Abstract
The frequency stability of many optical atomic clocks is limited by the coherence of their local oscillator. Here, we present a measurement protocol that overcomes the laser coherence limit. It relies on engineered dynamical decoupling of laser phase noise and nearsynchronous interrogation of two clocks. One clock coarsely tracks the laser phase using dynamical decoupling; the other refines this estimate using a highresolution phase measurement. While the former needs to have a high signaltonoise ratio, the latter clock may operate with any number of particles. The protocol effectively enables minutelong Ramsey interrogation for coherence times of few seconds as provided by the current best ultrastable laser systems. We demonstrate implementation of the protocol in a realistic proofofprinciple experiment, where we interrogate for 0.5 s at a laser coherence time of 77 ms. Here, a single lattice clock is used to emulate synchronous interrogation of two separate clocks in the presence of artificial laser frequency noise. We discuss the frequency instability of a singleion clock that would result from using the protocol for stabilisation, under these conditions and for minutelong interrogation, and find expected instabilities of σ_{y}(τ) = 8 × 10^{−16}(τ/s)^{−1/2} and σ_{y}(τ) = 5 × 10^{−17}(τ/s)^{−1/2}, respectively.
Introduction
The progress of optical clocks has enabled a multitude of applications that range from testing fundamental symmetries underlying relativity^{1,2} and searching for physics beyond the standard model^{3,4,5}, including dark matter^{6,7,8,9,10}, to measuring geopotential differences^{11,12} and the proposed use for gravitational wave detection^{13}. Since lower frequency instability of a clock reduces the time required to perform measurements with a given precision, it benefits applications in general and those where timedependent effects are measured, including transient changes of fundamental constants^{10}, in particular. Therefore, the advancement of ultrastable lasers^{14,15} and other techniques to reduce measurement instability^{16,17,18,19,20} continue to be a focus of research.
The frequency stability of optical clocks is limited by quantum projection noise^{21} (QPN) as well as aliased laser frequency noise due to noncontinuous observation, which is known as the Dick effect^{22,23}. The contribution of the latter depends intricately on the noise spectrum of the laser and the parameters of clock operation. It can be minimised by using Ramsey spectroscopy, which best recovers the unweighted mean laser frequency during the interrogation time T_{i}, in combination with little or no dead time. Ultimately, QPN limits the instability of an atomic clock, given by the Allan deviation σ_{y}, to the standard quantum limit
if N uncorrelated atoms or ions are interrogated, where ν_{0} is the frequency of the clock transition, T_{c} the total cycle time, and τ the averaging time^{24}.
A clock’s frequency instability is thus minimised by using the longest possible interrogation time. It is, in fact, the only way to improve the frequency instability for singleion clocks, which are limited by their significant QPN (N = 1) through Eq. (1). The situation is more complex in optical lattice clocks, which benefit from their lower projection noise (N ≫ 1). Their frequency instability can be improved by reducing projection noise, including the use of spin squeezing^{25,26}, and by the rejection of the Dick effect using techniques such as synchronous^{17} or dead timefree interrogation^{19,20}. These are complementary to and can be combined with maximising interrogation time to achieve the best possible frequency stability. However, the coherence of even the most stable lasers^{15} limits interrogation times well short of the excitedstate lifetimes of the most promising clock species^{1,27,28,29} and of ultranarrow transitions in several species of highly charged ions^{30,31}.
For Ramsey interrogation, the excitation probability p_{e} depends sinusoidally on the phase difference ϕ = 2πT_{i}Δν that accumulates between the laser light field and the atomic oscillator during interrogation, where Δν is the corresponding average frequency offset. Thus, phase deviations due to laser noise can only be traced unambiguously within \(\left\phi \right\le \pi /2\). In analogy to ref. ^{15}, we define the coherence time T_{co} by requiring that the laser phase stay in this invertible range in 99% of all cases. This corresponds to a coherence time of about T_{co} = 5.5 s at a frequency of 194 THz for the best stateoftheart lasers^{15}, whereas excitedstate lifetimes of clock transitions can be much longer, e.g. from 20.6 s in the Al^{+} ion^{32} through several minutes in neutral strontium^{33} to several years for the electric octupole transition in the Yb^{+} ion^{34}. Therefore, operating a clock beyond the laser coherence limit is a highly interesting route to enhancing frequency stability.
Dynamical decoupling methods^{35} can prevent decoherence from a variety of noise sources, e.g. spinecho methods suppress inhomogeneous broadening^{36}. However, perfect decoupling of laser frequency noise is not useful for operation of a clock, which relies on tracing the mean laser frequency with respect to the atomic resonance.
Here, we present a coherent multipulse interrogation scheme that partially decouples laser noise in a wellcontrolled fashion, with similarities to spinecho sequences, and a compound clock system that applies this dynamical decoupling scheme in one clock to improve the performance of another clock. We demonstrate phase measurement by such a system well beyond the laser coherence limit in a proofofprinciple experiment, which uses artificially imprinted laser frequency noise and emulates synchronous operation of the two clocks by consecutive measurements in a single optical lattice clock. Finally, we analyse the expected improvement in clock performance for singleion clocks with suitably narrow transitions. We find that frequency instability improves with interrogation time according to Eq. (1), which reduces the averaging time required to realise a given measurement precision by more than an order of magnitude.
Results and discussion
Dynamical decoupling of laser noise
Figure 1 and Supplementary Movie 1 illustrate a multipulse interrogation scheme, which dynamically decouples the atomic superposition state from laser phase noise to a controllable degree. A variable number M of ‘flip’ pulses with pulse area π − ϵ divides the freeevolution time into short periods of durations T_{d} or T_{d}/2. Each pulse maps the phase accumulated during freeevolution onto atomic state population. An example of the resulting line shape is shown in Fig. 2. In comparison to Ramsey interrogation, it trades reduced discriminator sensitivity for a much wider range over which the mean laser frequency can be traced.
The compound clock consists of two clock packages that are interrogated nearly synchronously (Fig. 1): one provides a coarse estimate ϕ_{1} of the atom–laser phase deviation ϕ using the above scheme (clock 1), the other refines this measurement using Ramsey spectroscopy (clock 2), providing a correction ϕ_{2}. Their combined phase measurement ϕ_{tot} = ϕ_{1} + ϕ_{2} traces the laser phase deviation ϕ for interrogation times T_{i} well beyond the laser coherence time T_{co} and with the full precision of Ramsey spectroscopy. The compound system thus achieves much better frequency stability than a comparable standalone clock, which is limited to T_{i} < T_{co} (Eq. (1)).
The interrogation sequence of clock 1 is tailored to the specific laser noise spectrum of the local oscillator and to the interrogation time. Using the number of flip pulses M and pulse defect ϵ, decoupling is adjusted such that the central fringe of the resulting line shape covers most of the laser’s phase excursions. Longer interrogation times T_{i} also require a larger number of flip pulses M, to keep the dark time T_{d} ≈ T_{i}/M below the laser coherence limit. On the other hand, the discriminator slope of clock 1 must be steep enough to keep its absolute phase measurement error ∣Δϕ_{1}∣ below π/2 in most cases. Within this invertible range, clock 2 is able to cancel Δϕ_{1} through its own measurement. Otherwise, a residual error remains in the final phase measurement (see “Methods” section), which may decrease the frequency stability of the compound clock. Maximising the interrogation time hence requires minimising the noise of clock 1. Optical lattice clocks are ideal candidates for this role due to their intrinsically low QPN. In contrast, clock 2 may well be a clock with a low signaltonoise ratio, e.g. a singleion clock. Finally, laser frequency noise contributes to the phase error in clock 1 through imperfections of the dynamical decoupling, which are similar to the wellknown Dick effect^{22,23} (see “Methods” section). They are caused by the increased frequency sensitivity during the flip pulses, as shown in Fig. 3a. Their effect can be minimised by using as few flip pulses as possible and by decreasing their duration. Therefore, the maximum interrogation time T_{i} of the compound clock results mostly from a tradeoff between technical limitations, such as the number of atoms of clock 1 or the available interrogation laser power.
Experiment
We perform a proofofprinciple experiment to demonstrate the compound clock scheme, using a stateoftheart interrogation laser system^{15} and a strontium optical lattice clock^{37} (see “Methods” section for further details). Its goal is to characterise the quality of phase reconstruction for a series of known phase deviations, which are generated by imprinting artificial frequency noise onto the interrogation laser. Since this process is reproducible and the undisturbed laser’s frequency is highly stable, we use two consecutive interrogations of a single lattice clock to emulate synchronous operation of clocks 1 and 2 (see “Methods” section). It is preferable to use a lattice clock with low QPN as clock 2 for characterisation. The reduced coherence time of the laser, which results from the artificial noise, also minimises the effect of technical limitations such as nonlinear frequency drift of the laser and atomic decoherence. We do not implement feedback to the local oscillator (Fig. 1), to keep the measurements independent. However, we later use the recorded data to estimate the frequency instability of a compound clock using a singleion clock. A direct demonstration, e.g. interrogating a lattice clock and a singleion clock beyond the coherence time of the undisturbed interrogation laser, is beyond the scope of this article for technical and practical reasons.
The experiment is summarised in Fig. 3a–d. We use a noise spectrum (Fig. 3c and “Methods”) with a coherence time T_{co} = 77 ms for Ramsey interrogation and an interrogation time T_{i} ≈ 495 ms. At a root mean square (RMS) value of about σ_{ϕ} = 0.7 π, the laser phase deviation ϕ during T_{i} thus exceeds the invertible range of Ramsey spectroscopy half of the time (\(P(\left\Delta \phi \right\;> \;\pi /2)=0.5\)). In our experiment, it covers nearly the entire interval \(\left[\frac{5}{2}\pi ,\frac{5}{2}\pi \right]\), i.e. five Ramsey fringes.
Figure 4a–c shows the measured phase errors Δϕ_{1} of clock 1 and Δϕ_{tot} of the compound clock, i.e. including the measurement by clock 2, as a function of the phase deviations ϕ_{0} imprinted artificially onto the laser (ϕ ≈ ϕ_{0}). The dynamical decoupling scheme works well across the entire range of phase deviations and with only a few gross phase reconstruction errors. Clock 1 determines the fringe observed by clock 2 correctly with probability P(∣Δϕ_{1}∣ ≤ π/2) = 95.3(7)%. As seen in the figure, the phase errors of the compound clock are reduced further by the measurement of clock 2; we find P(∣Δϕ_{tot}∣ ≤ π/2) = 99.0(3)% for the full measurement. This proofofprinciple experiment thus demonstrates that the compound clock can be interrogated well beyond the laser coherence time (T_{i}/T_{co} ≈ 6.4).
In an additional measurement, we increase the power spectral density of the artificial flicker frequency noise by a factor of 2.25, which reduces the coherence time of the laser to T_{co} = 56 ms, but leave the other parameters unchanged. We observe a slightly reduced performance of the compound clock, P(∣Δϕ_{tot}∣ ≤ π/2) = 93.1(8)%, in this case.
Phase measurement errors
The frequency instability of the compound clock benefits from its increased interrogation time and duty cycle, as the contributions from QPN, the Dick effect, and other noise sources decrease. However, phase measurement errors Δϕ_{1} by clock 1 exceeding ±π/2 cause incorrect fringe assignment in clock 2 and prevent the compound clock from measuring the phase correctly (see “Methods” section). These errors hence give rise to an additional instability contribution, which needs to be taken into account to assess the benefits of using a compound clock. In our proofofprinciple experiment, a RMS phase error \({\sigma }_{{\phi }_{1}}\) by clock 1 of about 0.14 π is expected, mainly from dynamical decoupling imperfections (see “Methods” section). This would make incorrect fringe assignment highly improbable. Experimentally, we observe a broader distribution of errors in clock 1 (Fig. 4a, b), which we take into account when estimating the instability of a compound clock in this situation. The bulk of the measurement errors are described well by a normal distribution with a standard deviation of about σ_{b} = 0.24 π. Since we observe similar phase errors even without artificial laser noise, we attribute the difference to technical imperfections of the pulse sequence like power fluctuations. Moreover, large phase errors occur more frequently (\(P(\left\Delta {\phi }_{1}\right\;> \; 3{\sigma }_{{\rm{b}}})=1.1(3)\times 1{0}^{2}\)) than expected for that normal distribution. Such outliers may be caused by particular features of a phase trajectory that cause a nonlinear response, e.g. precession of the Bloch vector in clock 1 by ∣ϕ∣ ⪆ π/2 during a dark time (cf. the results from the measurement with reduced coherence time). Even a few outliers may substantially affect the compound clock’s frequency instability because they can lead to large phase errors ∣Δϕ_{tot}∣ ⪆ π/2 (see “Methods” section). We account for the outliers by adding a uniform pedestal to the normal distribution. The pedestal is assigned a width of L = 2.5 π, such that it covers the actual one with 68% confidence, and an integrated weight η = 0.02, which reproduces the observed rate of outliers on average. The combined distribution reproduces the observed RMS phase error of clock 1 (\({\sigma }_{{\phi }_{1}}=0.25\ \pi\)) well. It maps to a contribution of about 0.10π to the RMS phase error \({\sigma }_{{\phi }_{{\rm{tot}}}}\) of the compound clock (see “Methods” section and Fig. 5). Finally, noise from clock 2 itself causes additional phase errors. It broadens the Dirac delta function at zero phase error shown in Fig. 5, which contains the bulk of the measurements, to a finite width. We estimate this width from the observed error distribution of the compound clock (Fig. 4b) and find a value of 0.07π, which we attribute mostly to residual frequency offsets of the undisturbed interrogation laser from resonance. The sum of these two error contributions reproduces the observed overall RMS phase error \({\sigma }_{{\phi }_{{\rm{tot}}}}=0.12\ \pi\) of the compound clock.
Frequency instability
Based on these observations, we estimate the frequency instability of an actual compound clock that uses a singleion clock as clock 2 and a lattice clock as clock 1. For simplicity, we assume that both clocks operate at the frequency of a strontium lattice clock. Furthermore, we assume a frequency noise spectrum of the interrogation laser and individual probing sequences of the clocks that are equivalent to our proofofprinciple experiment and a dead time T_{dead} = 0.25 s for preparation and readout. The frequency instability resulting from the observed imperfections of the dynamical decoupling (σ_{y,dd}(τ) = 2 × 10^{−16}(τ/s)^{−1/2}) remains well below the contributions from QPN (σ_{y,QPN}(τ) = 6 × 10^{−16}(τ/s)^{−1/2}) and the Dick effect (σ_{y,Dick}(τ) = 5 × 10^{−16}(τ/s)^{−1/2}). The total frequency instability achieved by the compound clock is about σ_{y}(τ) = 8 × 10^{−16}(τ/s)^{−1/2}, for a laser with only 77 ms coherence time. The compound clock thus takes about a factor of 14 less averaging time to reach a given measurement precision than a comparable standalone singleion clock (σ_{y}(τ) = 31 × 10^{−16}(τ/s)^{−1/2}) operating with an interrogation time close to that coherence limit (T_{i} = 71 ms) and the same dead time.
Similar improvements of clock performance are expected for clocks using stateoftheart ultrastable lasers. The laser system reported in ref. ^{15} has a thermal noise floor of about \({\rm{mod}}\ {\sigma }_{y}=4\times 1{0}^{17}\) in its modified Allan deviation, which results in a coherence time T_{co} ≈ 2.5 s for Ramsey interrogation at the strontium clock’s frequency. If we allow for similar phase errors due to imperfections of dynamical decoupling as expected in our experiment the interrogation time of a compound clock using this local oscillator can be extended to about one minute. Even if these errors were exceeded to a similar extent as observed experimentally, the resulting contribution to instability would remain well below that from QPN for the case considered here. A singleion clock then reaches a QPNlimited instability of σ_{y}(τ) = 5 × 10^{−17}(τ/s)^{−1/2} as part of a compound clock. Averaging times reduce by a factor of about 24 compared to standalone operation of the clock. Achieving similar performance of the standalone clock would require improving the frequency instability of the laser system by this same factor, i.e. to \({\rm{mod}}\ {\sigma }_{y}\;<\; 2 \times 1{0}^{18}\).
Conclusion
The compound clock scheme presented here can thus expedite highperformance clock comparisons by more than an order of magnitude. Such progress is essential for the practicality of comparing future and even existing ion clocks. In the case of today’s best ion clocks^{1,27} measurements at 1 × 10^{−18} uncertainty would require less than an hour of averaging time in a compound clock rather than a few weeks as required at their present instability^{1,27}. The problem has thus been in the focus of research for some time: Correlated interrogation of two clocks^{16,38} rejects laser phase fluctuations in direct comparisons. Moreover, the frequency difference between two clocks can be exploited to operate one or, in case of two lattice clocks, both beyond the laser coherence limit^{18}. The compound clock scheme allows operating a clock beyond the laser coherence limit more generally. In particular, it improves the absolute frequency stability of the clock rather than only that of its frequency ratio to a specific, coherently linked clock. Similar to the scheme presented in ref. ^{18}, it requires little additional hardware, since lattice clocks for coarse measurement are already available in most laboratories that operate highperformance optical clocks. While there are other techniques that allow tracing the laser phase beyond the coherence limit, e.g. weak measurements^{39,40,41}, the dynamical decoupling protocol has been designed to do so using only standard experimental techniques.
Expediting highperformance comparisons of present and future clocks at uncertainties of 1 × 10^{−18} and below is important not only for the feasibility of evaluating and comparing these clocks but also for the many applications that aim to resolve timedependent effects using optical clocks. Ion clocks are already used for such applications frequently, e.g. tests of Lorentz symmetry^{1} and the search for ultralight scalar dark matter^{10}. Precision spectroscopy on highly charged ions is well suited for such applications^{30}, as well, and may benefit similarly, as several highly charged ion species feature ultranarrow transitions with lifetimes of several days and longer. In each case, reducing the clock’s frequency instability results directly in an improved measurement sensitivity and may enable the investigation of phenomena that would remain inaccessible due to their required time resolution and measurement sensitivity otherwise. Therefore, implementing techniques that allow such improvements with existing technology, such as the compound clock scheme and the other techniques discussed above, is crucial for pushing both the development of optical clocks and their applications.
Methods
Interrogation laser setup
The interrogation laser of our strontium lattice clock at ν_{Sr} ≈ 429 THz has been described in detail in ref. ^{14}. Its frequency stability has since been improved further^{42} by stability transfer from one of the ultrastable lasers described in ref. ^{15} via a single branch of an optical frequency comb using the transfer oscillator scheme^{43,44,45}. That laser is stabilised to a cryogenic monocrystalline silicon resonator near ν = 194.4 THz. Its modified Allan deviation has a flicker frequency noise floor of about \({\rm{mod}}\ {\sigma }_{y}=4\times 1{0}^{17}\) and a similar contribution from white frequency noise at an averaging time τ = 1 s^{15}.
Laser light from the interrogation laser is delivered to the atoms via an optical fibre. We have modified the optical path length stabilisation (PLS) such that it is compatible with multipulse interrogation (cf. ref. ^{46}): If a single beam is used for both spectroscopy and PLS two subsequent pulses may differ in phase by Δφ = π because the phaselocked loop in the PLS is only sensitive to the roundtrip phase. Our observations have shown that these phase slips occur occasionally. Therefore, we use two separate beams: a resonant probe beam for spectroscopy and an offresonant (Δν = −2 MHz) pilot beam, which remains switched on throughout the entire spectroscopy sequence, for the PLS servo loop. Both beams are derived from the same acoustooptic modulator in front of the fibre so that they nearly copropagate. The optical path length of the probe beam is then costabilised via the pilot beam.
Artificial frequency noise
We imprint additional frequency noise directly onto the probe beam, by changing its radiofrequency offset with respect to the pilot beam at the acoustooptic modulator of the PLS. A direct digital synthesiser (DDS) based on a field programmable gate array provides a radiofrequency signal with the appropriate frequency noise for this purpose.
A set of pregenerated samples of pseudorandom powerlaw frequency noise^{47} is uploaded to the DDS prior to the experiment. Here, we use artificial frequency noise spectra with \({S}_{y}(f)=\mathop{\sum }\nolimits_{i = 1}^{0}{h}_{i}{f}^{i}\), where white frequency noise h_{0} = 1.8 × 10^{−31} Hz^{−1} (i.e. σ_{y} = 3 × 10^{−16} at τ = 1 s) and flicker frequency noise h_{−1} = 1.2 × 10^{−30} (σ_{y} = 1.3 × 10^{−15}) with respect to the transition frequency of the clock (Fig. 3c). Each sample has a duration of about 1 s with a time resolution of about 60 μs.
During the experiment, the computer control system of the clock selects one of these samples and triggers the DDS at the beginning of the probe sequence. The DDS replays the selected noise sample from the beginning each time it is triggered. The clock’s pulse pattern generator is used to generate the trigger signal, for precise and reproducible timing with respect to the probe sequence.
Experimental setup
Our strontium optical lattice clock has been described in previous publications^{42,48,49}. For the experiments reported here, laser frequency noise is dominated by the artificial contribution discussed in the previous section and shown in Fig. 3c. We adjust the power of the spectroscopy beam such that it results in a πpulse duration T_{π} = 1.0 ms, which keeps imperfections of the dynamical decoupling due to the Dick effect low. A suitable spectroscopy sequence for clock 1 with an interrogation time \({T}_{{\rm{i}}}^{\prime}\approx 495\ {\rm{ms}}\) is determined following the procedure discussed in the main text. We use a spectroscopy sequence with M = 16 flip pulses such that T_{d} = 30 ms < T_{co} and choose ϵ = 0.12π such that the central fringe is broad enough to trace the expected phase deviations unambiguously.
For the experiments reported here, we operate the clock in a repeating cycle S_{1}, S_{2}, \({\tilde{S}}_{1}\), \({\tilde{S}}_{2}\), \({M}_{1}^{(i)}\), \({M}_{2}^{(i)}\), \({\tilde{M}}_{1}^{(i+1)}\), \({\tilde{M}}_{2}^{(i+1)}\), where S_{1} (S_{2}) are stabilisation interrogations using the probe sequence of clock 1 (2) and the undisturbed clock laser and \({M}_{1}^{(i)}\) (\({M}_{2}^{(i)}\)) are measurement interrogations using the sequence of clock 1 (2) and artificial frequency noise from the ith sample. The line shapes are inverted for every second pair of interrogations, as indicated by tildes, by reversing the phase shifts of the pulses. The stabilisation interrogations with the probe sequence of clock 2 are used to lock the laser frequency to the atomic transition frequency and compensate any residual frequency drift of the interrogation laser during the experiment. Those using the probe sequence of clock 1 are not used. Each pair of measurement interrogations is used to perform a phase measurement for one of the frequency noise samples. Here, the phase \({\phi }_{1}^{(i)}\) measured by clock 1 (\({M}_{1}^{(i)}\) or \({\tilde{M}}_{1}^{(i)}\)) is reconstructed from the observed excitation probability, using a lookup table for the specific probe sequence and correcting for the observed contrast. The subsequent measurement interrogation (\({M}_{2}^{(i)}\) or \({\tilde{M}}_{2}^{(i)}\)), which uses the same noise sample but the probe sequence of clock 2, receives this measurement result and uses it to adjust the phase of its second excitation pulse, as shown in Fig. 1. The observed excitation probability is once again corrected for the observed contrast and then converted to the observed phase \({\phi }_{2}^{(i)}\). Here, we approximate the Ramsey line shape by a sine function and assume that the result falls within the invertible range.
As there is no feedback to the clock, these results are analysed in postprocessing for simplicity: The imprinted phase deviations \({\phi }_{0}^{(i)}\) are computed by numerically integrating the frequency noise of respective samples over the interrogation time and compared to the phase measurement results \({\phi }_{1}^{(i)}\) of clock 1 and \({\phi }_{{\rm{tot}}}^{(i)}={\phi }_{1}^{(i)}+{\phi }_{2}^{(i)}\) of the compound clock. Figure 4 shows the difference between the measured and expected values.
Probe light shift
We observe a differential shift on the order of a hertz between the line centres of the two probe sequences. We cancel it by applying an offset to the clock laser frequency in all interrogations using the probe sequence of clock 1. The occurrence of such a shift is not unexpected since the probe sequence of clock 1 with its many flip pulses is more sensitive to probe light shifts than the twopulse sequence used by clock 2. However, it does not impede operation of a compound clock or its systematic uncertainty, which is governed by clock 2.
Phase errors due to nearsynchronous interrogation
Reading out the atomic state of clock 1 and forwarding the phase estimate to clock 2 (Fig. 1) introduces a brief window during which only one of the clocks monitors the laser. Laser phase noise that occurs during this time directly affects the determination of the correct Ramsey fringe in clock 2. Hence, the delay \({T}_{{\rm{i}}}{{T}_{{\rm{i}}}}^{\prime}\) must be kept short. For the sake of simplicity, we use the same interrogation time in both clocks (\({T}_{{\rm{i}}}={T}_{{\rm{i}}}^{\prime}\)) for the experiments presented here, which use sequential interrogation of a single clock (see main text). In practice, the delay can easily be kept well below the coherence time of typical interrogation lasers.
Phase errors due to dynamical decoupling imperfections
Phase measurement errors in clock 1 caused by imperfections of the dynamical decoupling can be calculated analogously to the Dick effect^{22}, by analysis of the clock’s sensitivity to laser frequency fluctuations.
The frequency sensitivity g(t) of a spectroscopy protocol determines the change in excitation probability δp_{e} caused by a timedependent frequency error δν(t) of the probe laser, which is given by^{22,23,50}
for interrogation time T_{i} in the linear response regime. If the sensitivity function of clock 1 had the same shape as that of clock 2, which is nearly rectangular, there would be no imperfections of the dynamical decoupling. In practice, this will never be the case due to the different pulse sequences used in the two clocks (Fig. 1). The frequency sensitivity g(t) of clock 1 can be split into a signal component \(\bar{g}={T}_{{\rm{i}}}^{1}\mathop{\int}\nolimits_{0}^{{T}_{{\rm{i}}}}g(t){\rm{d}}t\) and a noise component \({g}_{{\rm{n}}}(t)=g(t)\bar{g}\) such that
where ϕ is the laser phase deviation accumulated during the interrogation time. Laser frequency noise with singlesided power spectral density S_{y}(f) thus gives rise to noise of the measured excitation probability with variance^{51}
where \({\hat{g}}_{{\rm{n}}}(f)\) is the complex Fourier transform of g_{n}(t). This corresponds to a phase measurement error with variance
The frequency sensitivity of the protocol presented here is shown in Fig. 3a for the parameters used in the proofofprinciple experiment. The noise component g_{n}(t) stems mainly from the greatly increased frequency sensitivity during flip pulses. Therefore, the phase measurement is particularly sensitive to laser frequency noise at Fourier frequencies that are harmonics of \(f\approx {({T}_{\pi }+{T}_{{\rm{d}}})}^{1}\). The relevant Fourier coefficients of the sensitivity function decrease with shortening T_{π} and roll off above a corner frequency \({f}_{{\rm{c}}}\approx {T}_{\pi }^{1}\), which restricts useful πpulse durations.
Phase errors due to these imperfections of the decoupling depend on the noise type (S_{y} ∝ f^{α}) that dominates at the relevant Fourier frequencies. For flicker or white frequency noise (α = 0 or −1), they decrease towards shorter pulse duration T_{π}, whereas they increase for flicker or white phase noise (α = 1 or 2). White frequency noise is the dominant noise process for our laser system^{15} at T_{π} ≈ 1 ms. The spectroscopy sequence used here gives rise to RMS phase measurement errors σ_{ϕ,0} = 0.12 π from artificial laser noise and σ_{ϕ,i} = 0.014 π from frequency noise of the undisturbed laser.
In contrast with the procedure for estimating the frequency instability due to the Dick effect^{22} in atomic clocks, the dead time and total cycle time are not relevant for calculating the effect of the dynamical decoupling imperfections. This is because the atomic excitation is being used in the dynamical decoupling scheme to estimate the phase accumulated by the laser only during the interrogation pulse, not the phase accumulated during the entire clock cycle.
Phase errors due to QPN
Like the dynamical decoupling imperfections, QPN causes phase measurement noise in clock 1 that may lead to incorrect determination of the Ramsey fringe.
The measured excitation probability has a variance \({\sigma }_{{p}_{e}}^{2}={\bar{p}}_{e}(1{\bar{p}}_{e}){N}^{1}\) due to QPN for N uncorrelated atoms, where \({\bar{p}}_{e}\) is the expectation value. The variance of the resulting phase measurement noise is then given by Eq. (5). We interrogate about 700 atoms per measurement for the experiments reported here. This corresponds to contributions \({\sigma }_{{p}_{e}}=0.02\) and \({\sigma }_{{\phi }_{1}}=0.06\pi\).
Effect of phase errors by clock 1 on the compound clock
The compound clock compensates errors of clock 1 using the complementary narrowfringe, highresolution measurement by clock 2. This scheme works well as long as the phase errors Δϕ_{1} from clock 1 stay within ±π/2. If the phase error exceeds this threshold clock 2 is assigned an incorrect fringe, which causes a nonzero residual phase error Δϕ_{tot} of the compound clock. Note that, in contrast to a standalone system, such events do not cause the clock to lock onto an incorrect fringe because it will be detected by clock 1 and corrected in the next measurement. Nevertheless, they give rise to additional noise in the compound clock and increase its frequency instability. The probability density function of the compound clock’s residual errors results from mapping the probability density function of phase errors by clock 1 onto the corresponding phase errors of the compound clock, as shown in Fig. 5. This can be treated as independent of additional noise introduced by clock 2 in good approximation. Finally, the contribution of the residual phase errors to the clock’s frequency instability results from the RMS phase error, which is estimated from the probability density function.
Data availability
The datasets generated and analysed during this study are available from the corresponding authors upon reasonable request.
Code availability
The source code that supports the findings of this study is available from the corresponding authors upon reasonable request. The source code that has been used to generate Fig. 1c–e, using the QuTiP library^{52}, and Supplementary Movie 1 is provided as Supplementary Software 1.
References
Sanner, C. et al. Optical clock comparison test of Lorentz symmetry. Nature 567, 204–208 (2019).
Delva, P. et al. Test of special relativity using a fiber network of optical clocks. Phys. Rev. Lett. 118, 221102 (2017).
Rosenband, T. et al. Frequency ratio of Al^{+} and Hg^{+} singleion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).
Huntemann, N. et al. Improved limit on a temporal variation of m_{p}/m_{e} from comparisons of Yb^{+} and Cs atomic clocks. Phys. Rev. Lett. 113, 210802 (2014).
Godun, R. M. et al. Frequency ratio of two optical clock transitions in ^{171}Yb^{+} and constraints on the timevariation of fundamental constants. Phys. Rev. Lett. 113, 210801 (2014).
Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).
Wcisło, P. et al. Searching for topological defect dark matter with optical atomic clocks. Nat. Astron. 1, 0009 (2016).
Stadnik, Y. V. & Flambaum, V. V. Enhanced effects of variation of the fundamental constants in laser interferometers and application to darkmatter detection. Phys. Rev. A 93, 063630 (2016).
Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).
Roberts, B. M. et al. Search for transient variations of the fine structure constant and dark matter using fiberlinked optical atomic clocks. N. J. Phys. 22, 093010 (2020).
Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).
Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics 14, 411–415 (2020).
Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D. 94, 124043 (2016).
Häfner, S. et al. 8 × 10^{−17} fractional laser frequency instability with a long roomtemperature cavity. Opt. Lett. 40, 2112–2115 (2015).
Matei, D. G. et al. 1.5μm lasers with sub10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).
Chou, C. W., Hume, D. B., Thorpe, M. J., Wineland, D. J. & Rosenband, T. Quantum coherence between two atoms beyond Q = 10^{15}. Phys. Rev. Lett. 106, 160801 (2011).
Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the Dick limit. Nat. Photonics 5, 288–292 (2011).
Hume, D. B. & Leibrandt, D. R. Probing beyond the laser coherence time in optical clock comparisons. Phys. Rev. A 93, 032138 (2016).
Schioppo, M. et al. Ultrastable optical clock with two coldatom ensembles. Nat. Photonics 11, 48–52 (2017).
Oelker, E. et al. Demonstration of 4.8 × 10^{−17} stability at 1 s for two independent optical clocks. Nat. Photonics 13, 714–719 (2019).
Itano, W. M. et al. Quantum projection noise: Population fluctuations in twolevel systems. Phys. Rev. A 47, 3554–3570 (1993).
Dick, G. J. Proc. 19th Annu. Precise Time and Time Interval Meeting, Redendo Beach, 1987 133–147. http://tycho.usno.navy.mil/ptti/1987papers/Vol%2019_13.pdf (U.S. Naval Observatory, Washington, DC, 1988).
Quessada, A. et al. The Dick effect for an optical frequency standard. J. Opt. B Quantum Semiclass. Opt. 5, S150–S154 (2003).
Riehle, F. Frequency Standards: Basics and Applications (WileyVCH, Weinheim, 2004).
Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).
PedrozoPeñfiel, E. et al. Entanglementenhanced optical atomic clock. Preprint at https://arxiv.org/abs/2006.07501 (2020).
Brewer, S. M. et al. ^{27}Al^{+} quantumlogic clock with a systematic uncertainty below 10^{−18}. Phys. Rev. Lett. 123, 033201 (2019).
McGrew, W. F. et al. Atomic clock performance beyond the geodetic limit. Nature 564, 87–90 (2018).
Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10^{−18}. Metrologia 56, 065004 (2019).
Kozlov, M. G., Safronova, M. S., Crespo LópezUrrutia, J. R. & Schmidt, P. O. Highly charged ions: Optical clocks and applications in fundamental physics. Rev. Mod. Phys. 90, 045005 (2018).
Bekker, H. et al. Detection of the 5p – 4f orbital crossing and its optical clock transition in Pr^{9+}. Nat. Commun. 10, 5651 (2019).
Rosenband, T. et al. Observation of the ^{1}S_{0}  ^{3}P_{0} clock transition in ^{27}Al^{+}. Phys. Rev. Lett. 98, 220801 (2007).
Muniz, J. A., Young, D. J., Cline, J. R. K. & Thompson, J. K. CavityQED determination of the natural linewidth of the ^{87}Sr millihertz clock transition with 30 μHz resolution. Preprint at https://arxiv.org/pdf/2007.07855.pdf (2020).
Roberts, M. et al. Observation of an electric octupole transition in a single ion. Phys. Rev. Lett. 78, 1876–1879 (1997).
Viola, L., Knill, E. & Lloyd, S. Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999).
Hahn, E. L. Spin echos. Phys. Rev. 80, 580–594 (1950).
Grebing, C. et al. Realization of a timescale with an accurate optical lattice clock. Optica 3, 563–569 (2016).
Clements, E. R. et al. Lifetimelimited interrogation of two independent ^{27}Al^{+} clocks using correlation spectroscopy. Preprint at https://arxiv.org/pdf/2007.02193.pdf (2020).
Vanderbruggen, T. et al. Feedback control of coherent spin states using weak nondestructive measurements. Phys. Rev. A 89, 063619 (2014).
Shiga, N. & Takeuchi, M. Locking local oscillator phase to the atomic phase via weak measurement. N. J. Phys. 14, 023034 (2011).
Shiga, N., Mizuno, M., Kido, K., Phoonthong, P. & Okada, K. Accelerating the averaging rate of atomic ensemble clock stability using atomic phase lock. N. J. Phys. 16, 073029 (2014).
Schwarz, R. et al. Long term measurement of the ^{87}Sr clock frequency at the limit of primary Cs clocks. Phys. Rev. Res. 2, 033242 (2020).
Hagemann, C. et al. Providing 10^{−16} shortterm stability of a 1.5μm laser to optical clocks. IEEE Trans. Instrum. Meas. 62, 1556–1562 (2013).
Benkler, E. et al. Endtoend topology for fiber comb based optical frequency transfer at the 10^{−21} level. Opt. Express 27, 36886–36902 (2019).
Benkler, E. et al. Endtoend topology for fiber comb based optical frequency transfer at the 10^{−21} level: erratum. Opt. Express 28, 15023–15024 (2020).
Falke, S., Misera, M., Sterr, U. & Lisdat, C. Delivering pulsed and phase stable light to atoms of an optical clock. Appl. Phys. B 107, 301–311 (2012).
Kasdin, N. J. Discrete simulation of colored noise and stochastic processes and 1/f^{α} power law noise generation. Proc. IEEE 83, 802–827 (1995).
AlMasoudi, A., Dörscher, S., Häfner, S., Sterr, U. & Lisdat, C. Noise and instability of an optical lattice clock. Phys. Rev. A 92, 063814 (2015).
Falke, S. et al. The ^{87}Sr optical frequency standard at PTB. Metrologia 48, 399–407 (2011).
Dick, G. J., Prestage, J., Greenhall, C. & Maleki, L. Proc. 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Vienna VA, USA 487–509. http://tycho.usno.navy.mil/ptti/1990/Vol%2022_42.pdf (1990).
Hobson, R. An optical lattice clock with neutral strontium. PhD thesis, https://ora.ox.ac.uk/objects/uuid:d52faaaf307c4b48847fbe590f46136f (2016).
Johansson, J. R., Nation, P. D. & Noria, F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Comm. 184, 1234 – 1240 (2013).
Acknowledgements
We thank S. Häfner, Th. Legero, and E. Benkler for operating the ultrastable laser system and optical frequency comb that are used for stabilisation of our interrogation laser system. We thank M. Misera for developing the frequency noise generator. This work has received funding from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within CRC 1227 (‘DQmat’, project B02) and under Germany’s Excellence Strategy—EXC2123 QuantumFrontiers—390837967. This work was partially supported by the Max Planck–RIKEN–PTB Center for Time, Constants and Fundamental Symmetries. R.H. has been supported by the European Union’s Horizon H2020 MSCA RISE programme under Grant Agreement Number 691156 (QSENSE). M.B. has been supported by a research fellowship within the project ‘Enhancing Educational Potential of Nicolaus Copernicus University in the Disciplines of Mathematical and Natural Sciences’ (Project No. POKL.04.01.0100081/10). U.S. acknowledges funding from the project EMPIR 17FUN03 USOQS. EMPIR projects are cofunded by the European Union’s Horizon 2020 research and innovation programme and the EMPIR Participating States.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
S.D., M.B., R.H., U.S. and C.L. developed the protocol and devised the proofofprinciple experiment; S.D., A.A.M., M.B., R.S., R.H. and C.L. fitted the strontium clock for the experiment; S.D., A.A.M. and R.S. acquired and analysed the data. All authors were involved in discussions and preparation of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Dörscher, S., AlMasoudi, A., Bober, M. et al. Dynamical decoupling of laser phase noise in compound atomic clocks. Commun Phys 3, 185 (2020). https://doi.org/10.1038/s42005020004529
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42005020004529
This article is cited by

Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network
Nature Communications (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.