Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A strongly coupled Ru–CrOx cluster–cluster heterostructure for efficient alkaline hydrogen electrocatalysis

Abstract

Constructing well-defined heterostructure interfaces in catalysts is an efficient strategy to break the so-called scaling relationships and to accelerate the reactions involving multiple intermediates. Here a cluster–cluster heterostructure catalyst composed of crystalline ruthenium cluster and amorphous chromium oxide cluster is designed to realize high-performance alkaline hydrogen electrocatalysis. The strongly coupled cluster–cluster heterostructure interface induces a unique interfacial interpenetration effect, which simultaneously optimizes the adsorption of intermediates on each cluster. The resulting catalyst exhibits impressive catalytic activities for the hydrogen oxidation reaction (exchange current density of 2.8 A mg−1Ru) and the hydrogen evolution reaction (mass activity of 23.0 A mg−1Ru at the overpotential of 100 mV) in alkaline media. The hydroxide exchange membrane fuel cell delivers a mass activity of 22.4 A mg−1Ru at 0.65 V and outstanding durability with no voltage loss over 105 h operation at 500 mA cm−2. The present work demonstrates the superiority of cluster–cluster heterostructure interface towards the development of advanced catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration.
Fig. 2: Structural characterizations of Ru–CrOx@CN.
Fig. 3: Fine structural characterizations.
Fig. 4: Electrochemical HOR performance and HEMFCs performance.
Fig. 5: Electrochemical HER performance.
Fig. 6: Mechanism investigation.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information files. All data is available from the authors upon reasonable request. The atomic coordinates of the computational models are given in Supplementary Data 1.

References

  1. Glenk, G. & Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy 4, 216–222 (2019).

    Article  CAS  Google Scholar 

  2. Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

    Article  CAS  Google Scholar 

  3. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    Article  CAS  Google Scholar 

  4. Hu, Y. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem. Int. Ed. 60, 6533–6538 (2021).

    Article  CAS  Google Scholar 

  5. Firouzjaie, H. A. & Mustain, W. E. Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells. ACS Catal. 10, 225–234 (2020).

    Article  CAS  Google Scholar 

  6. Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014).

    Article  CAS  Google Scholar 

  7. Shi, L., Zhao, Y., Matz, S., Gottesfeld, S., Setzler, B. P. & Yan, Y. A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells. Nat. Energy 7, 238–247 (2022).

    Article  CAS  Google Scholar 

  8. Li, C. & Baek, J.-B. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 87, 106162 (2021).

    Article  CAS  Google Scholar 

  9. Meyer, Q., Zeng, Y. & Zhao, C. In situ and operando characterization of proton exchange membrane fuel cells. Adv. Mater. 31, 1901900 (2019).

    Article  CAS  Google Scholar 

  10. Kweon, D. H. et al. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 11, 1278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cong, Y., Yi, B. & Song, Y. Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts. Nano Energy 44, 288–303 (2018).

    Article  CAS  Google Scholar 

  12. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529 (2010).

    Article  CAS  Google Scholar 

  13. Mahmood, J. et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nano. 12, 441–446 (2017).

    Article  CAS  Google Scholar 

  14. Xue, Y. et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 11, 5651 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, J. et al. Engineering the near-surface of PtRu3 nanoparticles to improve hydrogen oxidation activity in alkaline electrolyte. Small 17, e2006698 (2021).

    Article  PubMed  Google Scholar 

  16. Wan, C., Zhang, Z. & Dong, J. et al. Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22, 1022–1029 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Sheng, W., Zhuang, Z., Gao, M., Zheng, J., Chen, J. G. & Yan, Y. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, G., Rui, K., Dou, S. X. & Sun, W. Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28, 1803291 (2018).

    Article  Google Scholar 

  19. Zhao, G., Li, P., Cheng, N., Dou, S. X. & Sun, W. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 32, 2000872 (2020).

    Article  CAS  Google Scholar 

  20. Liang, Q. et al. Interfacing epitaxial dinickel phosphide to 2D nickel thiophosphate nanosheets for boosting electrocatalytic water splitting. ACS Nano 13, 7975–7984 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Feng, J.-X., Ye, S.-H., Xu, H., Tong, Y.-X. & Li, G.-R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv. Mater. 28, 4698–4703 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Zheng, X. et al. Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting. Angew. Chem. Int. Ed. 59, 14533–14540 (2020).

    Article  CAS  Google Scholar 

  23. Lao, M. et al. Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem. Int. Ed. 58, 5432–5437 (2019).

    Article  CAS  Google Scholar 

  24. Zhang, J., Zhang, Q. & Feng, X. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 31, 1808167 (2019).

    Article  Google Scholar 

  25. Wu, G. et al. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat. Commun. 13, 4200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, Y. et al. Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a nickel-based metal–organic framework. Angew. Chem. Int. Ed. 58, 10644–10649 (2019).

    Article  CAS  Google Scholar 

  27. Gerber, I. C. & Serp, P. A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 120, 1250–1349 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Rong, H., Ji, S. & Zhang, J. et al. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 11, 5884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, F. et al. Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures. Angew. Chem. Int. Ed. 58, 14179–14183 (2019).

    Article  CAS  Google Scholar 

  30. Zhou, Y. et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 3, 454–462 (2020).

    Article  CAS  Google Scholar 

  31. Zheng, X. B., Li, B. B., Wang, Q. S., Wang, D. S. & Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 15, 7806–7839 (2022).

    Article  CAS  Google Scholar 

  32. Lin, J., Wang, W. & Li, G. Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water splitting. Adv. Funct. Mater. 30, 2005677 (2020).

    Article  CAS  Google Scholar 

  33. Zhang, B., Chen, Y., Wang, J., Pan, H. & Sun, W. Supported sub-nanometer clusters for electrocatalysis applications. Adv. Funct. Mater. 32, 2202227 (2022).

    Article  CAS  Google Scholar 

  34. Zhang, B. et al. Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium. Nat. Commun. 13, 5894 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu, B. Z. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 10, 631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui, W. W. et al. Cr(III) Adsorption by cluster formation on boehmite nanoplates in highly alkaline solution. Environ. Sci. Technol. 53, 11043–11055 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Jagminas, A., Niaura, G. & Žalnėravičius, R. et al. Laser light induced transformation of molybdenum disulphide-based nanoplatelet arrays. Sci. Rep. 6, 37514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gago, R., Vinnichenko, M., Hübner, R. & Redondo-Cubero, A. Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition. J. Alloy. Compd 672, 529–535 (2016).

    Article  CAS  Google Scholar 

  39. Zhuang, Z. et al. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 7, 10141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh, R. K. et al. Synthesis of CeOx‐decorated Pd/C catalysts by controlled surface reactions for hydrogen oxidation in anion exchange membrane fuel cells. Adv. Funct. Mater. 30, 2002087 (2020).

    Article  CAS  Google Scholar 

  41. Cong, Y., Chai, C., Zhao, X., Yi, B. & Song, Y. Pt0.25Ru0.75/N–C as highly active and durable electrocatalysts toward alkaline hydrogen oxidation reaction. Adv. Mater. Inter. 7, 2000310 (2020).

    Article  CAS  Google Scholar 

  42. Shen, L.-f et al. Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media? Nano Energy 62, 601–609 (2019).

    Article  CAS  Google Scholar 

  43. Ramaswamy, N., Ghoshal, S., Bates, M. K., Jia, Q., Li, J. & Mukerjee, S. Hydrogen oxidation reaction in alkaline media: relationship between electrocatalysis and electrochemical double-layer structure. Nano Energy 41, 765–771 (2017).

    Article  CAS  Google Scholar 

  44. Lu, Y. et al. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 34, 2107185 (2022).

    Article  CAS  Google Scholar 

  45. Li, J. et al. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 12, 3502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, T., Yuan, B., Wang, W., He, J. & Xiang, X. Tailoring *H intermediate coverage on the CuAl2O4/CuO catalyst for enhanced electrocatalytic CO2 reduction to ethanol. Angew. Chem. Int. Ed. 62, e202302096 (2023).

    Article  CAS  Google Scholar 

  47. Zhao, G., Jiang, Y., Dou, S.-X., Sun, W. & Pan, H. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 66, 85–96 (2021).

    Article  CAS  Google Scholar 

  48. Zhu, S., Qin, X. & Xiao, F. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 4, 711–718 (2021).

    Article  CAS  Google Scholar 

  49. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384 (1980).

    Article  CAS  Google Scholar 

  54. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  55. Atkins, P., De Paula, J. & Keeler, J. Atkins’ Physical Chemistry (Oxford University Press, 2017).

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (no. 2022YFB4002503), the National Natural Science Foundation of China (no. 92261119 and 52171224), the Natural Science Foundation of Zhejiang Province (grant no. LZ22B030006), the Research Grant Council of the Hong Kong Special Administrative Region (C6011-20G), the Innovation and Technology Commission of the Hong Kong Special Administrative Region (no. ITC-CNERC14EG03). B.Z. acknowledges support from China Postdoctoral Science Foundation (no. 2021M692757), the National Postdoctoral Program for Innovative Talents (no. BX2021251) and Zhejiang Provincial Natural Science Foundation (no. LQ23E010005). The authors thank beamline BL11B and BL14W1 of the Shanghai Synchrotron Radiation Facility (SSRF) for providing the XAFS beamtime, and Photoemission End-Station (BL10B) at the National Synchrotron Radiation Laboratory (NSRL) for NEXAFS beamtime.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. performed the catalyst development, characterizations and performance evaluation. J.W., D.L., Y.C. and J.C. helped in electrocatalysis experiments and material characterizations. G.L. and C.M.W. helped in fuel cell test. L.X. and P. Z. helped in DFT calculations. HP., M.G., Y.L., Y.Y., M.S., W.S. and B.Z. analysed the data. All the authors contributed to the overall scientific discussions and edited the manuscript. W.S., H.P. and B.Z. conceived the idea and co-wrote the paper.

Corresponding authors

Correspondence to Hongge Pan or Wenping Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Ligang Feng, Marion Giraud and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–44, Tables 1–11, notes and References 1–60.

Supplementary Data 1

Atomic coordinates of the initial and final configurations of the trajectories in AIMD simulations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, J., Liu, G. et al. A strongly coupled Ru–CrOx cluster–cluster heterostructure for efficient alkaline hydrogen electrocatalysis. Nat Catal 7, 441–451 (2024). https://doi.org/10.1038/s41929-024-01126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01126-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing