Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-messenger astrophysics


Multi-messenger astrophysics, a long-anticipated extension to traditional multiwavelength astronomy, has emerged over the past decade as a distinct discipline providing unique and valuable insights into the properties and processes of the physical Universe. These insights arise from the inherently complementary information carried by photons, gravitational waves, neutrinos and cosmic rays about individual cosmic sources and source populations. This complementarity is the reason why multi-messenger astrophysics is much more than just the sum of the parts. In this Review article, we survey the current status of multi-messenger astrophysics, highlighting some exciting results, and discussing the major follow-up questions they have raised. Key recent achievements include the measurement of the spectrum of ultrahigh-energy cosmic rays out to the highest observable energies; the discovery of the diffuse high-energy neutrino background; the first direct detections of gravitational waves and the use of gravitational waves to characterize merging black holes and neutron stars in strong-field gravity; and the identification of the first joint electromagnetic plus gravitational wave and electromagnetic plus high-energy neutrino multi-messenger sources. We discuss the rationales for the next generation of multi-messenger observatories, and outline a vision of the most likely future directions for this exciting and rapidly growing field.

Key points

  • Besides the traditional electromagnetic observations, multi-messenger astrophysics uses the information about the astrophysical Universe provided by the gravitational, weak and strong forces. These new channels provide untapped, qualitatively different and complementary types of information, making previously hidden objects visible.

  • Diffuse backgrounds of high-energy neutrinos (HENs) with energies from ~10 TeV to PeV, ultrahigh-energy cosmic rays (UHECRs) at energies up to ~1020 eV and γ-rays with energies between MeV and ~TeV have been measured, or upper limits have been provided, by Cherenkov detectors, satellites and ground-based air shower arrays.

  • Gravitational waves from merging stellar mass black hole and neutron star binaries have been detected at frequencies in the ~10 Hz to ~1 kHz range with laser interferometric gravitational wave detectors.

  • The sources of the diffuse UHECR and HEN backgrounds remain unknown, although a γ-ray-flaring blazar has been tentatively identified with the observed HENs. Although up to ~85% of the γ-ray background can be attributed to blazars, it appears that at most 30% of the HEN background has the same origin.

  • The natural physical connection between high-energy cosmic ray interactions and the resulting very-high-energy neutrinos and γ-rays can provide clues about their unknown astrophysical sources. Although less direct, the connection with gravitational wave emission is expected to provide important information about supermassive black hole populations and dynamics.

  • The advanced gravitational wave detectors will soon be able to detect hundreds of binary mergers up to ~Gpc distances, but electromagnetic counterpart searches rely primarily on the aging space-based facilities Swift and Fermi, currently operating well beyond their design lifetimes. There is an urgent need for a new generation of electromagnetic detectors, extending the range of frequencies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Examples of current instruments observing cosmic messengers via the electromagnetic, gravitational, weak and strong forces.
Fig. 2: Examples of recent cosmic multi-messenger advances involving the electromagnetic, weak, gravitational and strong forces.
Fig. 3: Examples of new detectors in the planning stage.


  1. 1.

    Aartsen, M. G. et al. First observation of PeV-energy neutrinos with icecube. Phys. Rev. Lett. 111, 021103 (2013).

    Article  ADS  Google Scholar 

  2. 2.

    IceCube Collaboration Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 342, 1242856 (2013).

    Article  Google Scholar 

  3. 3.

    Auger collaboration Highlights from the Pierre Auger Observatory (ICRC17). Preprint at (2017).

  4. 4.

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  5. 5.

    Pierre Auger Collaboration The Pierre Auger Cosmic Ray Observatory. Nucl. Instrum. Methods Phys. Res. A 798, 172–213 (2015).

    Article  ADS  Google Scholar 

  6. 6.

    Abbasi, R. et al. Observation of the GZK cutoff by the HiRes experiment. Phys. Rev. Lett. 100, 101101 (2008).

    Article  ADS  Google Scholar 

  7. 7.

    Greisen, K. End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966).

    Article  ADS  Google Scholar 

  8. 8.

    Zatsepin, G. T. & Kuz’min, V. A. Upper limit of the spectrum of cosmic rays. Sov. J. Exp. Theor. Phys. Lett. 4, 78 (1966).

    ADS  Google Scholar 

  9. 9.

    Gerasimova, N. M. & Rozental, I. L. Influence of the nuclear photoeffect on the primary cosmic ray spectrum. Sov. Phys. J. Exp. Theor. Phys. 14, 350 (1962).

    Google Scholar 

  10. 10.

    Aab, A. et al. Evidence for a mixed mass composition at the’ankle’ in the cosmic-ray spectrum. Phys. Lett. B 762, 288–295 (2016).

    Article  ADS  Google Scholar 

  11. 11.

    Gora, D. (for the Pierre Auger Collaboration) The Pierre Auger observatory: review of latest results and perspectives. Preprint at ArXiv (2018).

  12. 12.

    Petrera, S. Recent results from the Pierre Auger observatory. Preprint at ArXiv (2019).

  13. 13.

    Kawai, H. et al. Telescope array experiment. Nucl. Phys. B Proc. Suppl. 175, 221–226 (2008).

    Article  ADS  Google Scholar 

  14. 14.

    Telescope Array Collaboration et al. Mass composition of ultra-high-energy cosmic rays with the telescope array surface detector data. Preprint at ArXiv (2018).

  15. 15.

    AbuZayyad, T. et al. The energy spectrum of cosmic rays at the highest energies. JPS Conf. Proc. 19, 011003 (2018).

    Google Scholar 

  16. 16.

    IceCube Collaboration. et al. First year performance of the IceCube neutrino telescope. Astropart. Phys. 26, 155–173 (2006).

    Article  ADS  Google Scholar 

  17. 17.

    Kistler, M. D. & Laha, R. Multi-PeV signals from a new astrophysical neutrino flux beyond the glashow resonance. Phys. Rev. Lett. 120, 241105 (2018).

    Article  ADS  Google Scholar 

  18. 18.

    Halzen, F. High-energy neutrino astrophysics. Nat. Phys. 13, 232–238 (2017).

    Article  Google Scholar 

  19. 19.

    Ahlers, M. & Halzen, F. Opening a new window onto the universe with IceCube. Prog. Part. Nucl. Phys. 102, 73–88 (2018).

    Article  ADS  Google Scholar 

  20. 20.

    IceCube Collaboration et al. The IceCube neutrino observatory — contributions to ICRC 2017 part I: searches for the sources of astrophysical neutrinos. Preprint at ArXiv (2017).

  21. 21.

    Illuminati, G. Latest results from the ANTARES neutrino telescope and prospects for KM3NeT-ARCA. Nuovo Cimento C 41, 134 (2019).

    ADS  Google Scholar 

  22. 22.

    Baikal-GVD Collaboration et al. Baikal-GVD: status and prospects. Preprint at ArXiv (2018).

  23. 23.

    Allison, P. et al. Constraints on the diffuse high-energy neutrino flux from the third flight of ANITA. Preprint at ArXiv (2018).

  24. 24.

    Aab, A. et al. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory. Phys. Rev. D 91, 092008 (2015).

    Article  ADS  Google Scholar 

  25. 25.

    Abbott, B. P. et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory. Rep. Prog. Phys. 72, 076901 (2009).

    Article  ADS  Google Scholar 

  26. 26.

    Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015).

    Article  ADS  Google Scholar 

  27. 27.

    The LIGO Scientific Collaboration & the Virgo Collaboration. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Preprint at ArXiv (2018).

  28. 28.

    Connaughton, V. et al. Fermi GBM observations of LIGO gravitational wave event GW150914. Preprint at (2016).

  29. 29.

    Thompson, D. J. Space detectors for gamma rays (100 MeV–100 GeV): from EGRET to Fermi LAT. C. R. Phys. 16, 600–609 (2015).

    Article  ADS  Google Scholar 

  30. 30.

    Montaruli, T. Gamma-rays and their future. Preprint at ArXiv (2019).

  31. 31.

    Salesa Greus, F. Gamma-ray astronomy with the HAWC observatory. In Proc. XXXVIII Polish Astronomical Society Meeting Vol. 7 (ed. Rozanska, A.) 316–321 (Polish Astronomical Society, 2018).

  32. 32.

    Casanova, S. Highlights from the HAWC telescope. In Fourteenth Marcel Grossmann Meeting — MG14 (eds Bianchi, M., Jansen, R. T. & Ruffini, R.) 3303–3306 (World Scientific, 2018).

  33. 33.

    Davis, R. Nobel lecture: a half-century with solar neutrinos. Rev. Mod. Phys. 75, 985–994 (2003).

    Article  ADS  Google Scholar 

  34. 34.

    Koshiba, M. Nobel lecture: birth of neutrino astrophysics. Rev. Mod. Phys. 75, 1011–1020 (2003).

    Article  ADS  Google Scholar 

  35. 35.

    Hirata, K. et al. Observation of a neutrino burst from the supernova SN1987A. Phys. Rev. Lett. 58, 1490–1493 (1987).

    Article  ADS  Google Scholar 

  36. 36.

    Alexeyev, E. N., Alexeyeva, L. N., Krivosheina, I. V. & Volchenko, V. I. Detection of the neutrino signal from SN 1987A in the LMC using the INR Baksan underground scintillation telescope. Phys. Lett. B 205, 209–214 (1988).

    Article  ADS  Google Scholar 

  37. 37.

    Haines, T. et al. Neutrinos from SN1987a in the IMB detector. Nucl. Instrum. Methods Phys. Res. A 264, 28–31 (1988).

    Article  ADS  Google Scholar 

  38. 38.

    Ackermann, M. et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 799, 86 (2015).

    Article  ADS  Google Scholar 

  39. 39.

    Ackermann, M. Resolving the extragalactic γ-ray background above 50 GeV with the Fermi large area telescope. Phys. Rev. Lett. 116, 151105 (2016).

    Article  ADS  Google Scholar 

  40. 40.

    Fang, K. & Murase, K. Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures. Nat. Phys. 14, 396–398 (2018).

    Article  Google Scholar 

  41. 41.

    Murase, K. & Waxman, E. Constraining high-energy cosmic neutrino sources: implications and prospects. Phys. Rev. D 94, 103006 (2016).

    Article  ADS  Google Scholar 

  42. 42.

    Murase, K., Ahlers, M. & Lacki, B. C. Testing the hadronuclear origin of PeV neutrinos observed with IceCube. Phys. Rev. D 88, 121301 (2013).

    Article  ADS  Google Scholar 

  43. 43.

    Murase, K., Guetta, D. & Ahlers, M. Hidden cosmic-ray accelerators as an origin of TeV–PeV cosmic neutrinos. Phys. Rev. Lett. 116, 071101 (2016).

    Article  ADS  Google Scholar 

  44. 44.

    Ahlers, M. & Murase, K. Probing the galactic origin of the IceCube excess with gamma rays. Phys. Rev. D 90, 023010 (2014).

    Article  ADS  Google Scholar 

  45. 45.

    Abbasi, R. et al. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature 484, 351–354 (2012).

    Article  ADS  Google Scholar 

  46. 46.

    Aartsen, M. G. et al. Search for prompt neutrino emission from gamma-ray bursts with IceCube. Astrophys. J. Lett. 805, L5 (2015).

    Article  ADS  Google Scholar 

  47. 47.

    Aartsen, M. G. et al. Constraints on minute-scale transient astrophysical neutrino sources. Preprint at ArXiv (2018).

  48. 48.

    Mészáros, P. & Waxman, E. TeV neutrinos from successful and choked gamma-ray bursts. Phys. Rev. Lett. 87, 171102–17110 (2001).

    Article  ADS  Google Scholar 

  49. 49.

    Murase, K. & Ioka, K. TeV–PeV neutrinos from low-power gamma-ray burst jets inside stars. Phys. Rev. Lett. 111, 121102 (2013).

    Article  ADS  Google Scholar 

  50. 50.

    Abbott, B. et al. Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. Phys. Rev. D 72, 042002 (2005).

    Article  ADS  Google Scholar 

  51. 51.

    Abbott, B. et al. Astrophysically triggered searches for gravitational waves: status and prospects. Class. Quantum Gravity 25, 114051 (2008).

    Article  ADS  Google Scholar 

  52. 52.

    Kanner, J. et al. LOOC UP: locating and observing optical counterparts to gravitational wave bursts. Class. Quantum Gravity 25, 184034 (2008).

    Article  ADS  Google Scholar 

  53. 53.

    Abbott, B. et al. Implications for the origin of GRB 070201 from LIGO observations. Astrophys. J. 681, 1419–1430 (2008).

    Article  ADS  Google Scholar 

  54. 54.

    Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817 A. Astrophys. J. Lett. 848, L13 (2017).

    Article  ADS  Google Scholar 

  55. 55.

    The LIGO Scientific Collaboration et al. Properties of the binary neutron star merger GW170817. Phys. Rev. X 9, 011001 (2019).

    Google Scholar 

  56. 56.

    The LIGO Scientific Collaboration et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).

    Article  ADS  Google Scholar 

  57. 57.

    Troja, E. et al. The X-ray counterpart to the gravitational wave event GW 170817. Preprint at ArXiv (2017).

  58. 58.

    Coulter, D. A. et al. Swope supernova survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).

    Article  ADS  Google Scholar 

  59. 59.

    Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017).

    Article  ADS  Google Scholar 

  60. 60.

    Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017).

    Article  ADS  Google Scholar 

  61. 61.

    Margutti, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys. J. 848, L20 (2017).

    Article  ADS  Google Scholar 

  62. 62.

    Weiss, R. LIGO and the discovery of gravitational waves, I: Nobel lecture, December 8, 2017. Ann. Phys. 531, 1800349 (2019).

    Google Scholar 

  63. 63.

    Barish, B. C. LIGO and gravitational waves II: Nobel lecture, December 8, 2017. Ann. Phys. 531, 1800357 (2019).

    Google Scholar 

  64. 64.

    Thorne, K. S. LIGO and gravitational waves, III: Nobel lecture, December 8, 2017. Ann. Phys. 531, 1800350 (2019).

    Google Scholar 

  65. 65.

    IceCube Collaboration et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).

    Article  ADS  Google Scholar 

  66. 66.

    Mirzoyan, R. First-time detection of VHE gamma rays by MAGIC from a direction consistent with the recent EHE neutrino event IceCube-170922A. Astron. Telegr. 10817 (2017).

  67. 67.

    Keivani, A. et al. A multimessenger picture of the flaring blazar TXS 0506+056: implications for high-energy neutrino emission and cosmic ray acceleration. Astrophys. J. 864, 84 (2018).

    Article  ADS  Google Scholar 

  68. 68.

    Fox, D. B. et al. Joint swift XRT and NuSTAR observations of TXS 0506+056. Astron. Telegr. 10845 (2017).

  69. 69.

    Padovani, P., Oikonomou, F., Petropoulou, M., Giommi, P. & Resconi, E. TXS 0506+056, the first cosmic neutrino source, is not a BL Lac. Mon. Not. R. Astron. Soc. 484, L104–L108 (2019).

  70. 70.

    IceCube Collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 361, 147–151 (2018).

    ADS  Google Scholar 

  71. 71.

    Gao, S., Fedynitch, A., Winter, W. & Pohl, M. Modelling the coincident observation of a high-energy neutrino and a bright blazar flare. Nat. Astron. 3, 88–92 (2019).

    Article  ADS  Google Scholar 

  72. 72.

    Cerruti, M. et al. Leptohadronic single-zone models for the electromagnetic and neutrino emission of TXS 0506+056. Mon. Not. R. Astron. Soc. 483, L12–L16 (2019).

    Article  ADS  Google Scholar 

  73. 73.

    Aartsen, M. G. et al. The contribution of Fermi-2LAC blazars to diffuse TeV–PeV neutrino flux. Astrophys. J. 835, 45 (2017).

    Article  ADS  Google Scholar 

  74. 74.

    Perna, R., Lazzati, D. & Giacomazzo, B. Short gamma-ray bursts from the merger of two black holes. Astrophys. J. Lett. 821, L18 (2016).

    Article  ADS  Google Scholar 

  75. 75.

    Murase, K., Kashiyama, K., Mészáros, P., Shoemaker, I. & Senno, N. Ultrafast outflows from black hole mergers with a minidisk. Astrophys. J. Lett. 822, L9 (2016).

    Article  ADS  Google Scholar 

  76. 76.

    Bartos, I. et al. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers. Nat. Commun. 8, 831 (2017).

    Article  ADS  Google Scholar 

  77. 77.

    Ford, K. E. S. et al. AGN (and other) astrophysics with gravitational wave events. Preprint at (2019).

  78. 78.

    Albert, A. et al. Search for multimessenger sources of gravitational waves and high-energy neutrinos with advanced LIGO during its first observing run, ANTARES, and IceCube. Astrophys. J. 870, 134 (2019).

    Article  ADS  Google Scholar 

  79. 79.

    Bird, S. et al. Did LIGO detect dark matter? Phys. Rev. Lett. 116, 201301 (2016).

    Google Scholar 

  80. 80.

    Magee, R. & Hanna, C. Disentangling the potential dark matter origin of LIGO’s black holes. Preprint at (2017).

  81. 81.

    Carr, B. Primordial black holes as dark matter and generators of cosmic structure. Preprint at ArXiv (2019).

  82. 82.

    Bartos, I., Finley, C., Corsi, A. & Márka, S. Observational constraints on multimessenger sources of gravitational waves and high-energy neutrinos. Phys. Rev. Lett. 107, 251101 (2011).

    Article  ADS  Google Scholar 

  83. 83.

    Ando, S. et al. Colloquium: multimessenger astronomy with gravitational waves and high-energy neutrinos. Rev. Mod. Phys. 85, 1401–1420 (2013).

    Article  ADS  Google Scholar 

  84. 84.

    Kimura, S. S., Murase, K., Mészáros, P. & Kiuchi, K. High-energy neutrino emission from short gamma-ray bursts: prospects for coincident detection with gravitational waves. Astrophys. J. Lett. 848, L4 (2017).

    Article  ADS  Google Scholar 

  85. 85.

    Kimura, S. S. et al. Transejecta high-energy neutrino emission from binary neutron star mergers. Phys. Rev. D 98, 043020 (2018).

    Article  ADS  Google Scholar 

  86. 86.

    Hooper, D., Linden, T. & Vieregg, A. Active galactic nuclei and the origin of icecube’s diffuse neutrino flux. Preprint at ArXiv (2018).

  87. 87.

    Murase, K., Oikonomou, F. & Petropoulou, M. Blazar flares as an origin of high-energy cosmic neutrinos? Astrophys. J. 865, 124 (2018).

    Article  ADS  Google Scholar 

  88. 88.

    The LIGO Scientific Collaboration & The Virgo Collaboration Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and Advanced Virgo. Preprint at ArXiv (2018).

  89. 89.

    IceCube Collaboration, Pierre Auger Collaboration & Telescope Array Collaboration. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger observatory and the telescope array. Jour. Cosmol. Astro-Ppart. Phys. 1, 037 (2016).

  90. 90.

    Moharana, R. & Razzaque, S. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources. J. Cosmol. Astropart. Phys. 8, 014 (2015).

    Article  ADS  Google Scholar 

  91. 91.

    Aloisio, R., Berezinsky, V. & Blasi, P. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition. J. Cosmol. Astropart. Phys. 2014, 020 (2014).

    Article  Google Scholar 

  92. 92.

    Alves Batista, R., de Almeida, R. M., Lago, B. & Kotera, K. Cosmogenic photon and neutrino fluxes in the Auger era. J. Cosmol. Astropart. Phys. 1, 002 (2019).

    Article  ADS  Google Scholar 

  93. 93.

    Murase, K. & Fukugita, M. Energetics of high-energy cosmic radiations. Phys. Rev. D 99, 063012 (2019).

    Article  ADS  Google Scholar 

  94. 94.

    Radice, D. et al. Binary neutron star mergers: mass ejection, electromagnetic counterparts, and nucleosynthesis. Astrophys. J. 869, 130 (2018).

    Article  ADS  Google Scholar 

  95. 95.

    Glas, R., Just, O., Janka, H. T. & Obergaulinger, M. Three-dimensional core-collapse supernova simulations with multidimensional neutrino transport compared to the ray-by-ray-plus approximation. Astrophys. J. 873, 45 (2019).

    Article  ADS  Google Scholar 

  96. 96.

    Radice, D., Morozova, V., Burrows, A., Vartanyan, D. & Nagakura, H. Characterizing the gravitational wave signal from core-collapse supernovae. Astrophys. J. 876, L9 (2019).

    Article  ADS  Google Scholar 

  97. 97.

    Seckel, D. & Stanev, T. Neutrinos: the key to UHE cosmic rays. Phys. Rev. Lett. 95, 141101 (2005).

    Article  ADS  Google Scholar 

  98. 98.

    Kotera, K. & Olinto, A. V. The astrophysics of ultrahigh-energy cosmic rays. Annu. Rev. Astron. Astrophys. 49, 119–153 (2011).

    Article  ADS  Google Scholar 

  99. 99.

    Globus, N., Allard, D., Parizot, E. & Piran, T. Probing the extragalactic cosmic-ray origin with gamma-ray and neutrino backgrounds. Astrophys. J. 839, L22 (2017).

    Article  ADS  Google Scholar 

  100. 100.

    Gorham, P. W. et al. Observation of an unusual upward-going cosmic-ray-like event in the third flight of ANITA. Preprint at ArXiv (2018).

  101. 101.

    Alvarez-Muñiz, J. et al. Comprehensive approach to tau-lepton production by high-energy tau neutrinos propagating through the Earth. Phys. Rev. D 97, 023021 (2018).

    Article  ADS  Google Scholar 

  102. 102.

    Romero-Wolf, A. et al. Upward-pointing cosmic-ray-like events observed with ANITA. Preprint at ArXiv (2018).

  103. 103.

    Connolly, A., Allison, P. & Banerjee, O. On ANITA’s sensitivity to long-lived, charged massive particles. Preprint at ArXiv (2018).

  104. 104.

    Fox, D. B. et al. The ANITA anomalous events as signatures of a beyond standard model particle, and supporting observations from IceCube. Preprint at ArXiv (2018).

  105. 105.

    Dagoneau, N., Cordier, B., Schanne, S. & Gros, A. Detection capability of ultra-long gamma-ray bursts with the ECLAIRs telescope aboard the SVOM mission under development. In 42nd COSPAR Scientific Assembly Vol. 42 E1.17–46–18 (2018).

  106. 106.

    Zhang, D. et al. Energy response of GECAM gamma-ray detector based on LaBr3:Ce and SiPM array. Nucl. Instrum. Methods Phys. Res. A 921, 8–13 (2019).

    Article  ADS  Google Scholar 

  107. 107.

    Yuan, W. et al. Einstein Probe — a small mission to monitor and explore the dynamic X-ray universe. Preprint at ArXiv,07735 (2015).

  108. 108.

    Sagiv, I. et al. Science with a wide-field UV transient explorer. Astron. J. 147, 79 (2014).

    Article  ADS  Google Scholar 

  109. 109.

    Yacobi, L. et al. The gamma-ray transient monitor for ISS-TAO: new directional capabilities. Proc. SPIE 10699, 106995U (2018).

    Google Scholar 

  110. 110.

    Patterson, M. T. et al. The Zwicky Transient Facility alert distribution system. Publ. Astron. Soc. Pac. 131, 018001 (2019).

    Article  ADS  Google Scholar 

  111. 111.

    Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).

    Article  ADS  Google Scholar 

  112. 112.

    Cherenkov Telescope Array Consortium et al. Science with the Cherenkov Telescope Array. Preprint at ArXiv (2017).

  113. 113.

    Di Sciascio, G. & LHAASO Collaboration The LHAASO experiment: from gamma-ray astronomy to cosmic rays. Nucl. Part. Phys. Proc. 279, 166–173 (2016).

    Article  Google Scholar 

  114. 114.

    LSST Science Collaboration et al. Science-driven optimization of the LSST observing strategy. Preprint at ArXiv (2017).

  115. 115.

    McPherson, A. M. et al. Square Kilometer Array project status report. Proc. SPIE 10700, 107000Y (2018).

    Google Scholar 

  116. 116.

    Sanders, G. H. The Thirty Meter Telescope (TMT): an international observatory. J. Astrophys. Astron. 34, 81–86 (2013).

    Article  ADS  Google Scholar 

  117. 117.

    Varela, A. M. et al. European extremely large telescope site characterization III: ground meteorology. Publ. Astron. Soc. Pac. 126, 412–431 (2014).

    Article  ADS  Google Scholar 

  118. 118.

    Johns, M. et al. Giant Magellan Telescope: overview. Proc. SPIE 8444, 84441H (2012).

    Article  Google Scholar 

  119. 119.

    Nandra, K. in The X-ray Universe 2011 (eds Ness, J.-U. & Ehle, M.) 022 (2011).

  120. 120.

    Amati, L. et al. The THESEUS space mission concept: science case, design and expected performances. Adv. Space Res. 62, 191–244 (2018).

    Article  ADS  Google Scholar 

  121. 121.

    Moiseev, A. & AMEGO Team All-Sky Medium Energy Gamma-ray Observatory (AMEGO). Int. Cosm. Ray Conf. 35, 798–803 (2017).

    Article  Google Scholar 

  122. 122.

    Predehl, P. et al. eROSITA on SRG. Proc. SPIE 9905, 99051K (2016).

    Article  Google Scholar 

  123. 123.

    IceCube-Gen2 Collaboration et al. The IceCube neutrino observatory — contributions to ICRC 2017 part VI: IceCube-Gen2, the next generation neutrino observatory. Preprint at ArXiv (2017).

  124. 124.

    The KM3NeT Collaboration et al. Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Preprint at ArXiv (2018).

  125. 125.

    Baikal-GVD Collaboration et al. Baikal-GVD: status and prospects. Preprint at ArXiv (2018).

  126. 126.

    Hyper-Kamiokande Proto-Collaboration et al. Hyper-kamiokande design report. Preprint at ArXiv (2018).

  127. 127.

    Migenda, J. & Hyper-Kamiokande Proto-Collaboration Astroparticle physics in hyper-kamiokande. In Proc. European Physical Society Conference on High Energy Physics. 5–12 July, 20 (2017).

  128. 128.

    Barwick, S. W. et al. Radio detection of air showers with the ARIANNA experiment on the Ross Ice Shelf. Astropart. Phys. 90, 50–68 (2017).

    Article  ADS  Google Scholar 

  129. 129.

    Allison, P. et al. Performance of two askaryan radio array stations and first results in the search for ultrahigh energy neutrinos. Phys. Rev. D 93, 082003 (2016).

    Article  ADS  Google Scholar 

  130. 130.

    GRAND Collaboration et al. The Giant Radio Array for Neutrino Detection (GRAND): science and design. Preprint at ArXiv (2018).

  131. 131.

    Olinto, A. V. et al. POEMMA: probe of extreme multi-messenger astrophysics. Int. Cosm. Ray Conf. 301, 542 (2017).

    Article  Google Scholar 

  132. 132.

    Nepomuk Otte, A. Trinity: an air-shower imaging system for the detection of cosmogenic neutrinos. Preprint at ArXiv (2018).

  133. 133.

    Veberic, D. (ed.) The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017) (2017).

  134. 134.

    Sagawa, H. & Telescope Array Collaboration Telescope array extension: TAx4. In 34th International Cosmic Ray Conference (ICRC2015) Vol. 34 657 (2015).

  135. 135.

    Casolino, M. et al. KLYPVE-EUSO: science and UHECR observational capabilities. Proc. Sci. ICRC2017, 368 (2018).

    Google Scholar 

  136. 136.

    Winchen, T. et al. Cosmic ray physics with the LOFAR radio telescope. Preprint at ArXiv (2019).

  137. 137.

    Seo, E. S. et al. Cosmic ray energetics and mass for the international space station (ISS-CREAM). Adv. Space Res. 53, 1451–1455 (2014).

    Article  ADS  Google Scholar 

  138. 138.

    Zhang, S. N. et al. The high energy cosmic-radiation detection (HERD) facility onboard China’s space station. Proc. SPIE 9144, 91440X (2014).

    Article  ADS  Google Scholar 

  139. 139.

    Fujii, T. et al. The FAST project — a next generation UHECR observatory. In European Physical Journal Web of Conferences Vol. 136 02015 (2017).

  140. 140.

    Gaisser, T. K., Stanev, T. & Tilav, S. Cosmic ray energy spectrum from measurements of air showers. Front. Phys. 8, 748–758 (2013).

    Article  Google Scholar 

  141. 141.

    Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 21, 3 (2018).

    Article  ADS  Google Scholar 

  142. 142.

    Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 34, 044001 (2017).

    Article  ADS  Google Scholar 

  143. 143.

    Sathyaprakash, B. et al. Scientific objectives of einstein telescope. Class. Quantum Gravity 29, 124013 (2012).

    Article  ADS  Google Scholar 

  144. 144.

    Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 34, 044001 (2017).

    Article  ADS  Google Scholar 

  145. 145.

    Klein, A. et al. Science with the space-based interferometer eLISA: supermassive black hole binaries. Phys. Rev. D 93, 024003 (2016).

    Article  ADS  Google Scholar 

  146. 146.

    Schutz, K. & Ma, C.-P. Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves. Mon. Not. R. Astron. Soc. 459, 1737–1744 (2016).

    Article  ADS  Google Scholar 

  147. 147.

    Hobbs, G. & Dai, S. A review of pulsar timing array gravitational wave research. Preprint at ArXiv (2017).

  148. 148.

    Arzoumanian, Z. et al. The NANOGrav 11 year data set: pulsar-timing constraints on the stochastic gravitational-wave background. Astrophys. J. 859, 47 (2018).

    Article  ADS  Google Scholar 

  149. 149.

    Keivani, A., Ayala, H. & DeLaunay, J. Astrophysical multimessenger observatory network (AMON): science, infrastructure, and status. Preprint at ArXiv (2017).

  150. 150.

    Ayala Solares, H. A. et al. The astrophysical multimessenger observatory network (AMON). Preprint at ArXiv (2019).

  151. 151.

    Turley, C. F. et al. A coincidence search for cosmic neutrino and gamma-ray emitting sources using IceCube and Fermi-LAT public data. Astrophys. J. 863, 64 (2018).

    Article  ADS  Google Scholar 

  152. 152.

    Countryman, S. et al. Low-latency algorithm for multi-messenger astrophysics (LLAMA) with gravitational-wave and high-energy neutrino candidates. Preprint at ArXiv (2019).

  153. 153.

    Schutz, B. F. Gravitational-wave astronomy: delivering on the promises. Phil. Trans. R. Soc. Lond. Ser. A 376, 20170279 (2018).

    Article  ADS  Google Scholar 

  154. 154.

    Mészáros, P. Astrophysical sources of high-energy neutrinos in the IceCube era. Annu. Rev. Nucl. Part. Sci. 67, 45–67 (2017).

    Article  Google Scholar 

  155. 155.

    Shibata, M., Kiuchi, K. & Sekiguchi, Y.-i General relativistic viscous hydrodynamics of differentially rotating neutron stars. Phys. Rev. D 95, 083005 (2017).

    Article  ADS  Google Scholar 

  156. 156.

    Easter, P. J., Lasky, P. D., Casey, A. R., Rezzolla, L. & Takami, K. Computing fast and reliable gravitational waveforms of binary neutron star merger remnants. Preprint at ArXiv (2018).

  157. 157.

    Parsotan, T., López-Cámara, D. & Lazzati, D. Photospheric emission from variable engine gamma-ray burst simulations. Astrophys. J. 869, 103 (2018).

    Article  ADS  Google Scholar 

  158. 158.

    van Eerten, H. Gamma-ray burst afterglow blast waves. Int. J. Mod. Phys. D 27, 1842002–1842314 (2018).

    Article  ADS  Google Scholar 

  159. 159.

    Senno, N., Murase, K. & Mészáros, P. Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Phys. Rev. D 93, 083003 (2016).

    Article  ADS  Google Scholar 

  160. 160.

    Hotokezaka, K., Beniamini, P. & Piran, T. Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. Int. J. Mod. Phys. D 27, 1842005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  161. 161.

    Biehl, D., Boncioli, D., Fedynitch, A. & Winter, W. Cosmic ray and neutrino emission from gamma-ray bursts with a nuclear cascade. Astron. Astrophys. 611, A101 (2018).

    Article  ADS  Google Scholar 

  162. 162.

    Lu, J.-S., Li, Y.-F. & Zhou, S. Getting the most from the detection of galactic supernova neutrinos in future large liquid-scintillator detectors. Phys. Rev. D 94, 023006 (2016).

    Article  ADS  Google Scholar 

  163. 163.

    Beacom, J. F. The diffuse supernova neutrino background. Annu. Rev. Nucl. Part. Sci. 60, 439–462 (2010).

    Article  ADS  Google Scholar 

  164. 164.

    Tamborra, I. & Murase, K. Neutrinos from supernovae. Space Sci. Rev. 214, 31 (2018).

    Article  ADS  Google Scholar 

  165. 165.

    Wild, W. Cherenkov telescope array (CTA): building the world’s largest ground-based gamma-ray observatory. Proc. SPIE 10700, 107000X (2018).

    Google Scholar 

  166. 166.

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Experimental Astronomy 32, 193–316 (2011).

  167. 167.

    Spiering, C. High energy neutrino astronomy: where do we stand, where do we go?. Physics of Particles and Nuclei 49, 497–507 (2018).

    Article  ADS  Google Scholar 

  168. 168.

    Kimura, S. S., Murase, K. & Mészáros, P. Super-knee cosmic rays from galactic neutron star merger remnants. Astrophys. J. 866, 51 (2018).

    Article  ADS  Google Scholar 

  169. 169.

    Guépin, C., Kotera, K., Barausse, E., Fang, K. & Murase, K. Ultra-high energy cosmic rays and neutrinos from tidal disruptions by massive black holes. Preprint at ArXiv (2017).

  170. 170.

    Biehl, D., Boncioli, D., Lunardini, C. & Winter, W. Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies. (2017).

  171. 171.

    Senno, N., Murase, K. & Meszaros, P. High-energy neutrino flares from X-ray bright and dark tidal disruptions events. (2016).

  172. 172.

    Wang, X.-Y. & Liu, R.-Y. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV-PeV neutrinos. (2015).

  173. 173.

    Klein, A. et al. Science with the space-based interferometer eLISA: supermassive black hole binaries. Phys. Rev. D 93, 024003 (2016).

    Article  ADS  Google Scholar 

  174. 174.

    Murase, K. & Bartos, I. High-energy multi-messenger transient astrophysics. Preprint in ArXiv (2019).

    Google Scholar 

Download references


The authors thank S. Coutu, D. Cowen, M. Mostafá and B. Sathyaprakash for useful discussions and comments.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Péter Mészáros.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Neutron stars

The remnant of a core-collapse supernova from a star in the ~8–25 M mass range, whose central core of mass ~0.5–2.0 M collapsed to a radius of ~10 km consisting mainly of neutrons.

Stellar mass black holes

Thought to arise in core-collapse supernova from stars 25 M, whose collapsed core has a mass greater than the maximum allowed for stable neutron star, resulting instead in a black hole of a neutron star.

Active galactic nuclei

A type of galaxies whose nuclear region, harbouring an accreting massive black hole, is so bright that it outshines the rest of the galaxy.

Gamma-ray bursts

A sudden, brief, extremely luminous sources of mainly γ-rays.


An intense stellar explosion, leading to a rapid brightening of the optical emission by more than ten orders of magnitude, followed by a gradual dimming. There are two basic subtypes, core-collapse supernovae and type Ia (nuclear deflagration) supernovae.


A type of active galactic nucleus where accretion to the central massive black hole leads to ejection of relativistic plasma jet pointing close to the line of sight to the external observer.

Air Cherenkov imaging telescopes

A steerable telescope measuring secondary optical photons produced by high-energy γ-rays impacting the upper Earth atmosphere.

Core-collapse supernova

The end result of the evolution of a star of mass 8 that has exhausted its nuclear fuel burning capacity, leading to the gravitational collapse of its inner core and the ejection of its outer envelope.

Short GRB

A short gamma-ray burst, confirmed recently to be due to the merger of a binary neutron star; also expected from neutron star–black hole binary mergers.


The abbreviation of ‘rapid neutron capture nuclear process’, whereby a nucleus rapidly increases its atomic number by repeatedly capturing neutrons.

Air shower array

An array of detectors measuring the secondary particles or photons produced by a primary cosmic ray hitting Earth’s atmosphere.

Supermassive black holes

A black hole in the range 105 to 1010M, usually at the centre of a galaxy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mészáros, P., Fox, D.B., Hanna, C. et al. Multi-messenger astrophysics. Nat Rev Phys 1, 585–599 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing