Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanometre-resolved observation of electrochemical microenvironment formation at the nanoparticle–ligand interface

Abstract

The dynamic response of surface ligands on nanoparticles (NPs) to external stimuli critically determines the functionality of NP–ligand systems. For example, in electrocatalysis the collective dissociation of ligands on NP surfaces can lead to the creation of an NP/ordered-ligand interlayer, a microenvironment that is highly active and selective for CO2-to-CO conversion. However, the lack of in situ characterization techniques with high spatial resolution hampers a comprehensive molecular-level understanding of the mechanism of interlayer formation. Here we utilize in situ infrared nanospectroscopy and surface-enhanced Raman spectroscopy, unveiling an electrochemical bias-induced consecutive bond cleavage mechanism of surface ligands leading to formation of the NP/ordered-ligand interlayer. This real-time molecular insight could influence the design of confined localized fields in multiple catalytic systems. Moreover, the demonstrated capability of capturing nanometre-resolved, dynamic molecular-scale events holds promise for the advancement of using controlled local molecular behaviour to achieve desired functionalities across multiple research domains in nanoscience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Real-time molecular picture of microenvironment formation probed by in situ nano-FTIR and SERS.
Fig. 2: In situ nano-FTIR setup and determination of initial binding configuration of ligands on Ag NPs.
Fig. 3: Spatially resolved bidentate-to-monodentate transformation and structural dynamics.
Fig. 4: Bias-induced second-bond cleavage towards formation of the catalytic interlayer.

Similar content being viewed by others

Data availability

All data are available from the authors on reasonable request.

References

  1. Chen, G., Roy, I., Yang, C. & Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 116, 2826–2885 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Owen, J. The coordination chemistry of nanocrystal surfaces. Science 347, 615–616 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  CAS  Google Scholar 

  5. Guntern, Y. T. et al. Colloidal nanocrystals as electrocatalysts with tunable activity and selectivity. ACS Catal. 11, 1248–1295 (2021).

    Article  CAS  Google Scholar 

  6. Xie, C., Niu, Z., Kim, D., Li, M. & Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Puntes, V. F., Krishnan, K. M. & Alivisatos, A. P. Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2117 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Le Goas, M. et al. (In)stability of ligands at the surface of inorganic nanoparticles: a forgotten question in nanomedicine?. Nano Today 45, 101516 (2022).

    Article  Google Scholar 

  10. Heuer-Jungemann, A. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 119, 4819–4880 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Rossi, L. M., Fiorio, J. L., Garcia, M. A. S. & Ferraz, C. P. The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans. 47, 5889–5915 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Dabbagh, A. et al. Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. Int. J. Hyperthermia 36, 104–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Le Goas, M. et al. Irradiation effects on polymer-grafted gold nanoparticles for cancer therapy. ACS Appl. Bio Mater. 2, 144–154 (2019).

    Article  PubMed  Google Scholar 

  14. Yan, B. et al. Characterization of surface ligands on functionalized magnetic nanoparticles using laser desorption/ionization mass spectrometry (LDI-MS). Nanoscale 5, 5063–5066 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Yu, D., Wehrenberg, B. L., Jha, P., Ma, J. & Guyot-Sionnest, P. Electronic transport of n-type CdSe quantum dot films: effect of film treatment. J. Appl. Phys. 99, 104315 (2006).

  16. Lu, L., Zou, S. & Fang, B. The critical impacts of ligands on heterogeneous nanocatalysis: a review. ACS Catal. 11, 6020–6058 (2021).

    Article  CAS  Google Scholar 

  17. Kim, D. et al. Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nat. Energy 5, 1032–1042 (2020).

    Article  CAS  Google Scholar 

  18. Yu, S. et al. Nanoparticle assembly induced ligand interactions for enhanced electrocatalytic CO2 conversion. J. Am. Chem. Soc. 143, 19919–19927 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Yu, S., Louisia, S. & Yang, P. The interactive dynamics of nanocatalyst structure and microenvironment during electrochemical CO2 conversion. JACS Au 2, 562–572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Bechtel, H. A., Johnson, S. C., Khatib, O., Muller, E. A. & Raschke, M. B. Synchrotron infrared nano-spectroscopy and -imaging. Surf. Sci. Rep. 75, 100493 (2020).

    Article  CAS  Google Scholar 

  22. Wu, C.-Y. et al. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Bechtel, H. A., Muller, E. A., Olmon, R. L., Martin, M. C. & Raschke, M. B. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl Acad. Sci. USA 111, 7191–7196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muller, E. A., Pollard, B., Bechtel, H. A., Van Blerkom, P. & Raschke, M. B. Infrared vibrational nano-crystallography and nano-imaging. Sci. Adv. 2, e1601006 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Amenabar, I. et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, 2890 (2013).

    Article  PubMed  Google Scholar 

  26. Zhao, X. et al. In vitro investigation of protein assembly by combined microscopy and infrared spectroscopy at the nanometer scale. Proc. Natl Acad. Sci. USA 119, e2200019119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, Y.-H. et al. Ultrathin free-standing oxide membranes for electron and photon spectroscopy studies of solid–gas and solid–liquid interfaces. Nano Lett. 20, 6364–6371 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Lu, Y.-H. et al. Infrared nanospectroscopy at the graphene–electrolyte interface. Nano Lett. 19, 5388–5393 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface. Nat. Commun. 13, 1398 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zenobi, M. C., Luengo, C. V., Avena, M. J. & Rueda, E. H. An ATR-FTIR study of different phosphonic acids in aqueous solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 70, 270–276 (2008).

    Article  PubMed  Google Scholar 

  31. Luschtinetz, R., Seifert, G., Jaehne, E. & Adler, H.-J. P. Infrared spectra of alkylphosphonic acid bound to aluminium surfaces. Macromol. Symp. 254, 248–253 (2007).

    Article  CAS  Google Scholar 

  32. Geldof, D. et al. Binding modes of phosphonic acid derivatives adsorbed on TiO2 surfaces: assignments of experimental IR and NMR spectra based on DFT/PBC calculations. Surf. Sci. 655, 31–38 (2017).

    Article  CAS  Google Scholar 

  33. Lee, J. T., Hati, S., Fahey, M. M., Zaleski, J. M. & Sardar, R. Surface-ligand-controlled enhancement of carrier density in plasmonic tungsten oxide nanocrystals: spectroscopic observation of trap-state passivation via multidentate metal phosphonate bonding. Chem. Mater. 34, 3053–3066 (2022).

    Article  CAS  Google Scholar 

  34. Klähn, M. et al. IR spectra of phosphate ions in aqueous solution: predictions of a DFT/MM approach compared with observations. J. Phys. Chem. A 108, 6186–6194 (2004).

    Article  Google Scholar 

  35. Skibinski, E. S., DeBenedetti, W. J. I. & Hines, M. A. Solution deposition of phenylphosphinic acid leads to highly ordered, covalently bound monolayers on TiO2 (110) without annealing. J. Phys. Chem. C. 121, 14213–14221 (2017).

    Article  CAS  Google Scholar 

  36. Egerton, R. F. Radiation damage to organic and inorganic specimens in the TEM. Micron 119, 72–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Leijten, Z. J. W. A., Keizer, A. D. A., de With, G. & Friedrich, H. Quantitative analysis of electron beam damage in organic thin films. J. Phys. Chem. C 121, 10552–10561 (2017).

    Article  CAS  Google Scholar 

  38. Lackey, H. E., Nelson, G. L., Lines, A. M. & Bryan, S. A. Reimagining pH measurement: utilizing Raman spectroscopy for enhanced accuracy in phosphoric acid systems. Anal. Chem. 92, 5882–5889 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Belding, L. et al. Conformation, and charge tunneling through molecules in SAMs. J. Am. Chem. Soc. 143, 3481–3493 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Bodo, E. et al. Interaction of a long alkyl chain protic ionic liquid and water. Chem. Phys. 140, 204503 (2014).

    Google Scholar 

  41. Lütgens, M., Chatzipapadopoulos, S. & Lochbrunner, S. Ultrafast CARS with improved spectral resolution. EPJ Web Conf. 41, 05007 (2013).

    Article  Google Scholar 

  42. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  43. Shin, S.-J. et al. A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction. Nat. Commun. 13, 5482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wijesuriya, S., Burugapalli, K., Mackay, R., Ajaezi, G. C. & Balachandran, W. Chemically roughened solid silver: a simple, robust and broadband SERS substrate. Sensors 16, 1742 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 47, 558–561 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  51. Wang, Y., Wang, W., Fan, K.-N. & Deng, J. Structural and electronic properties of silver surfaces: ab initio pseudopotential density functional study. Surf. Sci. 490, 125–132 (2001).

    Article  CAS  Google Scholar 

  52. Shan, W., Liu, R., Zhao, H. & Liu, J. Bicarbonate rebalances the *COOH/*OCO dual pathways in CO2 electrocatalytic reduction: in situ surface-enhanced Raman spectroscopic evidence. J. Phys. Chem. Lett. 13, 7296–7305 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Goldie, S. J., Bush, S., Cumming, J. A. & Coleman, K. S. A statistical approach to Raman analysis of graphene-related materials: implications for quality control. ACS Appl. Nano Mater. 3, 11229–11239 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, & Biosciences Division, of the US Department of Energy (DOE) under contract no. DE-AC02-05CH11231 and FWP CH030201 (Catalysis Research Program). This research used resources of the Advanced Light Source, a DOE Office of Science User Facility under the same contract number. Nano-FTIR was performed at beamlines 2.4 and 5.4 in ALS. XPS, SEM and STEM/energy-dispersive X-Ray were performed at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences of DOE under contract number DE-AC02-05CH11231. Y.S. acknowledges fellowship from University of Chinese Academy of Sciences. X.Z. is supported by an NSF-BSF grant (no. 1906014). J.Q. is supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory through contract no. DE-AC02-05CH11231, and by the Gas Phase Chemical Physics Program of the US DOE, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, through contract no. DE-AC02-05CH11231. A.J. is supported by an Early Career Award in the Condensed Phase and Interfacial Molecular Science Program, in the Chemical Sciences Geosciences and Biosciences Division of the Office of Basic Energy Sciences of the United States DoE under contract no. DE-AC02-05CH11231, and also by the Gas Phase Chemical Physics Program of the US DOE, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, through contract no. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US DOE, under contract no. DE-AC02-05CH11231, using NERSC award no. BES-ERCAP0020767. H.C. is supported by the Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, of the US DOE under contract nos. DE-AC02-05CH11231 and FWP CH030201 (Catalysis Research Program). We also thank J. Jin for the informative discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.S., X.Z. and M.F.G. designed this project under the guidance of M.B.S. and P.Y. Y.S. synthesized materials and conducted electrochemical and electron microscopy characterization, with the help of S.C., S.Y., I.R., H.C. and V.A. Y.S. and X.Z. performed the nano-FTIR experiment and analysed data, assisted by S.N.G.C. and H.A.B. M.F.G. conducted Raman measurements. A.J. and J.Q. performed DFT calculations. SFG measurements were conducted by K.C.N. and X.Z. All authors contributed to discussion of the experimental results and manuscript preparation.

Corresponding authors

Correspondence to Miquel B. Salmeron or Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks John Flake, Sangheon Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, methods, Figs. 1–21, Tables 1–7 and references.

Supplementary Data 1

Atomic coordinates of optimized bidentate structure.

Supplementary Data 2

Atomic coordinates of optimized monodentate structure.

Supplementary Data 3

Atomic coordinates of optimized free ligand structure.

Supplementary Video 1

The video shows the motion of vibrational mode with a wavenumber of 899 cm−1.

Supplementary Video 2

The video shows the motion of vibrational mode with a wavenumber of 969 cm−1.

Supplementary Video 3

The video shows the motion of vibrational mode with a wavenumber of 998 cm−1.

Supplementary Video 4

The video shows the motion of vibrational mode with a wavenumber of 1,006 cm−1.

Supplementary Video 5

The video shows the motion of vibrational mode with a wavenumber of 1,018 cm−1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, Y., Zhao, X., Fonseca Guzman, M. et al. Nanometre-resolved observation of electrochemical microenvironment formation at the nanoparticle–ligand interface. Nat Catal 7, 422–431 (2024). https://doi.org/10.1038/s41929-024-01119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01119-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing