Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Uniting biological and chemical strategies for selective CO2 reduction

Abstract

The electrochemical reduction of CO2 into useful fuels and chemical feedstocks offers great promise for conversion to a carbon-neutral economy. However, challenges in product selectivity continue to limit the practical application of electrocatalytic systems. In this Perspective, we outline the thermodynamic and kinetic factors for the design of improved catalysts for CO2 fixation and carbon–carbon bond formation, and draw parallels between synthetic systems and natural enzymes that perform analogous transformations. By identifying the primary features that underpin the highly efficient CO2 conversion reactions seen in nature, synthetic catalysts can be constructed to take advantage of similar chemical principles. Given the demonstrated prior success of bio-inspired molecular design, increased and dynamic interactions between the chemical, biological and materials science fields will advance catalyst development in a synergistic fashion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermodynamic values associated with H+ and CO2 reduction.
Fig. 2: Enzymatic strategies for selective CO2 reduction and a selection of synthetic analogues.
Fig. 3: Structural and electronic elements for selective C–C bond formation.

Similar content being viewed by others

References

  1. Faunce, T. A. et al. Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6, 695–698 (2013).

    Article  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).

    Article  PubMed  Google Scholar 

  4. Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    Article  CAS  Google Scholar 

  5. Scott, A. A big bet on the smallest molecule. C&EN 99, 16–19 (2021).

    Article  Google Scholar 

  6. Cardenas, A. J. P. et al. Controlling proton delivery through catalyst structural dynamics. Angew. Chem. Int. Ed. 55, 13509–13513 (2016).

    Article  CAS  Google Scholar 

  7. Cunningham, D. W., Barlow, J. M., Velazquez, R. S. & Yang, J. Y. Reversible and selective CO2 to HCO2 electrocatalysis near the thermodynamic potential. Angew. Chem. Int. Ed. 59, 4443–4447 (2020).

    Article  CAS  Google Scholar 

  8. Armstrong, D. A. et al. Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 87, 1139–1150 (2015).

    Article  CAS  Google Scholar 

  9. Ceballos, B. M. & Yang, J. Y. Directing the reactivity of metal hydrides for selective CO2 reduction. Proc. Natl Acad. Sci. USA 115, 12686–12691 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barlow, J. M. & Yang, J. Y. Thermodynamic considerations for optimizing selective CO2 reduction by molecular catalysts. ACS Cent. Sci. 5, 580–588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Can, M., Armstrong, F. A. & Ragsdale, S. W. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem. Rev. 114, 4149–4174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu, Z. et al. Nature of the C-cluster in Ni-containing carbon monoxide dehydrogenases. J. Am. Chem. Soc. 118, 830–845 (1996).

    Article  CAS  Google Scholar 

  13. Breglia, R. et al. First-principles calculations on Ni,Fe-containing carbon monoxide dehydrogenases reveal key stereoelectronic features for binding and release of CO2 to/from the C-cluster. Inorg. Chem. 60, 387–402 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Fesseler, J., Jeoung, J.-H. & Dobbek, H. How the [NiFe4S4] cluster of CO dehydrogenase activates CO2 and NCO. Angew. Chem. Int. Ed. 54, 8560–8564 (2015).

    Article  CAS  Google Scholar 

  15. Eckert, N. A., Dinescu, A., Cundari, T. R. & Holland, P. L. A T-shaped three-coordinate nickel(I) carbonyl complex and the geometric preferences of three-coordinate d9 complexes. Inorg. Chem. 44, 7702–7704 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Blackaby, W. J. M. et al. Mono- and dinuclear Ni(I) products formed upon bromide abstraction from the Ni(I) ring-expanded NHC complex [Ni(6-Mes)(PPh3)Br]. Dalton Trans. 47, 769–782 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Amara, P., Mouesca, J.-M., Volbeda, A. & Fontecilla-Camps, J. C. Carbon monoxide dehydrogenase reaction mechanism: a likely case of abnormal CO2 insertion to a Ni−H bond. Inorg. Chem. 50, 1868–1878 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, V. C. C., Islam, S. T. A., Can, M., Ragsdale, S. W. & Armstrong, F. A. Investigations by protein film electrochemistry of alternative reactions of nickel-containing carbon monoxide dehydrogenase. J. Phys. Chem. B 119, 13690–13697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keith, J. A., Grice, K. A., Kubiak, C. P. & Carter, E. A. Elucidation of the selectivity of proton-dependent electrocatalytic CO2 reduction by fac-Re(bpy)(CO)3Cl. J. Am. Chem. Soc. 135, 15823–15829 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Majumdar, A. Bioinorganic modeling chemistry of carbon monoxide dehydrogenases: description of model complexes, current status and possible future scopes. Dalton Trans. 43, 12135–12145 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Isse, A. A., Gennaro, A., Vianello, E. & Floriani, C. Electrochemical reduction of carbon dioxide catalyzed by [CoI(salophen)Li]. J. Mol. Catal. 70, 197–208 (1991).

    Article  CAS  Google Scholar 

  23. Bhugun, I., Lexa, D. & Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of Lewis acid cations. J. Phys. Chem. 100, 19981–19985 (1996).

    Article  CAS  Google Scholar 

  24. Steffey, B. D., Curtis, C. J. & DuBois, D. L. Electrochemical reduction of CO2 catalyzed by a dinuclear palladium complex containing a bridging hexaphosphine ligand: evidence for cooperativity. Organometallics 14, 4937–4943 (1995).

    Article  CAS  Google Scholar 

  25. Beley, M., Collin, J. P., Ruppert, R. & Sauvage, J. P. Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J. Am. Chem. Soc. 108, 7461–7467 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Fujita, E., Creutz, C., Sutin, N. & Brunschwig, B. S. Carbon dioxide activation by cobalt macrocycles: evidence of hydrogen bonding between bound CO2 and the macrocycle in solution. Inorg. Chem. 32, 2657–2662 (1993).

    Article  CAS  Google Scholar 

  27. Dey, S., Ahmed, M. E. & Dey, A. Activation of Co(I) state in a cobalt-dithiolato catalyst for selective and efficient CO2 reduction to CO. Inorg. Chem. 57, 5939–5947 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Costentin, C., Passard, G., Robert, M. & Savéant, J.-M. Pendant acid–base groups in molecular catalysts: H-bond promoters or proton relays? Mechanisms of the conversion of CO2 to CO by electrogenerated iron(0) porphyrins bearing prepositioned phenol functionalities. J. Am. Chem. Soc. 136, 11821–11829 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 138, 16639–16644 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Sung, S., Kumar, D., Gil-Sepulcre, M. & Nippe, M. Electrocatalytic CO2 reduction by imidazolium-functionalized molecular catalysts. J. Am. Chem. Soc. 139, 13993–13996 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. DeLuca, E. E., Xu, Z., Lam, J. & Wolf, M. O. Improved electrocatalytic CO2 reduction with palladium bis(NHC) pincer complexes bearing cationic side chains. Organometallics 34, 1330–1343 (2019).

    Article  Google Scholar 

  32. Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).

    Article  CAS  Google Scholar 

  33. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  CAS  Google Scholar 

  34. Thorson, M. R., Siil, K. I. & Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2012).

    Article  Google Scholar 

  35. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Ogata, H., Nishikawa, K. & Lubitz, W. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520, 571–574 (2015).

    Article  PubMed  Google Scholar 

  37. Schneider, C. R., Lewis, L. C. & Shafaat, H. S. The good, the neutral, and the positive: buffer identity impacts CO2 reduction activity by nickel(II) cyclam. Dalton Trans. 48, 15810–15821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, B. A., Ozel, T., Elias, J. S., Costentin, C. & Nocera, D. G. Interplay of homogeneous reactions, mass transport, and kinetics in determining selectivity of the reduction of CO2 on gold electrodes. ACS Cent. Sci. 5, 1097–1105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y. & McCrory, C. C. L. Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 10, 1683 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wadsworth, B. L., Khusnutdinova, D. & Moore, G. F. Polymeric coatings for applications in electrocatalytic and photoelectrosynthetic fuel production. J. Mat. Chem. A 6, 21654–21665 (2018).

    Article  CAS  Google Scholar 

  41. Sarkar, S., Maitra, A., Banerjee, S., Thoi, V. S. & Dawlaty, J. M. Electric fields at metal–surfactant interfaces: a combined vibrational spectroscopy and capacitance study. J. Phys. Chem. B 124, 1311–1321 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Banerjee, S., Han, X. & Thoi, V. S. Modulating the electrode–electrolyte interface with cationic surfactants in carbon dioxide reduction. ACS Catal. 9, 5631–5637 (2019).

    Article  CAS  Google Scholar 

  43. Quan, F., Xiong, M., Jia, F. & Zhang, L. Efficient electroreduction of CO2 on bulk silver electrode in aqueous solution via the inhibition of hydrogen evolution. Appl. Surf. Sci. 399, 48–54 (2017).

    Article  CAS  Google Scholar 

  44. Barlow, J. M., Ziller, J. W. & Yang, J Y. Inhibiting the hydrogen evolution reaction (HER) with proximal cations: a strategy for promoting selective electrocatalytic reduction. ACS Catal. 11, 8155–8164 (2021).

    Article  CAS  Google Scholar 

  45. Maia, L. B., Moura, I. & Moura, J. J. G. Molybdenum and tungsten-containing formate dehydrogenases: aiming to inspire a catalyst for carbon dioxide utilization. Inorg. Chim. Acta 455, 350–363 (2017).

    Article  CAS  Google Scholar 

  46. Niks, D., Duvvuru, J., Escalona, M. & Hille, R. Spectroscopic and kinetic properties of the molybdenum-containing, NAD+-dependent formate dehydrogenase from Ralstonia eutropha. J. Biol. Chem. 291, 1162–1174 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621–6658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bassegoda, A., Madden, C., Wakerley, D. W., Reisner, E. & Hirst, J. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J. Am. Chem. Soc. 136, 15473–15476 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, J. Y., Kerr, T. A., Wang, X. S. & Barlow, J. M. Reducing CO2 to HCO2 at mild potentials: lessons from formate dehydrogenase. J. Am. Chem. Soc. 142, 19438–19445 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Forster, D. On the mechanism of a rhodium-complex-catalyzed carbonylation of methanol to acetic acid. J. Am. Chem. Soc. 98, 846–848 (1976).

    Article  CAS  Google Scholar 

  51. Gencic, S. & Grahame, D. A. Two separate one-electron steps in the reductive activation of the A cluster in subunit β of the ACDS complex in Methanosarcina thermophila. Biochemistry 47, 5544–5555 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Dougherty, W. G., Rangan, K., O’Hagan, M. J., Yap, G. P. A. & Riordan, C. G. Binuclear complexes containing a methylnickel moiety: relevance to organonickel intermediates in acetyl coenzyme A synthase catalysis. J. Am. Chem. Soc. 130, 13510–13511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matsumoto, T., Ito, M., Kotera, M. & Tatsumi, K. A dinuclear nickel complex modeling of the Nid(II)–Nip(I) state of the active site of acetyl CoA synthase. Dalton Trans. 39, 2995–2997 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Manesis, A. C. et al. A biochemical nickel(I) state supports nucleophilic alkyl addition: a roadmap for methyl reactivity in acetyl coenzyme A synthase. Inorg. Chem. 58, 8969–8982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Manesis, A. C., O’Connor, M. J., Schneider, C. R. & Shafaat, H. S. Multielectron chemistry within a model nickel metalloprotein: mechanistic implications for acetyl-CoA synthase. J. Am. Chem. Soc. 139, 10328–10338 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Kisgeropoulos, E. C., Manesis, A. C. & Shafaat, H. S. Ligand field inversion as a mechanism to gate bioorganometallic reactivity: investigating a biochemical model of acetyl CoA synthase using spectroscopy and computation. J. Am. Chem. Soc. 143, 849–867 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Kampa, M., Pandelia, M.-E., Lubitz, W., van Gastel, M. & Neese, F. A metal–metal bond in the light-induced state of [NiFe] hydrogenases with relevance to hydrogen evolution. J. Am. Chem. Soc. 135, 3915–3925 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Huynh, M. T., Schilter, D., Hammes-Schiffer, S. & Rauchfuss, T. B. Protonation of nickel–iron hydrogenase models proceeds after isomerization at nickel. J. Am. Chem. Soc. 136, 12385–12395 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Manesis, A. C. & Shafaat, H. S. Electrochemical, spectroscopic, and density functional theory characterization of redox activity in nickel-substituted azurin: a model for acetyl-CoA synthase. Inorg. Chem. 54, 7959–7967 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Xing, Z., Hu, X. & Feng, X. Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate. ACS Energy Lett. 6, 1694–1702 (2021).

    Article  CAS  Google Scholar 

  61. Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    Article  CAS  Google Scholar 

  62. Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018).

    Article  CAS  Google Scholar 

  63. Huff, C. A. & Sanford, M. S. Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J. Am. Chem. Soc. 133, 18122–18125 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Chu, W.-Y., Culakova, Z., Wang, B. T. & Goldberg, K. I. Acid-assisted hydrogenation of CO2 to methanol in a homogeneous catalytic cascade system. ACS Catal. 9, 9317–9326 (2019).

    Article  CAS  Google Scholar 

  65. Megarity, C. F. et al. Electrocatalytic volleyball: rapid nanoconfined nicotinamide cycling for organic synthesis in electrode pores. Angew. Chem. Int. Ed. 58, 4948–4952 (2019).

    Article  CAS  Google Scholar 

  66. Marcandalli, G., Villalba, M. & Koper, M. T. M. The importance of acid–base equilibria in bicarbonate electrolytes for CO2 electrochemical reduction and CO reoxidation studied on Au(hkl) electrodes. Langmuir 37, 5707–5716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.S.S. acknowledges the US Department of Energy, award DE-SC0018020, for supporting research that informed this perspective. J.Y.Y. acknowledges the US Department of Energy, award DE-SC0020275, and the National Science Foundation, award CHE-2102589, for supporting research that informed this Perspective.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hannah S. Shafaat or Jenny Y. Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafaat, H.S., Yang, J.Y. Uniting biological and chemical strategies for selective CO2 reduction. Nat Catal 4, 928–933 (2021). https://doi.org/10.1038/s41929-021-00683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00683-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing