## Abstract

Advances in quantum computing and telecommunications stimulate the search for classical systems allowing partial implementation of a similar functionality under less stringent environmental conditions. Here, we present a classical version of several quantum bit (qubit) functionalities using a two-component magnon Bose–Einstein condensate (BEC) formed at opposite wavevectors in a room-temperature yttrium-iron-garnet ferrimagnetic film. Employing micromagnetic numerical simulations, we show the use of wavelength-selective parametric pumping to controllably initialize and manipulate the two-component BEC. Next, by modeling the interaction of this BEC with a pulse- and radio-frequency-driven dynamic magnonic crystal we translate the concept of Rabi-oscillations into the wavevector domain and demonstrate how to manipulate the magnon-BEC system regarding the polar and azimuthal angles in the Bloch sphere representation. We hope that our study provides a significant stimulus on the boundary between qubit functionality and classical systems of interacting BECs, which use a subset of qubit-based algorithms.

## Introduction

There is an enormous need for faster and more efficient information processing. Quantum computing is widely discussed as a future computing technology, especially with regard to computing power and the very favorable scaling properties^{1,2,3,4,5,6,7,8,9}. However, current quantum computing technologies are still far from ubiquitous. In particular, the need to operate in the milli-Kelvin temperature range is a significant obstacle.

In the field of quantum information technology, the basic unit of information is defined as a quantum bit or qubit for short^{8,9,10,11,12}. The qubit is most often represented by a superposition of two wavefunctions, which describe the two orthonormal basis states of the system. Thus, from the information content point of view, a qubit is a multi-valued object characterized by two independent continuous parameters, such as the ratio of wave function amplitudes and their relative phase. Qubits are regularly represented as states on the surface of a Bloch sphere, see Fig. 1a.

In quantum optics, applying the Bloch sphere to describe coherent atomic states^{13} as well as coherent and squeezed spin states^{14} has a long history. Moreover, a powerful platform for demonstrating quantum correlations in the context of the Bloch sphere is provided by atomic Bose–Einstein condensates (BECs)^{15}. The BEC is a collective object, in which particles or quasiparticles represented by a coherent wavefunction populate the lowest energy level of a system^{16,17,18,19,20,21,22,23}. In the search for physical systems suitable for representing a set of qubits, macroscopic quantum states of matter, such as BECs, are promising candidates, in particular because of their inherent coherence and resistance to noise (see, for example, papers^{24,25,26,27,28,29,30,31}, reviews^{5,6} and references therein). Coherent control of BECs at the level of one qubit has already been achieved on atom chips^{32,33}. Recently, essential steps were made toward demonstrating entanglement between two BECs^{34,35}, which is crucial for implementing multi-qubit systems. Also, the long-lived entanglement of two macroscopic atomic ensembles has been demonstrated^{36} as an example of a non-maximally entangled state suitable for a particular purpose, such as atomic teleportation^{37,38}.

It is noteworthy that a Bose–Einstein condensate can be created using magnons in ferrimagnetic crystals even at room temperature^{39,40,41,42,43,44,45,46,47,48,49,50,51}. Moreover, such a condensate is two-component, with components formed in two energetically degenerate minima of the magnon spectrum. As was shown earlier, in the general case a two-component Bose–Einstein condensate naturally represents a qubit suitable for quantum calculations^{26}.

In our paper, based on the idea of Byrnes et al.^{26}, we present the possibilities of manipulating the room-temperature two-component magnon BEC for at least partial implementation of magnon-BEC-based qubit calculus. However, the BEC in our paper belongs to a different parameter range. Byrnes et al.^{26} analyze a low-temperature BEC with a large but finite number *N* of condensed bosons, drawing attention, for instance, to the decrease in the evolution time of a two-qubit system by a factor of 1/*N*. In our analysis, we took from the very beginning the limit *N* → *∞*, considering a classical analog of the qubit logic. At room temperature, magnon BECs operate in the classical regime, and some effects that exist only in the quantum mechanical regime, such as entanglement of states, are not accessible. However, a rather large subset of architectural aspects, algorithms, and *modi operandi* used in quantum computing can be adapted and made operational. Many algorithms do not rely on quantum mechanical entanglement^{52,53} and could be implemented with the classical qubit functionality discussed here. This approach removes the technical obstacles that exist in quantum calculations, such as the need to operate at milli-Kelvin temperatures, and allows potentially the operation in a room-temperature solid-state device with standard microwave interface technology. An important issue in this context is scaling. Quantum computing claims polynomial scaling of computation time with system size, which is very advantageous over the merely exponential scaling properties of conventional, classical Boolean logic. Recently, it has been shown that polynomial scaling holds for a number of algorithms that use wave-based computing in a non-quantum mechanical implementation (see, e.g., refs. ^{54,55}). Thus, in terms of computation time, there is a fairly favorable gap between classical Boolean and true quantum-mechanical computing concepts, which can be filled by the magnon BEC concept presented here.

## Results

### Magnon BEC as classical analog of a qubit

The magnon BEC phenomenon addresses the spontaneous formation of a coherent state or wave—a macroscopic quantum state—in an otherwise disordered magnonic system. At room temperature, a magnon BEC can form in a weakly interacting magnon gas if the chemical potential of the system is increased to the minimum magnon energy, for example by increasing the magnon density via external injection^{39,40,41,43,44}. The most prominent method to inject magnons is parallel parametric pumping^{56,57}, in which external microwave photons of frequency *ω*_{p} and wavenumber *q*_{p} ≃ 0 split into two magnons with the frequency *ω*_{m} = *ω*_{p}/2 and wavevectors ± **q**_{m}^{58}. The overpopulated magnon gas near the bottom of the magnon spectrum relaxes to the two lowest energy states via multi-magnon scattering processes, forming a double-BEC state with the two BECs located in the two global minima of the system as shown in Fig. 1b. The observed exciting dynamics of such a double-BEC, such as the inherent coherency^{51,59}, density patterns^{45,46,60}, quantized vorticity^{45}, supercurrents^{47,48}, Bogoliubov waves^{49}, and Josephson oscillations^{47,50}, all at room temperature, are further encouraging to consider magnon BECs for performing a classical subset of qubit computing operations.

We take into account the fact that for an in-plane magnetized film, in the two-dimensional in-plane wavevector landscape, the magnon frequency spectrum *ω* = *ω*(**q**) has two minima at symmetric values of the wavevectors ± **q**_{BEC} pointing along and against the direction of magnetization *z*, see Fig. 1b. Consequently, the condensate consists of two components, BEC^{+} and BEC^{−}, forming the double-BEC and described by the wavefunctions \({{{\Psi }}}^{+}\left(z,t\right)\exp [{{{{{{{\rm{i}}}}}}}}({q}_{{{{{{{{\rm{BEC}}}}}}}}}z-{\omega }_{{{{{{{{\rm{BEC}}}}}}}}}t)]\) and \({{{\Psi }}}^{-}(z,t){{{{{{{\rm{\\,exp }}}}}}}}[{{{{{{{\rm{i}}}}}}}}({-q}_{{{{{{{{\rm{BEC}}}}}}}}}z-{\omega }_{{{{{{{{\rm{BEC}}}}}}}}}t)]\), respectively. The fundamental basis for the description of the phenomena in this semi-classical limit is the nonlinear Schrödinger equation, also known as Gross–Pitaevskii equation^{61}. In the one-dimensional version, which is fully applicable here, it reads

Here, \({D}_{zz}={\partial }^{2}\omega ({{{{{{{\bf{q}}}}}}}})/2\partial {q}_{z}^{2}\) is the dispersion coefficient in the *z*-direction, and *T* and *S* are the amplitudes of self- and cross-interactions between BEC^{+} and BEC^{−}, respectively. \({P}^{\pm }\left(z,t\right)\) are the external potentials caused, for instance, by variations of longitudinal magnetizing fields and \({F}^{\pm }\left(z,t\right)\) are the external forces caused, e.g., by transversal microwave magnetic fields. The magnon relaxation rate, originating, for example, from the interaction with the phonon bath, is denoted by Γ. For Γ = 0, Eq. (1) has stationary solutions, which describe the two magnon BECs at the bottom of the spin-wave spectrum in the + *q*_{BEC} and − *q*_{BEC} positions. If Γ ≠ 0, the wavefunctions \({{{\Psi }}}^{\pm }\left(z,t\right)\) decay as \(\exp \left(-{{\Gamma }}t\right)\).

In the space-homogeneous case, there is, apart from the oscillating factor \(\exp [{{{{{{{\rm{i}}}}}}}}({q}_{{{{{{{{\rm{BEC}}}}}}}}}z)]\), no z-dependence, and Eq. (1) becomes identical to the general form of a degenerate two-level system. An example of such a system is a quantum particle with spin *S* = 1/2, which has a wavefunction consisting of a spin-up \({\psi }_{1/2}^{+}\) and a spin-down \({\psi }_{1/2}^{-}\) component. To stress this analogy, we introduce the normalized BEC wavefunctions

The qubit state position on the Bloch sphere [see Fig. 1a] is given by the polar angle *θ* and azimuthal angle *φ*. In our case, they are defined by the normalized densities of the two BECs, \({N}^{\pm }={\left|{\psi }^{\pm }\left(z,t\right)\right|}^{2}\) with

Thus, to address any position on the Bloch sphere, we need to control (i) the number of magnons in each of the two BECs and (ii) their relative phase. The implementation of this control will be demonstrated below by means of numerical micromagnetic simulations^{62,63}.

### Initialization of magnon double-BEC state at the equator of the Bloch sphere

A convenient way to generate a magnon BEC is to use the parametric excitation mechanism by a space-homogeneous electromagnetic field for generation of magnons in the gaseous magnon regime and to let these magnons condense into the two BEC states via dominating four-magnon-scattering events^{39,40}. Due to the momentum conservation during the magnon termalization processes, the resulting numbers of magnons in the BEC^{+} and BEC^{−} states also remain the same, *N*^{+} = *N*^{−}, as it has been evidenced by numerous magnon BEC experiments^{45,48,49,50} and by results of numerical modeling shown in Fig. 1c. It means that such a prepared initial double-BEC state lies somewhere on the equator of the Bloch sphere, \(\cos \theta =0\), and the azimuthal angle *ϕ* has an arbitrary value (further below we will address how to control *ϕ*). We note that the coherency of the generated BECs is evidenced by the spatial interference pattern of the two condensates as observed experimentally^{45}, and shown by our micromagnetic simulations displayed in Fig. 1d. Despite the presence of small non-uniformities in the spatial interference pattern evidencing the existence of quantized vorticities, the coherency of the two BECs on the larger scale is preserved^{45,51,64}.

### Initialization of magnon double-BEC state at the poles and any latitude of the Bloch sphere

We propose to use a moving periodic pattern of a microwave magnetic field in order to pump magnon pairs dominantly to the positive or negative half of the wavevector space. It acts like an artificial propagating microwave field with controlled wavevector and frequency. This moving pattern can be created by an array of *L* parallel wires separated by a distance *a* and connected to a set of phase-locked microwave generators operating at the pumping frequency *ω*_{p}, see Fig. 2a. They work analogous to a phased array^{65,66}: The phases of the signals applied to the wires are chosen such that the phase difference \({{{\Delta }}}_{{{{{{{{\rm{wire}}}}}}}}}\) between neighbored wires is fixed to \({{{\Delta }}}_{{{{{{{{\rm{wire}}}}}}}}}=2\pi /K\) with *K* being an integer number. Thus, moving magnetic field patterns are generated, which oscillate with *ω*_{p} and propagate with wavevector ∣**q**_{p}∣ = 2π/(*K**a*). For *K* > 2 the field pattern has a well-defined unique direction of propagation, which is indicated by the sign of \({{{\Delta }}}_{{{{{{{{\rm{wire}}}}}}}}}\).

Such a field pattern, which is characterized by a reciprocal lattice vector \(|{{{{{{{{\bf{q}}}}}}}}}_{{{{{{{{\rm{p}}}}}}}}}|\) pointing into the direction of motion and the microwave frequency *ω*_{p}, will pump pairs of co-propagating magnons with frequencies *ω*_{p}/2 and wavevectors *q*_{pm} ≤ *q*_{p}/2, **q**_{pm}∥**q**_{p}, see Fig. 2b. In this scenario, the thermalization of the parametric magnons will result in the population of either BEC^{−} or BEC^{+} states. This means that the prepared initial state of the magnon double-BEC is either at the north or south pole of the Bloch sphere. By proper choice of **q**_{p}, it is possible to populate BEC^{+} and BEC^{−} states with predefined densities *N*^{+} and *N*^{−}, i.e., to adjust the polar angle of the magnon system. The validity of this approach is demonstrated by the results of our micromagnetic simulations as shown in Fig. 2c.

### Semi-classical qubit protocols using Rabi-like oscillations

Achieving a controlled change in the state of the previously initialized double-BEC system, e.g., a transformation of BEC^{+} into BEC^{−} and vice versa, and addressing any intermediate state, is essential for computing. Indeed, our objective is to implement unitary transformations on the Bloch sphere to resemble logic state operations.

The following tools and approaches serve as key ingredients for implementing the functionalities of the Pauli-X and -Z gates and the Hadamard gate. For this purpose, we use the concept of Rabi-oscillations, which refers to a cyclic energy exchange in a two-level quantum system in the presence of a driving field^{67,68,69}. The system of the two magnon BECs represents the analogy of a two-level system in the wavevector domain, and thus, we translate the Rabi cycle into this domain as discussed in the following.

Let us consider the double-BEC system initialized in the north pole state, i.e., at BEC^{+} as shown in Fig. 2c. Instead of a time-dependent field, here we use a space-dependent stationary magnetic field to induce a Rabi cycle between the two BEC wavevector components. This field is generated using a dynamic magnonic crystal (MC)^{70} similar to the setup that is shown in Fig. 2a. However, instead of a phased array driven by microwave currents, we insert pulsed DC currents into the wires to control the bias magnetic field. Consequently, this changes the energy landscape of the system. Once this MC is turned on, it creates a gap in the magnon dispersion relation at the wavevector corresponding to the periodicity of the crystal. This leads to a Bragg reflection of the incoming magnons at that particular wavevector, which in our case is \({q}_{{}_{{{{{{{{\rm{BEC}}}}}}}}}}\)^{70}. However, if the magnons already exist in the system and the MC is switched on, geometrically-induced coupling between the existing magnons and the MC leads to the oscillations of the magnons between the opposite wavevector-states given their equivalent frequencies^{71}.

In a numerical simulation experiment, we activate the MC once the pure BEC^{+} state is established. Figure 3a shows the distribution of the condensed magnon density at the wavevector space in two given time spans. During the course of time from, e.g., *t*_{1} = 25 ns to *t*_{2} = 175 ns, the magnons are transferred from BEC^{+} to BEC^{−}. The oscillation cycle is more visible in Fig. 3b, which represents the normalized magnon densities at BEC^{−} and BEC^{+} as a function of time. Interestingly, the oscillations between the two condensates continue until the condensed magnons dissipate due to the magnetic damping. Moreover, the oscillation cycle can be tuned using the MC modulation amplitude, i.e., by the amplitude of the spatially periodic magnetic field produced by the MC. As shown in Fig. 3c, increasing the MC amplitude leads to shorter oscillation cycles, and consequently higher oscillations frequencies. This can be understood by a stronger coupling of the magnons and the MC^{71}. Indeed, the repetition of this action turns the double-BEC back into its initial state, thus representing the bit-flip operation described by the Pauli-*X* matrix, \(X=\left[{{0}\atop{1}}\; {{1}\atop{0}}\right]\). By changing the oscillation cycles, it is also possible to transfer the system to a superposition of BEC^{+} and BEC^{−}, characterized by finite densities of both BECs. The proposed and demonstrated mechanism not only further suggests the coherency of the generated condensates, but also provides a strong tool to manipulate the magnon BEC states on the Bloch sphere even as a function of time, which is an additional degree of freedom for this purpose.

Furthermore, controlling the azimuthal angle of the double-BEC system is essential as well. This is possible by controlling the relative phase between the two BECs. By inserting a microwave RF field with a frequency smaller than the linewidth of the BEC into a structure similar to the one used to realize the dynamic MC, it is possible to change the relative BEC phase (see Fig. 4) and consequently the position of the double-BEC system on the Bloch sphere. We emphasize that patterning such structures is a task that can be accomplished with today’s nanostructuring techniques.

The dynamic MC can be optimized for simultaneous work with phase-adjusted RF and pulsed DC-signals. This allows one to manipulate both the polar and azimuthal angles of a double-BEC state, and, by extension, to pave the way towards implementation of various phase-shift gates. For example, as an outlook, we expect the implementation of the Pauli-*Z* gate, represented by the Pauli-*Z* matrix, \(Z=\left[{{1}\atop{0}}\; {{0}\atop{-1}}\right]\). By having the possibility of controlled rotation in relation to the different axes of the Bloch’s sphere, the functionality of the Hadamard gate, \(H=\frac{1}{\sqrt{2}}\left[{{1}\atop{1}}\; {{1}\atop{-1}}\right]\)can be achieved.

## DISCUSSION

The aim of the presented study is to demonstrate that several qubit calculus functionalities are feasible to implement using a magnon double-BEC at room temperature. Our work might initiate a new direction in the field of magnonics by bridging the field of macroscopic quantum states of magnons and quantum computing functionalities^{72,73,74}. We have used two spatially overlapping and interfering stationary magnon BECs with opposite wavevectors as a classical analog of a qubit. We presented the wavevector-selective parallel pumping mechanism for initialization of this double-BEC system at the north or south pole of the Bloch sphere. Moreover, we have shown that Rabi-like oscillations can be translated into the wavevector domain to manipulate the magnon double-BEC state on the Bloch sphere. Realistic numerical simulations close to the experimental conditions provide evidence for the feasibility of this approach and they also shed light on the proposed mechanisms.

Generally speaking, one can imagine that some other system of two coherent waves can also be considered to implement the classical analog of qubit logic—for example, two coherently exited spin-wave modes. However, we believe that an essential difference between a two-component magnon BEC and a system of two arbitrary magnon modes is the spontaneous nature of BEC formation. It opens up wide opportunities for manipulating BECs parameters by external influences, as we have shown here, or in the process of inter-qubit interaction, which is crucial for computations. Moreover, it is expected that this spontaneously formed coherent double-BEC state can be maintained for a long interval of time if constant magnon injection is implemented by gentle methods that do not lead to a strong disturbance of the magnon system. This can be achieved by relatively weak parametric pumping near the BEC threshold^{59,75}, incoherent parametric pumping^{76}, and the use of spintronic methods of magnon injection in nanoscale magnetic samples^{41,44}. In addition, arbitrarily chosen spin-wave modes will have nonzero group velocities, making them highly inconvenient to manipulate. Besides the fact that they will propagate in space, requiring a large sample size, the two coupled modes will efficiently interact if they have the same group velocities only, which can make them indistinguishable. A natural way out of this set of problems is to couple modes having zero group velocities. It is exactly the case of the double BEC we have considered.

As an outlook, the next steps to be taken are obvious: It is the realization of coupling of two and more double-BEC magnon systems. The coupling of spatially separate magnon BECs has already been demonstrated, leading to the phenomenon of magnon Josephson oscillations^{50,77,78}. Microwave antenna structures for the phase coherent detection and generation of magnon BECs can be used to coherently couple double-BEC systems over larger spatial distances. It should be noted that the determination of the full set of possible operations and their actual implementation in the double-BEC system is a topic for further research.

In summary, our study provides a significant momentum in the frontier between the functionality of a quantum bit (qubit) that make substantial use of entanglement, and systems consisting of an interacting set of classic BECs implementing a subset of qubit-based algorithms for which entanglement is not required.

## Methods

### Micromagnetic modeling

Solving the equation of the magnetization motion have been carried out numerically using the open source MuMax 3.0 package. It uses the Dormand–Prince method^{62} for the integration of the Landau–Lifshitz–Gilbert equation:

Here, **M** is the magnetization vector, *M*_{s} is the saturation magnetization, *δ**W*/*δ***M**(**r**, *t*) is the variational derivative of the energy density of the ferromagnetic material, which is equal to the effective magnetic field **B**_{eff}, *g* is the gyromagnetic ratio, and *α* is the damping constant. The effective magnetic field reads

which includes the standard contributions of the demagnetizing field due to the magnetostatic energy, exchange interactions, the external bias field, and the thermal field. The latter is represented by stochastic fluctuations^{62}. Further information about the numerical method to compute these terms can be found in the paper of Vansteenkiste et al.^{62}

The system under investigation is a film with dimensions of 51.2 μm × 25.6 μm × 5 μm that is divided into 1024 × 512 × 16 cells. An external magnetic field is applied in the plane with an amplitude of 100 mT. Realistic magnetic parameters of the YIG film are used: *M*_{s} = 140 kA m^{−1}, *α* = 0.0002, the exchange constant *A*_{exch} = 3.5 pJ m^{−1}^{63,64,79}. Magnons are injected using parallel parametric pumping, in which, microwave photons of frequency of *ω*_{p} = 2π·7.5 GHz generate magnons with the frequency *ω*_{p}/2 = 2π·3.75 GHz. To this end, a high amplitude uniform oscillating field, which is parallel to the external magnetization field, is applied to the system to pump magnons to the lower branch of the spin-wave spectrum. For the wavevector-selective parametric pumping, this has been done using a set of parallel wires as described in the main text. The duration of the pumping pulse is fixed to *t*_{pump} = 50 ns in all simulations, and the system is then relaxed toward its equilibrium state to permit the BEC to establish at the bottom of the magnon spectrum. All simulations have been carried out assuming room temperature *T* = 300 K. The used setup in this study resembles typical conditions of real experiments^{39,40}.

The micromagnetic simulations were carried out in two steps. First, the external field is applied in the film plane to establish the relaxed magnetization state. This state is consequently used as the ground state in the dynamic simulations, in which parallel parametric pumped magnons are generated using an oscillating field that is applied parallel to the static field. The dynamic components of the magnetization, *M*(*x*, *y*, *z*, *t*) of each cell are collected over a period of time. To process the raw data, one and two-dimensional fast Fourier transformation has been carried out on the collected data set^{63}.

### Landau–Lifshitz–Gilbert and Gross–Pitaevskii equations

In the actual numerical simulations of the magnon system, we used the classical Landau–Lifshitz–Gilbert equation (4) for the magnetic moment **M**, while the analytical discussion of the magnon Bose–Einstein condensate was conducted mainly in the framework of the Gross–Pitaevskii equations (1), traditionally used in this problem. These two approaches are closely related.

In order to derive the Gross–Pitaevskii equation (1) from the Landau–Lifshitz–Gilbert equation (4), we recall the Holstein–Primakoff transformation in quantum mechanics^{80}

which defines the spin operators *S*_{±}, *S*_{z} in terms of the boson creation and annihilation operators, *a*^{†} and *a*, effectively truncating their infinite-dimensional Fock space to the finite-dimensional subspaces. Its classical analog

represents the magnetization vector **M**(**r**, *t*) in terms of the canonical variables, the complex spin-wave amplitudes *b*(**r**, *t*) and *b*^{*}(**r**, *t*), which are the classical analogs of *a* and *a*^{†}, see, e.g., Eq. (3.4.8) in the book of L’vov^{57}. Here, ^{*} denotes the complex conjugation.

When substituting representation (6) into the Landau–Lifshitz–Gilbert equation (4) with *α* = 0, it transforms into the canonical Hamiltonian form^{81}:

Here, the Hamiltonian functional \({{{{{{{\mathcal{H}}}}}}}}\) (often called for shortness Hamiltonian), is the energy density *W* expressed in terms of canonical veriables (6). For future purposes it is convenient to consider Eq. (7a) in the Fourier representation introducing *b*_{q}(*t*), the Fourier transform of *b*(**r**, *t*):

We have added here a damping term *γ*_{q} = *α* *ω*_{q} originating from the last term on the right-hand side of Eq. (4a).

In order to obtain a simplified description of two narrow packages of magnons around **q** = ± **q**_{0} and \({\omega }_{{{{{{{{\bf{q}}}}}}}}}={\omega }_{\min }\), we consider for simplicity only one spatial dimension z and introduce so-called slow-envelope variables

where *b*_{q}(*t*) is the Fourier transform of *b*(*z*, *t*). Then, using the standard procedure (see, e.g., Sec. 1.5.1. in the book of Zakharov et al.^{82}), one derives from the canonical equations of motion (7b) for *b*_{q}(*t*) two coupled one-dimensional Gross-Pitaevskii equations (1).

## Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

## References

Arute, F. et al. Quantum supremacy using a programmable superconducting processor.

*Nature***574**, 505–510 (2019).Kok, P. et al. Linear optical quantum computing with photonic qubits.

*Rev. Mod. Phys.***79**, 135–174 (2007).Williams, C. P.

*Explorations in Quantum Computing*(Springer, London, 2011).Ladd, T. D. et al. Quantum computers.

*Nature***464**, 45–53 (2010).Makhlin, Y., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-junction devices.

*Rev. Mod. Phys.***73**, 357–400 (2001).Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles.

*Rev. Mod. Phys.***90**, 035005 (2018).O’Brien, J. L. Optical quantum computing.

*Science***318**, 1567–1570 (2007).Meyer, D. A. Quantum computing classical physics.

*Philos. Trans. R. Soc. A***360**, 395–405 (2002).Nielsen, M. A. & Chuang, I. L.

*Quantum Computation and Quantum Information*(Cambridge University Press, 2010).Deutsch, I. H. Harnessing the power of the second quantum revolution.

*PRX Quantum***1**, 020101 (2020).Hidary, J. D.

*Quantum Computing: An Applied Approach*(Springer International Publishing, 2019).Wie, C.-R. Two-qubit Bloch sphere.

*Physics***2**, 383–396 (2020).Arecchi, F. T., Courtens, E., Gilmore, R. & Thomas, H. Atomic coherent states in quantum optics.

*Phys. Rev. A***6**, 2211–2237 (1972).Kitagawa, M. & Ueda, M. Squeezed spin states.

*Phys. Rev. A***47**, 5138–5143 (1993).Estève, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Squeezing and entanglement in a Bose–Einstein condensate.

*Nature***455**, 1216–1219 (2008).Stone, A. D.

*Einstein and the Quantum: The Quest of the Valiant Swabian*(Princeton University Press, 2015).Einstein, A. Quantentheorie des einatomigen idealen Gases.

*Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Kl.***22**, 261 (1924).Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms.

*Phys. Rev. Lett.***75**, 3969–3973 (1995).Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities.

*Nat. Phys.***5**, 805–810 (2009).Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems.

*Nature***432**, 691–694 (2004).Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity.

*Nature***468**, 545–548 (2010).Bunkov, Y. M. & Volovik, G. E. Bose–Einstein condensation of magnons in superfluid

^{3}He.*J. Low. Temp. Phys.***150**, 135–144 (2008).Autti, S. et al. Nonlinear two-level dynamics of quantum time crystals.

*Nat. Commun.***13**, 3090 (2022).Qaiumzadeh, A., Skarsvåg, H., Holmqvist, C. & Brataas, A. Spin superfluidity in biaxial antiferromagnetic insulators.

*Phys. Rev. Lett.***118**, 137201 (2017).Tserkovnyak, Y. & Kläui, M. Exploiting coherence in nonlinear spin-superfluid transport.

*Phys. Rev. Lett.***119**, 187705 (2017).Byrnes, T., Wen, K. & Yamamoto, Y. Macroscopic quantum computation using Bose–Einstein condensates.

*Phys. Rev. A***85**, 040306(R) (2012).Adrianov, S. N. & Moiseev, S. A. Magnon qubit and quantum computing on magnon Bose–Einstein condensates.

*Phys. Rev. A***90**, 042303 (2014).Mohseni, N. et al. Error suppression in adiabatic quantum computing with qubit ensembles.

*Npj Quantum Inf.***7**, 71 (2021).Semenenko, H. & Byrnes, T. Implementing the Deutsch-Jozsa algorithm with macroscopic ensembles.

*Phys. Rev. A***93**, 052302 (2016).Xue, Y. et al. Split-ring polariton condensates as macroscopic two-level quantum systems.

*Phys. Rev. Res.***3**, 013099 (2021).Ghosh, S. & Liew, T. C. H. Quantum computing with exciton-polariton condensates.

*npj Quantum Inf.***6**, 16 (2020).Böhi, P. et al. Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip.

*Nat. Phys.***5**, 592–597 (2009).Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology.

*Nature***464**, 1170–1173 (2010).Fadel, M., Zibold, T., Décamps, B. & Treutlein, P. Spatial entanglement patterns and Einstein–Podolsky–Rosen steering in Bose–Einstein condensates.

*Science***360**, 409–413 (2018).Lange, K. et al. Entanglement between two spatially separated atomic modes.

*Science***360**, 416–418 (2018).Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects.

*Nature***413**, 400–403 (2001).Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects.

*Nat. Phys.***9**, 400–404 (2013).Pyrkov, A. N. & Byrnes, T. Full-Bloch-sphere teleportation of spinor Bose–Einstein condensates and spin ensembles.

*Phys. Rev. A***90**, 062336 (2014).Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping.

*Nature***443**, 430–433 (2006).Serga, A. A. et al. Bose–Einstein condensation in an ultra-hot gas of pumped magnons.

*Nat. Commun.***5**, 3452 (2014).Safranski, C. et al. Spin caloritronic nano-oscillator.

*Nat. Commun.***8**, 117 (2017).Schneider, M. et al. Bose–Einstein condensation of quasiparticles by rapid cooling.

*Nat. Nanotech.***15**, 457–461 (2020).Schneider, M. et al. Control of the Bose–Einstein condensation of magnons by the spin Hall effect.

*Phys. Rev. Lett.***127**, 237203 (2021).Divinskiy, B. et al. Evidence for spin current driven Bose–Einstein condensation of magnons.

*Nat. Commun.***12**, 6541 (2021).Nowik-Boltyk, P., Dzyapko, O., Demidov, V. E., Berloff, N. G. & Demokritov, S. O. Spatially non-uniform ground state and quantized vortices in a two-component Bose–Einstein condensate of magnons.

*Sci. Rep.***2**, 482 (2012).Bugrij, A. I. & Loktev, V. M. On the theory of spatially inhomogeneous Bose–Einstein condensation of magnons in yttrium iron garnet.

*Low. Temp. Phys.***39**, 1037 (2013).Nakata, K., van Hoogdalem, K. A., Simon, P. & Loss, D. Josephson and persistent spin currents in Bose–Einstein condensates of magnons.

*Phys. Rev. B***90**, 144419 (2014).Bozhko, D. A. et al. Supercurrent in a room-temperature Bose–Einstein magnon condensate.

*Nat. Phys.***12**, 1057–1062 (2016).Bozhko, D. A. et al. Bogoliubov waves and distant transport of magnon condensate at room temperature.

*Nat. Commun.***10**, 2460 (2019).Kreil, A. J. E. et al. Experimental observation of Josephson oscillations in a room-temperature Bose–Einstein magnon condensate.

*Phys. Rev. B***104**, 144414 (2021).Noack, T. B. et al. Evolution of room-temperature magnon gas: Toward a coherent Bose–Einstein condensate.

*Phys. Rev. B***104**, L100410 (2021).Biham, E., Brassard, G., Kenigsberg, D. & Mor, T. Quantum computing without entanglement.

*Theor. Comput. Sci.***320**, 15–33 (2004).Lanyon, B. P., Barbieri, M., Almeida, M. P. & White, A. G. Experimental quantum computing without entanglement.

*Phys. Rev. Lett.***101**, 200501 (2008).Balynsky, M. et al. Quantum computing without quantum computers: Database search and data processing using classical wave superposition.

*J. Appl. Phys.***130**, 164903 (2021).Cheng, K. et al. Optical realization of wave-based analog computing with metamaterials.

*Appl. Sci.***11**, 141 (2021).Schlömann, E. Longitudinal susceptibility of ferromagnets in strong rf fields.

*J. Appl. Phys.***33**, 527–534 (1962).L’vov, V. S.

*Wave Turbulence Under Parametric Excitation: Applications to Magnets*(Springer, Berlin, 1994).Melkov, G. A. et al. Parametric interaction of magnetostatic waves with a nonstationary local pump.

*J. Exp. Theor. Phys.***89**, 1189–1199 (1999).Dzyapko, O. et al. High-resolution magneto-optical Kerr-effect spectroscopy of magnon Bose–Einstein condensate.

*IEEE Magn. Lett.***7**, 3501805 (2016).Sugakov, V. I. Formation of new phase inclusions in the system of quasiequilibrium magnons of high density.

*Phys. Rev. B***94**, 014407 (2016).Pitaevskii, L. P. Bose–Einstein condensation in magnetic traps. Introduction to the theory.

*Phys. Usp.***41**, 569–580 (1998).Vansteenkiste, A. et al. The design and verification of MuMax3.

*AIP Adv.***4**, 107133 (2014).Mohseni, M. et al. Bose–Einstein condensation of nonequilibrium magnons in confined systems.

*N. J. Phys.***22**, 083080 (2020).Rezende, S. M. Theory of coherence in Bose–Einstein condensation phenomena in a microwave-driven interacting magnon gas.

*Phys. Rev. B***79**, 174411 (2009).Visser, H. J.

*Array and Phased Array Antenna Basics*(John Wiley and Sons, 2006).Visser, H. J.

*Modern Antenna Design, 2nd Ed*. (John Wiley and Sons, 2005).Griffiths, D.

*Introduction to Quantum Mechanics, 2nd Ed*. (Pearson Prentice Hall, 2005).Dudin, Y. O., Li, L., Bariani, F. & Kuzmich, A. Observation of coherent many-body Rabi oscillations.

*Nat. Phys.***8**, 790–794 (2012).Rosanov, N. N. Nonlinear Rabi oscillations in a Bose–Einstein condensate.

*Phys. Rev. A***88**, 063616 (2013).Chumak, A. V. et al. All-linear time reversal by a dynamic artificial crystal.

*Nat. Commun.***1**, 141 (2010).Karenowska, A. D. et al. Oscillatory energy exchange between waves coupled by a dynamic artificial crystal.

*Phys. Rev. Lett.***108**, 015505 (2012).Elyasi, M., Blanter, Y. M. & Bauer, G. E. W. Resources of nonlinear cavity magnonics for quantum information.

*Phys. Rev. B***101**, 054402 (2020).Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit.

*Science***349**, 405–408 (2015).Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit.

*Science***367**, 425–428 (2020).Dzyapko, O. et al. Magnon-magnon interactions in a room-temperature magnonic Bose–Einstein condensate.

*Phys. Rev. B***96**, 064438 (2017).Chumak, A. V. et al. Bose–Einstein condensation of magnons under incoherent pumping.

*Phys. Rev. Lett.***102**, 187205 (2009).Autti, S. et al. AC Josephson effect between two superfluid time crystals.

*Nat. Mater.***20**, 171–174 (2021).Fripp, K. G. & Kruglyak, V. V. Spin-wave wells revisited: from wavelength conversion and Möbius modes to magnon valleytronics.

*Phys. Rev. B***103**, 184403 (2021).Cherepanov, V., Kolokolov, I. & L’vov, V. S. The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet.

*Phys. Rep. – Rev. Sec. Phys. Lett.***229**, 81–144 (1993).Landau, L. D. & Lifshitz, E. M.

*Quantum Mechanics: Non-Relativistic Theory*, Vol. 3, 3rd ed. (Pergamon Press, 1977).Zakharov, V. E., L’vov, V. S. & Starobinets, S. S. Instability of monochromatic spin waves.

*Solid State Phys.***11**, 2922–2930 (1969).Zakharov, V. E., L’vov, V. S. & Falkovich, G.

*Kolmogorov Spectra of Turbulence. I Wave Turbulence*(Springer-Verlag, 2002).

## Acknowledgements

This research was funded by the European Research Council within the Advanced Grant No. 694709 SuperMagnonics and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the Transregional Collaborative Research Center—TRR 173/2—268565370 “Spin+X” (projects B01, B04). The authors are grateful to Dmytro A. Bozhko for fruitful discussions.

## Funding

Open Access funding enabled and organized by Projekt DEAL.

## Author information

### Authors and Affiliations

### Contributions

M.M. performed the numerical simulations, analyzed the data. V.I.V., V.S.L. and A.A.S. devised and planned the project and analyzed the general analytical model. B.H. led the project. All authors discussed the results and contributed to writing the manuscript.

### Corresponding author

## Ethics declarations

### Competing interests

The authors declare no competing interests.

## Peer review

### Peer review information

*Communications Physics* thanks the anonymous reviewers for their contribution to the peer review of this work.

## Additional information

**Publisher’s note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

## About this article

### Cite this article

Mohseni, M., Vasyuchka, V.I., L’vov, V.S. *et al.* Classical analog of qubit logic based on a magnon Bose–Einstein condensate.
*Commun Phys* **5**, 196 (2022). https://doi.org/10.1038/s42005-022-00970-8

Received:

Accepted:

Published:

DOI: https://doi.org/10.1038/s42005-022-00970-8

## Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.