Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Astrophysics with continuous gravitational waves

Abstract

Direct detection of gravitational waves has become a powerful new tool of multi-messenger astrophysics. Apart from short-duration (transient) events, such as the inspirals and mergers of stellar-mass compact objects, we envisage other signal types of much longer duration—continuous gravitational waves. Traditionally associated with neutron star astrophysics, and hence with their largely unknown dense-matter interiors, continuous gravitational waves are now also entering other fields of astrophysics, namely, searches for dark matter, primordial black holes or exotic particles. Their long duration allows for qualitatively new possibilities, such as reproducible studies and tests of gravitational theory. This Review summarizes the results obtained in the recent O3 observing run of the LIGO–Virgo–KAGRA collaboration, the current status of the data analysis and the theoretical ideas related to astrophysical models. We show that O3 observations have started probing astrophysically relevant scenarios, and discuss how the improved sensitivity of the currently ongoing O4 observing run may offer a real possibility for a first detection of continuous gravitational waves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ellipticity as a function of the GW frequency for a selection of pulsars.
Fig. 2: Current upper limits obtained from the O3 all-sky search.
Fig. 3: Constraints on the mass of PSR J0537−6910.
Fig. 4: Constraints on the mass of the NS in Scorpius X-1.
Fig. 5: Boson mass as a function of the BH mass.

Similar content being viewed by others

Data availability

All data underlying the figures presented in this Review are available together with the original referenced publications at https://dcc.ligo.org/cgi-bin/DocDB/DocumentDatabase. Furthermore, the full O3 datasets underlying the analysis can be found at https://gwosc.org/data/. Any additional data will be made available by the corresponding author upon request.

References

  1. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  2. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  3. Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, 12 (2017).

    Article  ADS  Google Scholar 

  4. Abbott, B. P. et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).

    Article  ADS  Google Scholar 

  5. Aasi, J. et al. Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015).

    Article  ADS  Google Scholar 

  6. Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015).

    Article  ADS  Google Scholar 

  7. Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Preprint at https://arxiv.org/abs/2111.03606 (2021).

  8. Abbott, R. et al. Observation of gravitational waves from two neutron star–black hole coalescences. Astrophys. J. Lett. 915, 5 (2021).

    Article  ADS  Google Scholar 

  9. Abbott, R. et al. GW190521: a binary black hole merger with a total mass of 150M. Phys. Rev. Lett. 125, 101102 (2020).

    Article  ADS  Google Scholar 

  10. Akutsu, T. et al. Overview of KAGRA: detector design and construction history. Prog. Theor. Exp. Phys. 2021, 05A101 (2021).

    Article  Google Scholar 

  11. Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Rel. 21, 3 (2018).

    Article  Google Scholar 

  12. Andersson, N. A new class of unstable modes of rotating relativistic stars. Astrophys J. 502, 708–713 (1998).

    Article  ADS  Google Scholar 

  13. Andersson, N. & Kokkotas, K. D. The r-mode instability in rotating neutron stars. Int. J. Mod. Phys. D 10, 381–441 (2001).

    Article  ADS  Google Scholar 

  14. Glampedakis, K. & Gualtieri, L. in The Physics and Astrophysics of Neutron Stars Astrophysics and Space Science Library Vol. 457 (eds Rezzolla, L. et al.) 673–736 (Springer, 2018).

  15. Sieniawska, M. & Bejger, M. Continuous gravitational waves from neutron stars: current status and prospects. Universe 5, 217 (2019).

    Article  ADS  Google Scholar 

  16. Tenorio, R., Keitel, D. & Sintes, A. M. Search methods for continuous gravitational-wave signals from unknown sources in the advanced-detector era. Universe https://doi.org/10.3390/universe7120474 (2021).

  17. Piccinni, O. J. Status and perspectives of continuous gravitational wave searches. Galaxies https://doi.org/10.3390/galaxies10030072 (2022).

  18. Riles, K. Searches for continuous-wave gravitational radiation. Living Rev. Rel. 26, 3 (2022).

  19. Isi, M., Pitkin, M. & Weinstein, A. J. Probing dynamical gravity with the polarization of continuous gravitational waves. Phys. Rev. D 96, 042001 (2017).

    Article  ADS  Google Scholar 

  20. Isi, M., Weinstein, A. J., Mead, C. & Pitkin, M. Detecting beyond-Einstein polarizations of continuous gravitational waves. Phys. Rev. D 91, 082002 (2015).

    Article  ADS  Google Scholar 

  21. Verma, P. Probing gravitational waves from pulsars in Brans–Dicke theory. Universe https://doi.org/10.3390/universe7070235 (2021).

  22. Pitkin, M., Messenger, C. & Wright, L. Astrophysical calibration of gravitational-wave detectors. Phys. Rev. D 93, 062002 (2016).

    Article  ADS  Google Scholar 

  23. Dall’Osso, S. & Stella, L. in Millisecond Pulsars Astrophysics and Space Science Library Vol. 465 (eds Bhattacharyya, S. et al.) 245–280 (Spinger, 2022); https://doi.org/10.1007/978-3-030-85198-9_8

  24. Abbott, B. P. et al. Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817. Astrophys. J. Lett. 851, 16 (2017).

    Article  ADS  Google Scholar 

  25. Abbott, B. P. et al. Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817. Astrophys. J. 875, 160 (2019).

    Article  ADS  Google Scholar 

  26. Green, A. M. & Kavanagh, B. J. Primordial black holes as a dark matter candidate. J. Phys. G 48, 043001 (2021).

    Article  ADS  Google Scholar 

  27. Abramowicz, M., Bejger, M., Udalski, A. & Wielgus, M. A robust test of the existence of primordial black holes in galactic dark matter halos. Astrophys. J. Lett. 935, 28 (2022).

    Article  ADS  Google Scholar 

  28. Abramowicz, M., Bejger, M. & Wielgus, M. Collisions of neutron stars with primordial black holes as fast radio bursts engines. Astrophys. J. 868, 17 (2018).

    Article  ADS  Google Scholar 

  29. Miller, A. L. et al. Probing planetary-mass primordial black holes with continuous gravitational waves. Phys. Dark Universe https://doi.org/10.1016/j.dark.2021.100836 (2021).

  30. Abbott, R. et al. All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. Phys. Rev. D 105, 102001 (2022).

    Article  ADS  Google Scholar 

  31. Abbott, R. et al. Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third observing run. Phys. Rev. D 105, 063030 (2022).

    Article  ADS  Google Scholar 

  32. Antoniadis, J. et al. The second data release from the European Pulsar Timing Array IV. Search for continuous gravitational wave signals. Preprint at https://arxiv.org/abs/2306.16226 (2023).

  33. Owen, B. J. & Sathyaprakash, B. S. Matched filtering of gravitational waves from inspiraling compact binaries: computational cost and template placement. Phys. Rev. D 60, 022002 (1999).

    Article  ADS  Google Scholar 

  34. Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Wiley, 1949).

  35. Jaranowski, P. & Królak, A. Gravitational-wave data analysis. formalism and sample applications: the Gaussian case. Living Rev. Rel. 15, 4 (2012).

    Article  MATH  Google Scholar 

  36. Brady, P. R., Creighton, T., Cutler, C. & Schutz, B. F. Searching for periodic sources with LIGO. Phys. Rev. D 57, 2101–2116 (1998).

    Article  ADS  Google Scholar 

  37. Brady, P. R. & Creighton, T. Searching for periodic sources with LIGO. II. Hierarchical searches. Phys. Rev. D 61, 082001 (2000).

    Article  ADS  Google Scholar 

  38. Wette, K. Lattice template placement for coherent all-sky searches for gravitational-wave pulsars. Phys. Rev. D 90, 122010 (2014).

    Article  ADS  Google Scholar 

  39. Wette, K. Parameter-space metric for all-sky semicoherent searches for gravitational-wave pulsars. Phys. Rev. D 92, 082003 (2015).

    Article  ADS  Google Scholar 

  40. Duncan, R. C. & Thompson, C. Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts. Astrophys. J. Lett. 392, 9 (1992).

    Article  ADS  Google Scholar 

  41. Paczynski, B. GB 790305 as a very strongly magnetized neutron star. Acta Astron. 42, 145–153 (1992).

    ADS  Google Scholar 

  42. Ushomirsky, G., Cutler, C. & Bildsten, L. Deformations of accreting neutron star crusts and gravitational wave emission. Mon. Not. R. Astron. Soc. 319, 902–932 (2000).

    Article  ADS  Google Scholar 

  43. Haskell, B., Jones, D. I. & Andersson, N. Mountains on neutron stars: accreted versus non-accreted crusts. Mon. Not. R. Astron. Soc. 373, 1423–1439 (2006).

    Article  ADS  Google Scholar 

  44. Gittins, F., Andersson, N. & Jones, D. I. Modelling neutron star mountains. Mon. Not. R. Astron. Soc. 500, 5570–5582 (2021).

    Article  ADS  Google Scholar 

  45. Gittins, F. & Andersson, N. Modelling neutron star mountains in relativity. Mon. Not. R. Astron. Soc. 507, 116–128 (2021).

    Article  ADS  Google Scholar 

  46. Owen, B. J. Maximum elastic deformations of compact stars with exotic equations of state. Phys. Rev. Lett. 95, 211101 (2005).

    Article  ADS  Google Scholar 

  47. Haskell, B., Andersson, N., Jones, D. I. & Samuelsson, L. Are neutron stars with crystalline color-superconducting cores relevant for the LIGO experiment? Phys. Rev. Lett. 99, 231101 (2007).

    Article  ADS  Google Scholar 

  48. Suvorov, A. G., Mastrano, A. & Geppert, U. Gravitational radiation from neutron stars deformed by crustal Hall drift. Mon. Not. R. Astron. Soc. 459, 3407–3418 (2016).

    Article  ADS  Google Scholar 

  49. Woan, G., Pitkin, M. D., Haskell, B., Jones, D. I. & Lasky, P. D. Evidence for a minimum ellipticity in millisecond pulsars. Astrophys. J. Lett. 863, 40 (2018).

    Article  ADS  Google Scholar 

  50. Bonazzola, S. & Gourgoulhon, E. Gravitational waves from pulsars: emission by the magnetic-field-induced distortion. Astron. Astrophys. 312, 675–690 (1996).

    ADS  Google Scholar 

  51. Jones, D. I. Gravitational wave emission from rotating superfluid neutron stars. Mon. Not. R. Astron. Soc. 402, 2503–2519 (2010).

    Article  ADS  Google Scholar 

  52. Abbott, R. et al. Searches for gravitational waves from known pulsars at two harmonics in the second and third LIGO–Virgo observing runs. Astrophys. J. 935, 1 (2022).

    Article  ADS  Google Scholar 

  53. Abbott, R. et al. Gravitational-wave constraints on the equatorial ellipticity of millisecond pulsars. Astrophys. J. Lett. 902, 21 (2020).

    Article  ADS  Google Scholar 

  54. Ashok, A. et al. New searches for continuous gravitational waves from seven fast pulsars. Astrophys. J. 923, 85 (2021).

    Article  ADS  Google Scholar 

  55. Rajwade, K. M., Lorimer, D. R. & Anderson, L. D. Detecting pulsars in the Galactic Centre. Mon. Not. R. Astron. Soc. 471, 730–739 (2017).

    Article  ADS  Google Scholar 

  56. Rajwade, K., Chennamangalam, J., Lorimer, D. & Karastergiou, A. The Galactic halo pulsar population. Mon. Not. R. Astron. Soc. 479, 3094–3100 (2018).

    Article  ADS  Google Scholar 

  57. Palomba, C. Simulation of a population of isolated neutron stars evolving through the emission of gravitational waves. Mon. Not. R. Astro. Soc. 359, 1150–1164 (2005).

    Article  ADS  Google Scholar 

  58. Abbott, R. et al. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data. Phys. Rev. D 106, 102008 (2022).

    Article  ADS  Google Scholar 

  59. Abbott, R. et al. All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Phys. Rev. D 104, 082004 (2021).

    Article  ADS  Google Scholar 

  60. Abbott, R. et al. All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Phys. Rev. D 103, 064017 (2021).

    Article  ADS  Google Scholar 

  61. Covas, P. B., Papa, M. A., Prix, R. & Owen, B. J. Constraints on r-modes and mountains on millisecond neutron stars in binary systems. Astrophys. J. Lett. 929, 19 (2022).

    Article  ADS  Google Scholar 

  62. Abbott, R. et al. Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO–Virgo data. Phys. Rev. D 106, 042003 (2022).

    Article  ADS  Google Scholar 

  63. Abbott, R. et al. Searches for continuous gravitational waves from young supernova remnants in the early third observing run of advanced LIGO and Virgo. Astrophys. J. 921, 80 (2021).

    Article  ADS  Google Scholar 

  64. Abbott, R. et al. Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Phys. Rev. D 105, 082005 (2022).

    Article  ADS  Google Scholar 

  65. Friedman, J. L. & Morsink, S. M. Axial instability of rotating relativistic stars. Astrophys. J. 502, 714–720 (1998).

    Article  ADS  Google Scholar 

  66. Chandrasekhar, S. Solutions of two problems in the theory of gravitational radiation. Phys. Rev. Lett. 24, 611–615 (1970).

    Article  ADS  Google Scholar 

  67. Friedman, J. L. & Schutz, B. F. Lagrangian perturbation theory of nonrelativistic fluids. Astrophys. J. 221, 937–957 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  68. Friedman, J. L. & Schutz, B. F. Secular instability of rotating Newtonian stars. Astrophys. J. 222, 281–296 (1978).

    Article  ADS  Google Scholar 

  69. Arras, P. et al. Saturation of the r-mode instability. Astrophys. J. 591, 1129–1151 (2003).

    Article  ADS  Google Scholar 

  70. Bondarescu, R., Teukolsky, S. A. & Wasserman, I. Spinning down newborn neutron stars: nonlinear development of the r-mode instability. Phys. Rev. D 79, 104003 (2009).

    Article  ADS  Google Scholar 

  71. Bondarescu, R. & Wasserman, I. Nonlinear development of the r-mode instability and the maximum rotation rate of neutron stars. Astrophys. J. 778, 9 (2013).

    Article  ADS  Google Scholar 

  72. Owen, B. J. How to adapt broad-band gravitational-wave searches for r-modes. Phys. Rev. D 82, 104002 (2010).

    Article  ADS  Google Scholar 

  73. Andersson, N., Antonopoulou, D., Espinoza, C. M., Haskell, B. & Ho, W. C. G. The enigmatic spin evolution of PSR J0537−6910: r-modes, gravitational waves, and the case for continued timing. Astrophys. J. 864, 137 (2018).

    Article  ADS  Google Scholar 

  74. Fesik, L. & Papa, M. A. First search for r-mode gravitational waves from PSR J0537−6910. Astrophys. J. 895, 11 (2020).

    Article  ADS  Google Scholar 

  75. Ho, W. C. G. et al. Return of the Big Glitcher: NICER timing and glitches of PSR J0537−6910. Mon. Not. R. Astron. Soc. 498, 4605–4614 (2020).

    Article  ADS  Google Scholar 

  76. Haskell, B. & Melatos, A. Models of pulsar glitches. Int. J. Mod. Phys. D 24, 1530008 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  77. Antonopoulou, D., Haskell, B. & Espinoza, C. M. Pulsar glitches: observations and physical interpretation. Rep. Prog. Phys. 85, 126901 (2022).

    Article  ADS  Google Scholar 

  78. Alford, M. G. & Schwenzer, K. Gravitational wave emission and spin-down of young pulsars. Astrophys. J. 781, 26 (2014).

    Article  ADS  Google Scholar 

  79. Abbott, R. et al. Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537−6910. Astrophys. J. 922, 71 (2021).

    Article  ADS  Google Scholar 

  80. Abbott, R. et al. Diving below the spin-down limit: constraints on gravitational waves from the energetic young pulsar PSR J0537−6910. Astrophys. J. Lett. 913, 27 (2021).

    Article  ADS  Google Scholar 

  81. Keitel, D. et al. First search for long-duration transient gravitational waves after glitches in the Vela and Crab pulsars. Phys. Rev. D 100, 064058 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  82. Abbott, R. et al. Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO–Virgo third observing run. Astrophys. J. 932, 133 (2022).

    Article  ADS  Google Scholar 

  83. Prix, R., Giampanis, S. & Messenger, C. Search method for long-duration gravitational-wave transients from neutron stars. Phys. Rev. D 84, 023007 (2011).

    Article  ADS  Google Scholar 

  84. Moragues, J., Modafferi, L. M., Tenorio, R. & Keitel, D. Prospects for detecting transient quasi-monochromatic gravitational waves from glitching pulsars with current and future detectors. Mon. Not. R. Astron. Soc. 519, 5161–5176 (2023).

    Article  ADS  Google Scholar 

  85. Haskell, B. et al. Fundamental physics and the absence of sub-millisecond pulsars. Astron. Astrophys. 620, 69 (2018).

    Article  Google Scholar 

  86. Chakrabarty, D. et al. Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars. Nature 424, 42–44 (2003).

    Article  ADS  Google Scholar 

  87. Patruno, A. & Watts, A. L. in Timing Neutron Stars: Pulsations, Oscillations and Explosions Astrophysics and Space Science Library Vol. 461 (eds Belloni, T. M. et al.) 143–208 (Springer, 2021); https://doi.org/10.1007/978-3-662-62110-3_4

  88. Zhang, Y., Papa, M. A., Krishnan, B. & Watts, A. L. Search for continuous gravitational waves from Scorpius X-1 in LIGO O2 data. Astrophys. J. Lett. 906, 14 (2021).

    Article  ADS  Google Scholar 

  89. Abbott, R. et al. Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data. Phys. Rev. D 105, 022002 (2022).

    Article  ADS  Google Scholar 

  90. Galaudage, S., Wette, K., Galloway, D. K. & Messenger, C. Deep searches for X-ray pulsations from Scorpius X-1 and Cygnus X-2 in support of continuous gravitational wave searches. Mon. Not. R. Astron. Soc. 509, 1745–1754 (2021).

    Article  ADS  Google Scholar 

  91. Abbott, R. et al. Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data. Phys. Rev. D 106, 062002 (2022).

    Article  ADS  Google Scholar 

  92. Abbott, R. et al. Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data. Astrophys. J. Lett. 941, 30 (2022).

    Article  ADS  Google Scholar 

  93. Workman, R. L. et al. Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

    Article  Google Scholar 

  94. Boddy, K. K. et al. Snowmass2021 theory frontier white paper: astrophysical and cosmological probes of dark matter. J. High Energy Astrophys. 35, 112–138 (2022).

    Article  ADS  Google Scholar 

  95. East, W. E. Massive boson superradiant instability of black holes: nonlinear growth, saturation, and gravitational radiation. Phys. Rev. Lett. 121, 131104 (2018).

    Article  ADS  Google Scholar 

  96. Horowitz, C. J., Papa, M. A. & Reddy, S. Search for compact dark matter objects in the solar system with LIGO data. Phys. Lett. B 800, 135072 (2020).

    Article  Google Scholar 

  97. Pierce, A., Riles, K. & Zhao, Y. Searching for dark photon dark matter with gravitational-wave detectors. Phys. Rev. Lett. 121, 061102 (2018).

    Article  ADS  Google Scholar 

  98. Vermeulen, S. M. et al. Direct limits for scalar field dark matter from a gravitational-wave detector. Nature 600, 424–428 (2021).

    Article  ADS  Google Scholar 

  99. Schlamminger, S., Choi, K.-Y., Wagner, T. A., Gundlach, J. H. & Adelberger, E. G. Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2008).

    Article  ADS  Google Scholar 

  100. Touboul, P., Métris, G., Lebat, V. & Robert, A. The microscope experiment, ready for the in-orbit test of the equivalence principle. Class. Quantum Gravity 29, 184010 (2012).

    Article  ADS  Google Scholar 

  101. Haskell, B. et al. Detecting gravitational waves from mountains on neutron stars in the advanced detector era. Mon. Not. R. Astron. Soc. 450, 2393–2403 (2015).

    Article  ADS  Google Scholar 

  102. Lu, N., Wette, K., Scott, S. M. & Melatos, A. Inferring neutron star properties with continuous gravitational waves. Mon. Not. R. Astron. Soc. 521, 2103–2113 (2023).

    Article  ADS  Google Scholar 

  103. Ashton, G. & Prix, R. Hierarchical multistage mcmc follow-up of continuous gravitational wave candidates. Phys. Rev. D 97, 103020 (2018).

    Article  ADS  Google Scholar 

  104. Keitel, D., Tenorio, R., Ashton, G. & Prix, R. PyFstat: a Python package for continuous gravitational-wave data analysis. J. Open Source Softw. 6, 3000 (2021).

    Article  ADS  Google Scholar 

  105. Bayley, J., Messenger, C. & Woan, G. Rapid parameter estimation for an all-sky continuous gravitational wave search using conditional variational auto-encoders. Phys. Rev. D https://doi.org/10.1103/physrevd.106.083022 (2022).

  106. Sieniawska, M. & Jones, D. I. Gravitational waves from spinning neutron stars as not-quite-standard sirens. Mon. Not. R. Astron. Soc. 509, 5179–5187 (2022).

    Article  ADS  Google Scholar 

  107. Sieniawska, M., Jones, D. I. & Miller, A. L. Measuring neutron star distances and properties with gravitational-wave parallax. Mon. Not. R. Astron. Soc. 521, 1924–1930 (2023).

    Article  ADS  Google Scholar 

  108. Pereira, J. P., Bejger, M., Haensel, P. & Leszek Zdunik, J. Crustal failure as a tool to probe hybrid stars. Astrophys. J. 950, 185 (2023).

    Article  ADS  Google Scholar 

  109. Bejger, M. & Królak, A. Searching for gravitational waves from known pulsars at once and twice the spin frequency. Class. Quantum Gravity 31, 105011 (2014).

    Article  ADS  MATH  Google Scholar 

  110. Liao, K., Biesiada, M. & Fan, X.-L. The wave nature of continuous gravitational waves from microlensing. Astrophys. J. 875, 139 (2019).

    Article  ADS  Google Scholar 

  111. Basak, S., Sharma, A. K., Kapadia, S. J. & Ajith, P. Prospects for the observation of continuous gravitational waves from spinning neutron stars lensed by the galactic supermassive black hole. Astrophys. J. Lett. 942, 31 (2023).

    Article  ADS  Google Scholar 

  112. Savastano, S., Vernizzi, F. & Zumalacárregui, M. Through the lens of Sgr A*: identifying strongly lensed continuous gravitational waves beyond the Einstein radius. Preprint at https://arxiv.org/abs/2212.14697 (2022).

  113. Astone, P., Colla, A., D’Antonio, S., Frasca, S. & Palomba, C. Method for all-sky searches of continuous gravitational wave signals using the frequency-Hough transform. Phys. Rev. D 90, 042002 (2014).

    Article  ADS  Google Scholar 

  114. Gulminelli, F. & Raduta, A. R. Unified treatment of subsaturation stellar matter at zero and finite temperature. Phys. Rev. C 92, 055803 (2015).

    Article  ADS  Google Scholar 

  115. Grill, F., Pais, H., Providência, C., Vidaña, I. & Avancini, S. S. Equation of state and thickness of the inner crust of neutron stars. Phys. Rev. C 90, 045803 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation. We gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. We gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. We gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science and Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigacion (AEI), the Spanish Ministerio de Ciencia e Innovacion and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direccio General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d’Innovacio, Universitats, Cíencia i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union - European Regional Development Fund; Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertees (ARC) and Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the National Science and Technology Council (NSTC), Taiwan, the United States Department of Energy, and the Kavli Foundation. We gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research programme of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF), Computing Infrastructure Project of Global Science experimental Data hub Center (GSDC) at KISTI, Korea Astronomy and Space Science Institute (KASI), and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the National Science and Technology Council (NSTC) in Taiwan under grants including the Rising Star Program and Science Vanguard Research Program, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK. This work was partially supported by the Polish National Science Centre grant nos 2017/26/M/ST9/00978, 2018/29/B/ST9/02013 and 2021/43/B/ST9/01714.

Author information

Authors and Affiliations

Authors

Contributions

B.H. and M.B. contributed to the planning, interpretation of the results and writing of the paper.

Corresponding author

Correspondence to B. Haskell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haskell, B., Bejger, M. Astrophysics with continuous gravitational waves. Nat Astron 7, 1160–1170 (2023). https://doi.org/10.1038/s41550-023-02059-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02059-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing