Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Laboratory spectroscopy techniques to enable observations of interstellar ion chemistry


Molecular ions have long been considered key intermediates in the evolution of molecular complexity in the interstellar medium. However, owing to their reactivity and transient nature, ions have historically proved challenging to study in terrestrial laboratory experiments. In turn, their detection and characterization in space is often contingent upon advances in the laboratory spectroscopic techniques used to measure their spectra. In this Review, we discuss the advances over the past 50 years in laboratory methodologies for producing molecular ions and probing their rotational, vibrational and electronic spectra. We largely focus this discussion around the widespread H3+ cation and the ionic products originating from its reaction with carbon atoms. Finally, we discuss the current frontiers in this research and the technical advances required to address the spectroscopic challenges that they represent.

Key points

  • Molecular ions have a key role in driving chemistry in the interstellar medium because their reactions are usually exothermic and the attractive potentials that they induce increase reaction rates.

  • The laboratory spectra needed to study ions in space are challenging to collect, as ions are both difficult to produce in large quantities and highly reactive.

  • A boom in ion studies was aided by the combination of spectroscopy techniques that greatly increased the optical path length with others that modulated the signal at known frequencies while leaving noise unmodulated.

  • Action spectroscopy in cryogenic ion traps indirectly measures absorption by observing changes in counts of the mass-selected, stored ions.

  • Action spectroscopy is by far the most sensitive technique and has developed into a versatile tool in the full spectral range of molecular spectroscopy, covering rotational, vibrational and electronic motion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Astrochemical ion–molecule reactions.
Fig. 3: Action spectroscopy of H3+.
Fig. 4: LIR measurements of CH3+ isotopologues.
Fig. 5: High-resolution spectra of CD2H+.
Fig. 6: Laboratory and space detection of CH+ in the infrared.
Fig. 7: Laboratory and space detection of C3H+.


  1. 1.

    McGuire, B. A. 2018 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys. J. Suppl. Ser. 239, 17 (2018). This work presents an overview of all known interstellar molecules, providing statistics on ions in relation to other types of species.

    ADS  Google Scholar 

  2. 2.

    Watson, W. D. The rate of formation of interstellar molecules by ion–molecule reactions. Astrophys. J. 183, L17–L20 (1973). This paper describes ion–molecule reactions in space.

    ADS  Google Scholar 

  3. 3.

    Geppert, W. D. et al. Dissociative recombination of protonated methanol. Faraday Discuss. 133, 177–190 (2006).

    ADS  Google Scholar 

  4. 4.

    Martin, D. W., McDaniel, E. W. & Meeks, M. L. On the possible occurrence of H3 + in interstellar space. Astrophys. J. 134, 1012–1013 (1961).

    ADS  Google Scholar 

  5. 5.

    Herbst, E. & Klemperer, W. The formation and depletion of molecules in dense interstellar clouds. Astrophys. J. 185, 505–533 (1973).

    ADS  Google Scholar 

  6. 6.

    Oka, T. Observation of the infrared spectrum of H3 +. Phys. Rev. Lett. 45, 531–534 (1980). This study reports the laboratory measurement of H 3 + spectra using several techniques in tandem.

    ADS  Google Scholar 

  7. 7.

    Geballe, T. R. & Oka, T. Detection of H3 + in interstellar space. Nature 384, 334–335 (1996).

    ADS  Google Scholar 

  8. 8.

    Herbst, E. & van Dishoeck, E. F. Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47, 427–480 (2009).

    ADS  Google Scholar 

  9. 9.

    Garrod, R. T. A three-phase chemical model of hot cores: the formation of glycine. Astrophys. J. 765, 60 (2013).

    ADS  Google Scholar 

  10. 10.

    Balucani, N. et al. A theoretical investigation of the reaction between the amidogen, NH, and the ethyl, C2H5, radicals: a possible gas-phase formation route of interstellar and planetary ethanimine. Mol. Astrophys. 13, 30–37 (2018).

    ADS  Google Scholar 

  11. 11.

    Woods, R. C., Dixon, T. A., Saykally, R. J. & Szanto, P. G. Laboratory microwave spectrum of HCO+. Phys. Rev. Lett. 35, 1269–1272 (1975).

    ADS  Google Scholar 

  12. 12.

    White, J. U. Long optical paths of large aperture. J. Opt. Soc. Am. 32, 285–288 (1942).

    ADS  Google Scholar 

  13. 13.

    Herriott, D., Kogelnik, H. & Kompfner, R. Off-axis paths in spherical mirror interferometers. Appl. Opt. 3, 523–526 (1964).

    ADS  Google Scholar 

  14. 14.

    Drouin, B. J., Fischer, J. & Gamache, R. R. Temperature dependent pressure induced lineshape of O3 rotational transitions in air. J. Quant. Spectrosc. Radiat. Transf. 83, 63–81 (2004).

    ADS  Google Scholar 

  15. 15.

    Kotterer, M., Conceicao, J. & Maier, J. P. Cavity ringdown spectroscopy of molecular ions: A2Πu ← X2Σg + (6–0) transition of N2 +. Chem. Phys. Lett. 259, 233–236 (1996).

    ADS  Google Scholar 

  16. 16.

    Macko, P. et al. Afterglow studies of H3 + (v = 0) recombination using time resolved cw-diode laser cavity ring-down spectroscopy. Int. J. Mass. Spectrom. 233, 299–304 (2004).

    Google Scholar 

  17. 17.

    Dohnal, P. et al. Towards state selective recombination of H3 + under astrophysically relevant conditions. Faraday Discuss. 217, 220–234 (2019).

    ADS  Google Scholar 

  18. 18.

    Siller, B. M., Porambo, M. W., Mills, A. A. & McCall, B. J. Noise immune cavity enhanced optical heterodyne velocity modulation spectroscopy. Opt. Express 19, 24822–24827 (2011).

    ADS  Google Scholar 

  19. 19.

    Ye, J., Ma, L.-S. & Hall, J. L. Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy. J. Opt. Soc. Am. B 15, 6–15 (1998). This paper provides a detailed description of the NICE-OHMS technique.

    ADS  Google Scholar 

  20. 20.

    Gudeman, C. S., Begemann, M. H., Pfaff, J. & Saykally, R. J. Velocity-modulated infrared laser spectroscopy of molecular ions: the ν 1 band of HCO+. Phys. Rev. Lett. 50, 727–731 (1983).

    ADS  Google Scholar 

  21. 21.

    Owrutsky, J. C., Rosenbaum, N. H., Tack, L. M. & Saykally, R. J. The vibration–rotation spectrum of the hydroxide anion (OH). J. Chem. Phys. 83, 5338–5339 (1985).

    ADS  Google Scholar 

  22. 22.

    Stephenson, S. K. & Saykally, R. J. Velocity modulation spectroscopy of ions. Chem. Rev. 105, 3220–3234 (2005). This paper provides a detailed description of velocity modulation techniques.

    Google Scholar 

  23. 23.

    Markus, C. R. et al. High precision rovibrational spectroscopy of OH+. Astrophys. J. 817, 138 (2016).

    ADS  Google Scholar 

  24. 24.

    Perry, A. J., Hodges, J. N., Markus, C. R., Kocheril, G. D. & McCall, B. J. Communication: high precision sub-Doppler infrared spectroscopy of the HeH+ ion. J. Chem. Phys. 141, 101101 (2014).

    ADS  Google Scholar 

  25. 25.

    Markus, C. R., Kocheril, P. A. & McCall, B. J. Sub-Doppler rovibrational spectroscopy of the ν 1 fundamental band of D2H+. J. Mol. Spectrosc. 355, 8–13 (2019).

    ADS  Google Scholar 

  26. 26.

    Markus, C. R., Perry, A. J., Hodges, J. N. & McCall, B. J. Improving cavity-enhanced spectroscopy of molecular ions in the mid-infrared with up-conversion detection and Brewster-plate spoilers. Opt. Express 25, 3709–3721 (2017).

    ADS  Google Scholar 

  27. 27.

    Crabtree, K. N. et al. Sub-Doppler mid-infrared spectroscopy of molecular ions. Chem. Phys. Lett. 551, 1–6 (2012).

    ADS  Google Scholar 

  28. 28.

    Hodges, J. N., Perry, A. J., Jenkins II, P. A., Siller, B. M. & McCall, B. J. High-precision and high-accuracy rovibrational spectroscopy of molecular ions. J. Chem. Phys. 139, 164201 (2013).

    ADS  Google Scholar 

  29. 29.

    Markus, C. R. & McCall, B. J. Highly accurate experimentally determined energy levels of H3 +. J. Chem. Phys. 150, 214303 (2019).

    ADS  Google Scholar 

  30. 30.

    Perry, A. J., Hodges, J. N., Markus, C. R., Kocheril, G. S. & McCall, B. J. High-precision R-branch transition frequencies in the ν 2 fundamental band of H3 +. J. Mol. Spectrosc. 317, 71–73 (2015).

    ADS  Google Scholar 

  31. 31.

    Laas, J. C., Hays, B. M. & Widicus Weaver, S. L. Multipass millimeter/submillimeter spectrometer to probe dissociative reaction dynamics. J. Phys. Chem. A 117, 9548–9554 (2013).

    Google Scholar 

  32. 32.

    Okumura, M., Yeh, L. I. & Lee, Y. T. The vibrational predissociation spectroscopy of hydrogen cluster ions. J. Chem. Phys. 83, 3705–3706 (1985). This study demonstrates action spectroscopy using predissociation in an ion trap.

    ADS  Google Scholar 

  33. 33.

    Dopfer, O., Olkhov, R. & Maier, J. Microsolvation of the methyl cation in neon: infrared spectra and ab initio calculations of CH3 +-Ne and CH3 +-Ne2. J. Chem. Phys. 112, 2176–2186 (2000).

    ADS  Google Scholar 

  34. 34.

    Brümmer, M., Kaposta, C., Santambrogio, G. & Asmis, K. R. Formation and photodepletion of cluster ionmessenger atom complexes in a cold ion trap: infrared spectroscopy of VO+, VO2 +, and VO3 +. J. Chem. Phys. 119, 12700 (2003). This study reports the tagging of cations with He in an ion trap.

    ADS  Google Scholar 

  35. 35.

    Oomens, J., van Roij, A., Meijer, G. & von Helden, G. Gas phase infrared photodissociation spectroscopy of cationic polyaromatic hydrocarbons. Astrophys. J. 542, 404–410 (2000).

    ADS  Google Scholar 

  36. 36.

    Asmis, K. R. et al. Gas-phase infrared spectrum of the protonated water dimer. Science 299, 1375–1377 (2003).

    Google Scholar 

  37. 37.

    Boyarkin, O. V., Mercier, S. R., Kamariotis, A. & Rizzo, T. R. Electronic spectroscopy of cold, protonated tryptophan and tyrosine. J. Am. Chem. Soc. 128, 2816–2817 (2006).

    Google Scholar 

  38. 38.

    Schlemmer, S., Kuhn, T., Lescop, E. & Gerlich, D. Laser excited N2 + in a 22-pole ion trap: experimental studies of rotational relaxation processes. Int. J. Mass. Spectrom. 185–187, 589–602 (1999). This is the proof-of-principle of LIR in a cryogenic ion trap.

    Google Scholar 

  39. 39.

    Schlemmer, S., Lescop, E., von Richthofen, J. & Gerlich, D. Laser induced reactions in a 22-pole ion trap: C2H2 + +  3 + H2 → C2H3 + + H. J. Chem. Phys. 117, 2068–2075 (2002).

    ADS  Google Scholar 

  40. 40.

    Mikosch, J. et al. Action spectroscopy and temperature diagnostics of H3 + by chemical probing. J. Chem. Phys. 121, 11030–11037 (2004).

    ADS  Google Scholar 

  41. 41.

    Kluge, L. et al. Transfer of a proton between H2 and O2. Phil. Trans. R. Soc. A 370, 5041–5054 (2012).

    ADS  Google Scholar 

  42. 42.

    Asvany, O., Krieg, J. & Schlemmer, S. Frequency comb assisted mid-infrared spectroscopy of cold molecular ions. Rev. Sci. Instrum. 83, 093110 (2012).

    ADS  Google Scholar 

  43. 43.

    Jusko, P., Konietzko, C., Schlemmer, S. & Asvany, O. Frequency comb assisted measurement of fundamental transitions of cold H3 +, H2D+ and D2H+. J. Mol. Spectrosc. 319, 55–58 (2016).

    ADS  Google Scholar 

  44. 44.

    Guan, Y.-C. et al. Precision saturated absorption spectroscopy of H3 +. J. Chem. Phys. 148, 124310 (2018).

    ADS  Google Scholar 

  45. 45.

    Millar, T. J. Deuterium fractionation in interstellar clouds. Space Sci. Rev. 106, 73–86 (2003).

    ADS  Google Scholar 

  46. 46.

    Caselli, P., Sipila, O. & Harju, J. Deuterated forms of H3 + and their importance in astrochemistry. Phil. Trans. R. Soc. A 377, 20180401 (2019).

    ADS  Google Scholar 

  47. 47.

    Asvany, O. et al. Overtone spectroscopy of H2D+ and D2H+ using laser induced reactions. J. Chem. Phys. 127, 154317 (2007).

    ADS  Google Scholar 

  48. 48.

    Asvany, O. et al. High-resolution rotational spectroscopy in a cold ion trap: H2D+ and D2H+. Phys. Rev. Lett. 100, 233004 (2008). Demonstration of rotational action spectroscopy.

    ADS  Google Scholar 

  49. 49.

    Jusko, P. et al. High-resolution vibrational and rotational spectroscopy of CD2H+ in a cryogenic ion trap. J. Mol. Spectrosc. 332, 59–66 (2017).

    ADS  Google Scholar 

  50. 50.

    Bogey, M., Demuynck, C., Denis, M., Destombes, J. L. & Lemoine, B. Laboratory measurement of the 101–111 submillimeter line of H2D+. Astron. Astrophys. 137, L15–L16 (1984).

    ADS  Google Scholar 

  51. 51.

    Amano, T. & Hirao, T. Accurate rest frequencies of submillimeter-wave lines of H2D+ and D2H+. J. Mol. Spectrosc. 233, 7–14 (2005).

    ADS  Google Scholar 

  52. 52.

    Hirao, T. & Amano, T. Laboratory submillimeter-wave detection of D2H+: a new probe into multiple deuteration? Astrophys. J. 597, L85–L87 (2003).

    ADS  Google Scholar 

  53. 53.

    Yonezu, T., Matsushima, F., Moriwaki, Y., Takagi, K. & Amano, T. THz spectroscopy of H2D+. J. Mol. Spectrosc. 256, 238–241 (2009).

    ADS  Google Scholar 

  54. 54.

    Stark, R., van der Tak, F. F. & van Dishoeck, E. F. Detection of interstellar H2D+ emission. Astrophys. J. 521, L67–L70 (1999).

    ADS  Google Scholar 

  55. 55.

    Vastel, C., Phillips, T. G. & Yoshida, H. Detection of D2H+ in the dense interstellar medium. Astrophys. J. 606, L127–L130 (2004).

    ADS  Google Scholar 

  56. 56.

    Parise, B., Belloche, A., Du, F., Güsten, R. & Menten, K. M. Extended emission of D2H+ in a prestellar core. Astron. Astrophys. 526, A31 (2011).

    ADS  Google Scholar 

  57. 57.

    Brünken, S. et al. H2D+ observations give an age of at least one million years for a cloud core forming Sun-like stars. Nature 516, 219–221 (2014). This paper highlights the importance of combining laboratory, modelling and observational efforts.

    ADS  Google Scholar 

  58. 58.

    Harju, J. et al. Detection of interstellar ortho-D2H+ with SOFIA. Astrophys. J. 840, 63 (2017).

    ADS  Google Scholar 

  59. 59.

    Gärtner, S. et al. High-resolution spectroscopy of CH2D+ in a cold 22-pole ion trap. J. Phys. Chem. A 117, 9975–9984 (2013).

    Google Scholar 

  60. 60.

    Asvany, O., Thorwirth, S., Redlich, B. & Schlemmer, S. Spectroscopy of the low-frequency vibrational modes of CH3 + isotopologues. J. Mol. Spectrosc. 347, 1–6 (2018).

    ADS  Google Scholar 

  61. 61.

    Crofton, M. W., Jagod, M., Rehfuss, B. D., Kreiner, W. A. & Oka, T. Infrared spectroscopy of carbo-ions. III. 𝜈3 band of methyl cation CH3 +. J. Chem. Phys. 88, 666 (1988).

    ADS  Google Scholar 

  62. 62.

    Jagod, M.-F., Rösslein, M., Gabrys, C. M. & Oka, T. Infrared spectroscopy of carbo-ions: the 𝜈1 and 𝜈4 bands of CH2D+, and the 𝜈1 band of CHD2 +. J. Mol. Spectrosc. 153, 666–679 (1992).

    ADS  Google Scholar 

  63. 63.

    Roesslein, M., Jagod, M. F., Gabrys, G. M. & Oka, T. Laboratory infrared spectra of CH2D+ and HCCD+ and predicted microwave transitions. Astrophys. J. 382, L51–L53 (1991).

    ADS  Google Scholar 

  64. 64.

    Jusko, P., Asvany, O., Wallerstein, A.-C., Brünken, B. & Schlemmer, S. Two photon rotational action spectroscopy of cold OH at 1 ppb accuracy. Phys. Rev. Lett. 112, 253005 (2014).

    ADS  Google Scholar 

  65. 65.

    Amano, T. Submillimetre-wave spectrum of CH2D+. Astron. Astrophys. 516, L4 (2010).

    ADS  Google Scholar 

  66. 66.

    Töpfer, M., Jusko, P., Schlemmer, S. & Asvany, O. Double resonance rotational spectroscopy of CH2D+. Astron. Astrophys. 593, L11 (2016).

    ADS  Google Scholar 

  67. 67.

    Roueff, E. et al. CH2D+, the search for the holy grail. J. Phys. Chem. A 117, 9959–9967 (2013).

    Google Scholar 

  68. 68.

    Indriolo, N., Oka, T., Geballe, T. R. & McCall, B. J. Constraining the environment of CH+ formation with CH3 + observations. Astrophys. J. 711, 1338–1342 (2010).

    ADS  Google Scholar 

  69. 69.

    Chakrabarty, S. et al. A novel method to measure electronic spectra of cold molecular ions. J. Phys. Chem. Lett. 4, 4051–4054 (2013).

    Google Scholar 

  70. 70.

    Savić, I., Gerlich, D., Asvany, O., Jusko, P. & Schlemmer, S. Controlled synthesis and analysis of HeH3 + in a 3.7 K ion trap. Mol. Phys. 113, 2320–2332 (2015).

    ADS  Google Scholar 

  71. 71.

    Asvany, O., Brünken, S., Kluge, L. & Schlemmer, S. COLTRAP: a 22-pole ion trapping machine for spectroscopy at 4 K. Appl. Phys. B 114, 203–211 (2014). This paper reports vibrational LIICG, demonstrated for protonated methane.

    ADS  Google Scholar 

  72. 72.

    Asvany, O., Yamada, K. M. T., Brünken, S., Potapov, A. & Schlemmer, S. Experimental ground-state combination differences of CH5 +. Science 347, 1346–1349 (2015).

    ADS  Google Scholar 

  73. 73.

    Doménech, J. L., Jusko, P., Schlemmer, S. & Asvany, O. The first laboratory detection of vibration–rotation transitions of 12CH+ and 13CH+ and improved measurement of their rotational transition frequencies. Astrophys. J. 857, 61 (2018).

    ADS  Google Scholar 

  74. 74.

    Kohguchi, H., Jusko, P., Yamada, K. M. T., Schlemmer, S. & Asvany, O. High-resolution infrared spectroscopy of O2H+ in a cryogenic ion trap. J. Chem. Phys. 148, 144303 (2018).

    ADS  Google Scholar 

  75. 75.

    Markus, C. R., Thorwirth, S., Asvany, O. & Schlemmer, S. High-resolution double resonance action spectroscopy in ion traps: vibrational and rotational fingerprints of CH2NH2 +. Phys. Chem. Chem. Phys. 21, 26406–26412 (2019).

    Google Scholar 

  76. 76.

    Dunham, T. J. Interstellar neutral potassium and neutral calcium. Publ. Astron. Soc. Pac. 49, 26–28 (1937).

    ADS  Google Scholar 

  77. 77.

    Douglas, A. E. & Herzberg, G. Note on CH+ in interstellar space and in the laboratory. Astrophys. J. 94, 381 (1941).

    ADS  Google Scholar 

  78. 78.

    Cernicharo, J. et al. Discovery of far-infrared pure rotational transitions of CH+ in NGC 7027. Astrophys. J. Lett. 483, L65–L68 (1997).

    ADS  Google Scholar 

  79. 79.

    Falgarone, E., Phillips, T. G. & Pearson, J. C. First detection of 13CH+ (J = 1–0). Astrophys. J. Lett. 634, L149–L152 (2005).

    ADS  Google Scholar 

  80. 80.

    Amano, T. The J = 1–0 transitions of 12CH+, 13CH+, and 12CD+. Astrophys. J. Lett. 716, L1–L3 (2010).

    ADS  Google Scholar 

  81. 81.

    Neufeld, D. A. et al. Detection of vibrational emissions from the helium hydride ion (HeH+) in the planetary nebula NGC 7027. Astrophys. J. 894, 37 (2020).

    ADS  Google Scholar 

  82. 82.

    Güsten, R. et al. Astrophysical detection of the helium hydride ion HeH+. Nature 568, 357–359 (2019).

    ADS  Google Scholar 

  83. 83.

    Pety, J. et al. The IRAM-30 m line survey of the Horsehead PDR. Astron. Astrophys. 548, A68 (2012).

    Google Scholar 

  84. 84.

    McGuire, B. A. et al. A search for l-C3H+ and l-C3H in Sgr B2(N), Sgr B2(OH), and the dark cloud TMC-1. Astrophys. J. 774, 56 (2013).

    ADS  Google Scholar 

  85. 85.

    McGuire, B. A. et al. An observational investigation of the identity of B11244 (l-C3H+/C3H+). Astrophys. J. 783, 36 (2014).

    ADS  Google Scholar 

  86. 86.

    McGuire, B. A. et al. A CSO search for l-C3H+: detection in the Orion bar PDR. Mon. Not. R. Astron. Soc. 442, 2901–2908 (2014).

    ADS  Google Scholar 

  87. 87.

    Huang, X., Fortenberry, R. C. & Lee, T. J. Spectroscopic constants and vibrational frequencies for l-C3H+ and isotopologues from highly accurate quartic force fields: the detection of l-C3H+ in the Horsehead Nebula PDR questioned. Astrophys. J. 768, L25 (2013).

    ADS  Google Scholar 

  88. 88.

    Fortenberry, R. C., Huang, X., Crawford, T. D. & Lee, T. J. High-accuracy quartic force field calculations for the spectroscopic constants and vibrational frequencies of 11A′ l-C3H: a possible link to lines observed in the Horsehead Nebula photodissociation region. Astrophys. J. 772, 39 (2013).

    ADS  Google Scholar 

  89. 89.

    McCarthy, M. C. et al. A laboratory study of C3H+ and the C3H radical in three new vibrationally excited 2𝚺 states using a pin-hole nozzle discharge source. Astrophys. J. Suppl. Ser. 217, 10 (2015).

    ADS  Google Scholar 

  90. 90.

    McCarthy, M. C., Chen, W., Travers, M. J. & Thaddeus, P. Microwave spectra of 11 polyyne carbon chains. Astrophys. J. Suppl. Ser. 129, 611–623 (2000).

    ADS  Google Scholar 

  91. 91.

    Balle, T. J. & Flygare, W. H. Fabry–Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source. Rev. Sci. Instrum. 52, 33–45 (1981).

    ADS  Google Scholar 

  92. 92.

    Ohshima, Y. & Endo, Y. Rotational spectroscopy of jet-cooled molecular ions and ion complexes. Chem. Phys. Lett. 256, 635–640 (1996).

    ADS  Google Scholar 

  93. 93.

    Lattanzi, V., Thorwirth, S., Gottlieb, C. A. & McCarthy, M. C. Two isomers of protonated isocyanic acid: evidence for an ion–molecule pathway for HNCO ↔ HOCN isomerization. J. Phys. Chem. Lett. 3, 3420–3424 (2012).

    Google Scholar 

  94. 94.

    McCarthy, M. C., Gottlieb, C. A., Gupta, H. & Thaddeus, P. Laboratory and astronomical identification of the negative molecular ion C6H. Astrophys. J. 652, L141–L144 (2006).

    ADS  Google Scholar 

  95. 95.

    Gupta, H. et al. Rotational spectra of the carbon chain negative ions C4H and C8H. Astrophys. J. 655, L57–L60 (2007).

    ADS  Google Scholar 

  96. 96.

    Brünken, S., Kluge, L., Stoffels, A., Asvany, O. & Schlemmer, S. Laboratory rotational spectrum of l-C3H+ and confirmation of its astronomical detection. Astrophys. J. 783, L4 (2014). Application of the ROSAA method, confirming the presence of a key ionic intermediate in the ISM.

    ADS  Google Scholar 

  97. 97.

    Brünken, S., Kluge, L., Stoffels, A., Pérez-Ríos, J. & Schlemmer, S. Rotational state-dependent attachment of He atoms to cold molecular ions: an action spectroscopic scheme for rotational spectroscopy. J. Mol. Spectrosc. 332, 67–78 (2017).

    ADS  Google Scholar 

  98. 98.

    Stoffels, A., Kluge, L., Schlemmer, S. & Brünken, S. Laboratory rotational ground state transitions of NH3D+ and CF+. Astron. Astrophys. 593, A56 (2016).

    ADS  Google Scholar 

  99. 99.

    Doménech, J. L., Schlemmer, S. & Asvany, O. Accurate rotational rest frequencies for ammonium ion isotopologues. Astrophys. J. 866, 158 (2018).

    ADS  Google Scholar 

  100. 100.

    Salomon, T. et al. Double resonance rotational spectroscopy of He-HCO+. Phys. Chem. Chem. Phys. 21, 3440–3445 (2019).

    Google Scholar 

  101. 101.

    Thorwirth, S., Schreier, P., Salomon, T., Schlemmer, S. & Asvany, O. Pure rotational spectrum of CN+. Astrophys. J. Lett. 882, L6 (2019).

    ADS  Google Scholar 

  102. 102.

    Doménech, J. L., Schlemmer, S. & Asvany, O. Accurate frequency determination of vibrationrotation and rotational transitions of SiH+. Astrophys. J. 849, 60 (2017).

    ADS  Google Scholar 

  103. 103.

    Jusko, P. et al. The FELion cryogenic ion trap beam line at the FELIX free-electron laser laboratory: infrared signatures of primary alcohol cations. Faraday Discuss. 217, 172–202 (2019).

    ADS  Google Scholar 

  104. 104.

    Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S. E. Detection of C60 and C60 + in a young planetary nebula. Science 329, 1180–1182 (2010).

    ADS  Google Scholar 

  105. 105.

    McCall, B. J. & Griffin, R. E. On the discovery of the diffuse interstellar bands. Proc. R. Soc. A 469, 20120604 (2013).

    ADS  Google Scholar 

  106. 106.

    Foing, B. H. & Ehrenfreund, P. Detection of two interstellar absorption bands coincident with spectral features of C60 +. Nature 369, 296–298 (1994).

    ADS  Google Scholar 

  107. 107.

    Fulara, J., Jakobi, M. & Maier, J. P. Electronic and infrared spectra of C60 + and C60 in neon and argon matrices. Chem. Phys. Lett. 211, 227–234 (1993).

    ADS  Google Scholar 

  108. 108.

    Campbell, E. K., Holz, M., Gerlich, D. & Maier, J. P. Laboratory confirmation of C60 + as the carrier of two diffuse interstellar bands. Nature 523, 322–323 (2015).

    ADS  Google Scholar 

  109. 109.

    McCall, B. J. Spectroscopy of H 3 + in Laboratory and Astrophysical Plasmas. PhD thesis, Univ. Chicago (2001).

  110. 110.

    Oepts, D., van der Meer, A. & van Amersfoort, P. The free-electron-laser user facility FELIX. Infrared Phys. Technol. 36, 297–308 (1995).

    ADS  Google Scholar 

  111. 111.

    Western, C. M. PGOPHER: a program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf. 186, 221–242 (2017).

    ADS  Google Scholar 

  112. 112.

    Neill, J. L. et al. Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis. Opt. Express 21, 19743–19749 (2013).

    ADS  Google Scholar 

Download references


The authors thank J. Pety for providing access to observational data towards the Horsehead PDR, and J. L. Doménech and D. Neufeld for help in producing Fig. 6. Support for B.A.M. for the initial portions of this work was provided by NASA through a Hubble Fellowship (grant no. HST-HF2-51396) awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy for NASA, under contract NAS5-26555. The National Radio Astronomy Observatory is a facility of the US National Science Foundation operated under cooperative agreement by Associated Universities, Inc. S.S., O.A. and S.B. thank the Deutsche Forschungsgemeinschaft for long-term support of the development of the action spectroscopy techniques in the Cologne laboratory through numerous projects.

Author information




The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Brett A. McGuire or Stephan Schlemmer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Satoshi Yamamoto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McGuire, B.A., Asvany, O., Brünken, S. et al. Laboratory spectroscopy techniques to enable observations of interstellar ion chemistry. Nat Rev Phys 2, 402–410 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing