar 

  158. Steinpilz, T., Teiser, J. & Wurm, G. Sticking properties of silicates in planetesimal formation revisited. Astrophys. J. 874, 60 (2019).

    ADS  Google Scholar 

  159. Deckers, J. & Teiser, J. Collisions of solid ice in planetesimal formation. Mon. Not. R. Astron. Soc. 456, 4328–4334 (2016).

    ADS  Google Scholar 

  160. Arakawa, M. & Yasui, M. Impact crater formed on sintered snow surface simulating porous icy bodies. Icarus 216, 1–9 (2011).

    ADS  Google Scholar 

  161. Shimaki, Y. & Arakawa, M. Experimental study on collisional disruption of highly porous icy bodies. Icarus 218, 737–750 (2012).

    ADS  Google Scholar 

  162. Shimaki, Y. & Arakawa, M. Low-velocity collisions between centimeter-sized snowballs: porosity dependence of coefficient of restitution for ice aggregates analogues in the Solar System. Icarus 221, 310–319 (2012).

    ADS  Google Scholar 

  163. Yasui, M., Hayama, R. & Arakawa, M. Impact strength of small icy bodies that experienced multiple collisions. Icarus 233, 293–305 (2014).

    ADS  Google Scholar 

  164. Heißelmann, D., Blum, J., Fraser, H. J. & Wolling, K. Microgravity experiments on the collisional behavior of saturnian ring particles. Icarus 206, 424–430 (2010).

    ADS  Google Scholar 

  165. Hill, C. R., Heißelmann, D., Blum, J. & Fraser, H. J. Collisions of small ice particles under microgravity conditions. Astron. Astrophys. 573, A49 (2015).

    ADS  Google Scholar 

  166. Hill, C. R., Heißelmann, D., Blum, J. & Fraser, H. J. Collisions of small ice particles under microgravity conditions. II. Does the chemical composition of the ice change the collisional properties? Astron. Astrophys. 575, A6 (2015).

    ADS  Google Scholar 

  167. Aumatell, G. & Wurm, G. Breaking the ice: planetesimal formation at the snowline. Mon. Not. R. Astron. Soc. 418, L1–L5 (2011).

    ADS  Google Scholar 

  168. Musiolik, G., Teiser, J., Jankowski, T. & Wurm, G. Collisions of CO2 ice grains in planet formation. Astrophys. J. 818, 16 (2016).

    ADS  Google Scholar 

  169. Musiolik, G., Teiser, J., Jankowski, T. & Wurm, G. Ice grain collisions in comparison: CO2, H2O, and their mixtures. Astrophys. J. 827, 63 (2016).

    ADS  Google Scholar 

  170. Kudo, T., Kouchi, A., Arakawa, M. & Nakano, H. The role of sticky interstellar organic material in the formation of asteroids. Meteorit. Planet. Sci. 37, 1975–1983 (2002).

    ADS  Google Scholar 

  171. Homma, K. A., Okuzumi, S., Nakamoto, T. & Ueda, Y. Rocky planetesimal formation aided by organics. Astrophys. J. 877, 128 (2019).

    ADS  Google Scholar 

  172. Bischoff, D., Kreuzig, C., Haack, D., Gundlach, B. & Blum, J. Sticky or not sticky? Measurements of the tensile strength of microgranular organic materials. Mon. Not. R. Astron. Soc. 497, 2517–2528 (2020).

    ADS  Google Scholar 

  173. Gundlach, B., Fulle, M. & Blum, J. On the activity of comets: understanding the gas and dust emission from comet 67/Churyumov-Gerasimenko’s south-pole region during perihelion. Mon. Not. R. Astron. Soc. 493, 3690–3715 (2020).

    ADS  Google Scholar 

  174. Fulle, M. et al. How comets work: nucleus erosion versus dehydration. Mon. Not. R. Astron. Soc. 493, 4039–4044 (2020).

    ADS  Google Scholar 

  175. Schoonenberg, D. & Ormel, C. W. Planetesimal formation near the snowline: in or out? Astron. Astrophys. 602, A21 (2017).

    ADS  Google Scholar 

  176. Sirono, S. I. & Ueno, H. Collisions between sintered icy aggregates. Astrophys. J. 841, 36 (2017).

    ADS  Google Scholar 

  177. Kuiper, R., Klahr, H., Beuther, H. & Henning, T. Circumventing the radiation pressure barrier in the formation of massive stars via disk accretion. Astrophys. J. 722, 1556–1576 (2010).

    ADS  Google Scholar 

  178. Wyatt, S. P. & Whipple, F. L. The Poynting-Robertson effect on meteor orbits. Astrophys. J. 111, 134–141 (1950).

    ADS  Google Scholar 

  179. Klačka, J., Kocifaj, M., Wurm, G., Wehry, P. & Teiser, J. Nonspherical zodiacal dust particles driven by radiation pressure. Planet. Space Sci. 58, 1050–1054 (2010).

    ADS  Google Scholar 

  180. Krauß, O. & Wurm, G. Radiation pressure forces on individual micron-size dust particles: a new experimental approach. JQSRT 89, 179–189 (2004).

    ADS  Google Scholar 

  181. Krauss, O. & Wurm, G. in Dust in Planetary Systems vol. 643 (eds Krueger, H. & Graps, A.) 161–164 (ESA Special Publication, 2007).

  182. Vinković, D. Radiation-pressure mixing of large dust grains in protoplanetary disks. Nature 459, 227–229 (2009).

    ADS  Google Scholar 

  183. Zolensky, M. E. et al. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314, 1735 (2006).

    ADS  Google Scholar 

  184. Vinković, D. & Čemeljić, M. Inner dusty regions of protoplanetary discs – II. Dust dynamics driven by radiation pressure and disc winds. Mon. Notices Royal Astron. Soc. 500, 506–519 (2021).

    ADS  Google Scholar 

  185. Krauss, O. & Wurm, G. Photophoresis and the pile-up of dust in young circumstellar disks. Astrophys. J. 630, 1088–1092 (2005).

    ADS  Google Scholar 

  186. Wurm, G. & Krauss, O. Concentration and sorting of chondrules and CAIs in the late Solar Nebula. Icarus 180, 487–495 (2006).

    ADS  Google Scholar 

  187. Wurm, G., Teiser, J., Bischoff, A., Haack, H. & Roszjar, J. Experiments on the photophoretic motion of chondrules and dust aggregates — Indications for the transport of matter in protoplanetary disks. Icarus 208, 482–491 (2010).

    ADS  Google Scholar 

  188. von Borstel, I. & Blum, J. Photophoresis of dust aggregates in protoplanetary disks. Astron. Astrophys. 548, A96 (2012).

    Google Scholar 

  189. Loesche, C., Wurm, G., Teiser, J., Friedrich, J. M. & Bischoff, A. Photophoretic strength on chondrules. 1. Modeling. Astrophys. J. 778, 101 (2013).

    ADS  Google Scholar 

  190. Loesche, C. et al. Photophoretic strength on chondrules. 2. Experiment. Astrophys. J. 792, 73 (2014).

    ADS  Google Scholar 

  191. Wurm, G. & Haack, H. Outward transport of CAIs during FU-Orionis events. Meteorit. Planet. Sci. 44, 689–699 (2009).

    ADS  Google Scholar 

  192. van Eymeren, J. & Wurm, G. The implications of particle rotation on the effect of photophoresis. Mon. Not. R. Astron. Soc. 420, 183–186 (2012).

    ADS  Google Scholar 

  193. Teiser, J. & Dodson-Robinson, S. E. Photophoresis boosts giant planet formation. Astron. Astrophys. 555, A98 (2013).

    ADS  Google Scholar 

  194. Loesche, C., Wurm, G., Kelling, T., Teiser, J. & Ebel, D. S. The motion of chondrules and other particles in a protoplanetary disc with temperature fluctuations. Mon. Not. R. Astron. Soc. 463, 4167–4174 (2016).

    ADS  Google Scholar 

  195. McNally, C. P. & McClure, M. K. Photophoretic levitation and trapping of dust in the inner regions of protoplanetary disks. Astrophys. J. 834, 48 (2017).

    ADS  Google Scholar 

  196. Loesche, C., Wurm, G., Jankowski, T. & Kuepper, M. Photophoresis on particles hotter/colder than the ambient gas in the free molecular flow. J. Aerosol Sci. 97, 22–33 (2016).

    ADS  Google Scholar 

  197. Cuello, N., Gonzalez, J. F. & Pignatale, F. C. Effects of photophoresis on the dust distribution in a 3D protoplanetary disc. Mon. Not. R. Astron. Soc. 458, 2140–2149 (2016).

    ADS  Google Scholar 

  198. Arakawa, S. & Shibaike, Y. Photophoresis in the circumjovian disk and its impact on the orbital configuration of the Galilean satellites. Astron. Astrophys. 629, A106 (2019).

    ADS  Google Scholar 

  199. Squire, J. & Hopkins, P. F. Resonant drag instabilities in protoplanetary discs: the streaming instability and new, faster growing instabilities. Mon. Not. R. Astron. Soc. 477, 5011–5040 (2018).

    ADS  Google Scholar 

  200. Schneider, N., Wurm, G., Teiser, J., Klahr, H. & Carpenter, V. Dense particle clouds in laboratory experiments in context of drafting and streaming instability. Astrophys. J. 872, 3 (2019).

    ADS  Google Scholar 

  201. Schneider, N. & Wurm, G. Laboratory experiments on the motion of dense dust clouds in protoplanetary disks. Astrophys. J. Lett. 886, L36 (2019).

    ADS  Google Scholar 

  202. Capelo, H. L. et al. Observation of aerodynamic instability in the flow of a particle stream in a dilute gas. Astron. Astrophys. 622, A151 (2019).

    Google Scholar 

  203. Koester, M., Kelling, T., Teiser, J. & Wurm, G. Gas flow within Martian soil: experiments on granular Knudsen compressors. Astrophys. Space Sci. 362, 171 (2017).

    ADS  Google Scholar 

  204. Kraemer, A., Teiser, J., Steinpilz, T., Koester, M. & Wurm, G. Analog experiments on thermal creep gas flow through Martian soil. Planet. Space Sci. 166, 131–134 (2019).

    ADS  Google Scholar 

  205. Steinpilz, T., Teiser, J., Koester, M., Schywek, M. & Wurm, G. Tracing thermal creep through granular media. Microgravity Sci. Technol. 29, 325–330 (2017).

    ADS  Google Scholar 

  206. Schywek, M., Teiser, J. & Wurm, G. Tracing thermal creep and thermophoresis in porous structures at low ambient pressure and low gravity. Microgravity Sci. Technol. 29, 485–491 (2017).

    ADS  Google Scholar 

  207. de Beule, C. et al. The martian soil as a planetary gas pump. Nat. Phys. 10, 17–20 (2014).

    Google Scholar 

  208. Wurm, G. & Krauss, O. Dust eruptions by photophoresis and solid state greenhouse effects. Phys. Rev. Lett. 96, 134301 (2006).

    ADS  Google Scholar 

  209. Wurm, G. & Krauss, O. Experiments on negative photophoresis and application to the atmosphere. Atmos. Environ. 42, 2682–2690 (2008).

    ADS  Google Scholar 

  210. Kelling, T., Wurm, G., Kocifaj, M., Klačka, J. & Reiss, D. Dust ejection from planetary bodies by temperature gradients: laboratory experiments. Icarus 212, 935–940 (2011).

    ADS  Google Scholar 

  211. Kocifaj, M., Klačka, J., Kelling, T. & Wurm, G. Radiative cooling within illuminated layers of dust on (pre)-planetary surfaces and its effect on dust ejection. Icarus 211, 832–838 (2011).

    ADS  Google Scholar 

  212. Neakrase, L. D. V. et al. Particle lifting processes in dust devils. Space Sci. Rev. 203, 347–376 (2016).

    ADS  Google Scholar 

  213. Schmidt, F., Andrieu, F., Costard, F., Kocifaj, M. & Meresescu, A. G. Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows. Nat. Geosci. 10, 270–273 (2017).

    ADS  Google Scholar 

  214. de Beule, C., Wurm, G., Kelling, T., Koester, M. & Kocifaj, M. An insolation activated dust layer on Mars. Icarus 260, 23–28 (2015).

    ADS  Google Scholar 

  215. Wurm, G. Light-induced disassembly of dusty bodies in inner protoplanetary discs: implications for the formation of planets. Mon. Not. R. Astron. Soc. 380, 683–690 (2007).

    ADS  Google Scholar 

  216. de Beule, C., Kelling, T., Wurm, G., Teiser, J. & Jankowski, T. From Planetesimals to dust: low-gravity experiments on recycling solids at the inner edges of protoplanetary disks. Astrophys. J. 763, 11 (2013).

    ADS  Google Scholar 

  217. Kelling, T. & Wurm, G. Accretion through the inner edges of protoplanetary disks by a giant solid state pump. Astrophys. J. Lett. 774, L1 (2013).

    ADS  Google Scholar 

  218. Rozner, M., Grishin, E. & Perets, H. B. The aeolian-erosion barrier for the growth of metre-size objects in protoplanetary discs. Mon. Not. R. Astron. Soc. 496, 4827–4835 (2020).

    ADS  Google Scholar 

  219. Paraskov, G. B., Wurm, G. & Krauss, O. Eolian erosion of dusty bodies in protoplanetary disks. Astrophys. J. 648, 1219–1227 (2006).

    ADS  Google Scholar 

  220. Schaffer, N., Johansen, A., Cedenblad, L., Mehling, B. & Mitra, D. Erosion of planetesimals by gas flow. Astron. Astrophys. 639, A39 (2020).

    ADS  Google Scholar 

  221. Skorov, Y. & Blum, J. Dust release and tensile strength of the non-volatile layer of cometary nuclei. Icarus 221, 1–11 (2012).

    ADS  Google Scholar 

  222. Musiolik, G., de Beule, C. & Wurm, G. Analog experiments on tensile strength of dusty and cometary matter. Icarus 296, 110–116 (2017).

    ADS  Google Scholar 

  223. White, B., Greeley, R., Leach, R. & Iversen, J. Saltation threshold experiments conducted under reduced gravity conditions. AIAA Aerosp. Sci. Meet. https://doi.org/10.2514/6.1987-621 (1987).

    Article  Google Scholar 

  224. Demirci, T. et al. Planetesimals in rarefied gas: wind erosion in slip flow. Mon. Not. R. Astron. Soc. 493, 5456–5463 (2020).

    ADS  Google Scholar 

  225. Demirci, T., Schneider, N., Teiser, J. & Wurm, G. Destruction of eccentric planetesimals by ram pressure and erosion. Astron. Astrophys. 644, A20 (2020).

    ADS  Google Scholar 

  226. Demirci, T. & Wurm, G. Accretion of eroding pebbles and planetesimals in planetary envelopes. Astron. Astrophys. 641, A99 (2020).

    ADS  Google Scholar 

  227. Colwell, J. E. et al. Ejecta from impacts at 0.2 2.3 m/s in low gravity. Icarus 195, 908–917 (2008).

    ADS  Google Scholar 

  228. Brisset, J. et al. Regolith behavior under asteroid-level gravity conditions: low-velocity impact experiments. Prog. Earth Planet. Sci. 5, 73 (2018).

    ADS  Google Scholar 

  229. Whizin, A. D., Blum, J. & Colwell, J. E. The physics of protoplanetesimal dust agglomerates. VIII. Microgravity collisions between porous SiO_2 aggregates and loosely bound agglomerates. Astrophys. J. 836, 94 (2017).

    ADS  Google Scholar 

  230. Hestroffer, D. et al. Small solar system bodies as granular media. Astron. Astrophys. Rev. 27, 6 (2019).

    ADS  Google Scholar 

  231. Garcia, R. F., Murdoch, N. & Mimoun, D. Micro-meteoroid seismic uplift and regolith concentration on kilometric scale asteroids. Icarus 253, 159–168 (2015).

    ADS  Google Scholar 

  232. Murdoch, N. et al. Simulating regoliths in microgravity. Mon. Not. R. Astron. Soc. 433, 506–514 (2013).

    ADS  Google Scholar 

  233. Kollmer, J. E., Lindauer, S. M. & Daniels, K. E. Digging on asteroids: a laboratory model of granular dynamics in microgravity. Proc. Conf. Eng. Sci. Constr. Oper. Chall. Environ. https://doi.org/10.1061/9780784479971.021 (2016).

  234. Tell, K., Dreißigacker, C., Tchapnda, A. C., Yu, P. & Sperl, M. Acoustic waves in granular packings at low confinement pressure. Rev. Sci. Instrum. 91, 033906 (2020).

    ADS  Google Scholar 

  235. Lambrechts, M. et al. Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode. Astron. Astrophys. 627, A83 (2019).

    Google Scholar 

  236. Zhu, M. H. et al. Reconstructing the late-accretion history of the Moon. Nature 571, 226–229 (2019).

    ADS  Google Scholar 

  237. Izidoro, A., Raymond, S. N., Morbidelli, A. & Winter, O. C. Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. R. Astron. Soc. 453, 3619–3634 (2015).

    ADS  Google Scholar 

  238. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    ADS  Google Scholar 

  239. Boley, A. C., Granados Contreras, A. P. & Gladman, B. The in situ formation of giant planets at short orbital periods. Astrophys. J. Lett. 817, L17 (2016).

    ADS  Google Scholar 

  240. Boss, A. P. Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997).

    ADS  Google Scholar 

  241. Boley, A. C., Hayfield, T., Mayer, L. & Durisen, R. H. Clumps in the outer disk by disk instability: why they are initially gas giants and the legacy of disruption. Icarus 207, 509–516 (2010).

    ADS  Google Scholar 

  242. MacGregor, M. A. et al. Constraints on planetesimal collision models in debris disks. Astrophys. J. 823, 79 (2016).

    ADS  Google Scholar 

  243. Hughes, A. L. H., Colwell, J. E. & DeWolfe, Ar. W. Electrostatic dust transport on Eros: 3-D simulations of pond formation. Icarus 195, 630–648 (2008).

    ADS  Google Scholar 

  244. Kanamaru, M., Sasaki, S. & Wieczorek, M. Density distribution of asteroid 25143 Itokawa based on smooth terrain shape. Planet. Space Sci. 174, 32–42 (2019).

    ADS  Google Scholar 

  245. Dellagiustina, D. N. et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nat. Astron. 3, 341–351 (2019).

    ADS  Google Scholar 

  246. Schräpler, R., Blum, J., von Borstel, I. & Güttler, C. The stratification of regolith on celestial objects. Icarus 257, 33–46 (2015).

    ADS  Google Scholar 

  247. Fries, M. et al. The Strata-1 experiment on small body regolith segregation. Acta Astronaut. 142, 87–94 (2018).

    ADS  Google Scholar 

  248. Shinbrot, T., Sabuwala, T., Siu, T., Vivar Lazo, M. & Chakraborty, P. Size Sorting on the Rubble-Pile asteroid Itokawa. Phys. Rev. Lett. 118, 111101 (2017).

    ADS  Google Scholar 

  249. Sickafoose, A. A., Colwell, J. E., HoráNyi, M. & Robertson, S. Experimental levitation of dust grains in a plasma sheath. J. Geophys. Res. 107, 1408 (2002).

    Google Scholar 

  250. Sternovsky, Z., Robertson, S., Sickafoose, A. A., Colwell, J. & Horányi, M. Contact charging of lunar and Martian dust simulants. J. Geophys. Res. 107, 5105 (2002).

    Google Scholar 

  251. Colwell, J. E., Batiste, S., Horányi, M., Robertson, S. & Sture, S. Lunar surface: dust dynamics and regolith mechanics. Rev. Geophys. 45, RG2006 (2007).

    ADS  Google Scholar 

  252. Carroll, A. et al. Laboratory measurements of initial launch velocities of electrostatically lofted dust on airless planetary bodies. Icarus 352, 113972 (2020).

    Google Scholar 

  253. Müller, A. et al. Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk. Astron. Astrophys. 617, L2 (2018).

    ADS  Google Scholar 

  254. Balbus, S. A. & Hawley, J. F. A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214 (1991).

    ADS  Google Scholar 

  255. Stoll, M. H. R. & Kley, W. Particle dynamics in discs with turbulence generated by the vertical shear instability. Astron. Astrophys. 594, A57 (2016).

    ADS  Google Scholar 

  256. Kuiper, R. & Hosokawa, T. First hydrodynamics simulations of radiation forces and photoionization feedback in massive star formation. Astron. Astrophys. 616, A101 (2018).

    ADS  Google Scholar 

  257. Kley, W. & Nelson, R. Planet-disk interaction and orbital evolution. Annu. Rev. Astron. Astrophys. 50, 211–249 (2012).

    ADS  Google Scholar 

  258. Geretshauser, R. J., Meru, F., Speith, R. & Kley, W. The four-population model: a new classification scheme for pre-planetesimal collisions. Astron. Astrophys. 531, A166 (2011).

    ADS  Google Scholar 

  259. Meru, F., Geretshauser, R. J., Schäfer, C., Speith, R. & Kley, W. Growth and fragmentation of centimetre-sized dust aggregates: the dependence on aggregate size and porosity. Mon. Not. R. Astron. Soc. 435, 2371–2390 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

A significant part of this work is supported by the German Space Administration (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) under grants 50WM1760, 50WM1762, 50WM2140, 50WM2142, 50WM2049. The authors acknowledge access to microgravity platforms in recent years by ESA. Part of the work is also funded by the German Research Foundation (DFG) under grants WU 321/16-1 and WU 321/18-1.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the article.

Corresponding author

Correspondence to Gerhard Wurm.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Barbara Ercolano, Meiying Hou, Matthias Sperl and Ralf Stannarius for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wurm, G., Teiser, J. Understanding planet formation using microgravity experiments. Nat Rev Phys 3, 405–421 (2021). https://doi.org/10.1038/s42254-021-00312-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00312-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing