Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A family of di-glutamate mucin-degrading enzymes that bridges glycan hydrolases and peptidases

Abstract

Microbes utilize polysaccharides to protect their surfaces and build biofilms, whereas metazoans employ large mucins densely decorated with O-glycans to protect surfaces and keep microbes at a distance. However, gut microbes in mucus also feed on host mucins, thus imposing a need for continuous renewal to maintain protection, clearance and mucus homeostasis. Glycopeptidases that can cleave mucins are known, but mucinases that specifically cleave mucins are not. Here we report the discovery of such microbial mucinases that cleave mucins with trimmed glycans, recognize dense clusters of O-glycans, and employ a structural fold and catalytic machinery reminiscent of glycan hydrolases and peptidases. These di-glutamate mucinases are also found in eukaryotes, and we propose that they are designed to clear mucins following scavenging of O-glycans to promote healthy gut–microbiome homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery of a mucinase family sharing a β-sandwich catalytic domain (X414/DUF3472).
Fig. 2: The HC7 mucinase cleaves mucins with dense clusters of truncated O-glycans.
Fig. 3: Crystal structure of the HC7ΔCBM mucinase complexed to GalNAc glycopeptides.
Fig. 4: Structural features of the active site and catalytic mechanism of HC7.
Fig. 5: Topology analysis of similar catalytic domains and eukaryotic mucinases discovery.

Similar content being viewed by others

Data availability

The crystal structure of HC7ΔCBM-apo, as well as those of the HC7ΔCBM-E200A–triglycopeptide and HC7ΔCBM-E200A–tetraglycopeptide complexes, have been deposited at the RCSB PDB with accession codes 8PMU, 8PN5 and 8PN3, respectively. Previously published PDB structures used in this study are available under accession codes 4QHX, 1ZM1, 7ZVB, 2IFR, 1U0A, 1Y43 and 3ZSJ. Data files of the classical MD simulation and QM/MM metadynamics simulations have been deposited in Zenodo (https://doi.org/10.5281/zenodo.10103923). The full uncollapsed tree is available as Supplementary Data on Zenodo (https://doi.org/10.5281/zenodo.10103923) as well as the raw treefile used to generate this figure. Other data are available from the corresponding author upon request. The kinetics and computational data generated in this study are provided as source data. Any other data may be provided by the corresponding authors on request. Source data are provided with this paper.

References

  1. Hansson, G. C. Mucins and the microbiome. Annu. Rev. Biochem. 89, 769–793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hansson, G. C. Mucus and mucins in diseases of the intestinal and respiratory tracts. J. Intern. Med. 285, 479–490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belzer, C. Nutritional strategies for mucosal health: the interplay between microbes and mucin glycans. Trends Microbiol. 30, 13–21 (2021).

    Article  PubMed  Google Scholar 

  4. Birchenough, G., Schroeder, B. O., Backhed, F. & Hansson, G. C. Dietary destabilisation of the balance between the microbiota and the colonic mucus barrier. Gut Microbes 10, 246–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Johansson, M. E., Sjovall, H. & Hansson, G. C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 352–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bell, A. & Juge, N. Mucosal glycan degradation of the host by the gut microbiota. Glycobiology 31, 691–696 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Liang, Q. et al. Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche. Proc. Natl Acad. Sci. USA 120, e2301115120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, C. M. et al. Mucin glycans drive oral microbial community composition and function. NPJ Biofilms Microbiomes 9, 11 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wheeler, K. M. et al. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat. Microbiol. 4, 2146–2154 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Werlang, C. A. et al. Mucin O-glycans suppress quorum-sensing pathways and genetic transformation in Streptococcus mutans. Nat. Microbiol. 6, 574–583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, B. X. et al. Host-derived O-glycans inhibit toxigenic conversion by a virulence-encoding phage in Vibrio cholerae. EMBO J. 42, e111562 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Kesimer, M. & Sheehan, J. K. Mass spectrometric analysis of mucin core proteins. Methods Mol. Biol. 842, 67–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shon, D. J., Kuo, A., Ferracane, M. J. & Malaker, S. A. Classification, structural biology and applications of mucin domain-targeting proteases. Biochem. J. 478, 1585–1603 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Shon, D. J. et al. An enzymatic toolkit for selective proteolysis, detection and visualization of mucin-domain glycoproteins. Proc. Natl Acad. Sci. USA 117, 21299–21307 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taleb, V. et al. Structural and mechanistic insights into the cleavage of clustered O-glycan patches-containing glycoproteins by mucinases of the human gut. Nat. Commun. 13, 4324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nason, R. et al. Display of the human mucinome with defined O-glycans by gene engineered cells. Nat. Commun. 12, 4070 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bustos, N. A., Ribbeck, K. & Wagner, C. E. The role of mucosal barriers in disease progression and transmission. Adv. Drug Deliv. Rev. 200, 115008 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Ince, D., Lucas, T. M. & Malaker, S. A. Current strategies for characterization of mucin-domain glycoproteins. Curr. Opin. Chem. Biol. 69, 102174 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Konstantinidi, A. et al. Exploring the glycosylation of mucins by use of O-glycodomain reporters recombinantly expressed in glycoengineered HEK293 cells. J. Biol. Chem. 298, 101784 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pluvinage, B. et al. Architecturally complex O-glycopeptidases are customized for mucin recognition and hydrolysis. Proc. Natl Acad. Sci. USA 118, e2019220118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Birch, P. R. Targeted differential display of abundantly expressed sequences from the basidiomycete Phanerochaete chrysosporium which contain regions coding for fungal cellulose-binding domains. Curr. Genet. 33, 70–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Hemsworth, G. R., Henrissat, B., Davies, G. J. & Walton, P. H. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol. 10, 122–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–D577 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Rawlings, N. D. et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheikh, A. et al. Enterotoxigenic Escherichia coli degrades the host MUC2 mucin barrier to facilitate critical pathogen-enterocyte interactions in human small intestine. Infect. Immun. 90, e0057221 (2022).

    Article  PubMed  Google Scholar 

  27. Patel, S. A critical review on serine protease: key immune manipulator and pathology mediator. Allergol. Immunopathol. (Madr.) 45, 579–591 (2017).

    Article  CAS  Google Scholar 

  28. Kollman, P. Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 93, 2395–2417 (1993).

    Article  CAS  Google Scholar 

  29. Sanz-Martinez, I., Pereira, S., Merino, P., Corzana, F. & Hurtado-Guerrero, R. Molecular recognition of GalNAc in mucin-type O-glycosylation. Acc. Chem. Res. 56, 548–560 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Corzana, F. et al. Serine versus threonine glycosylation: the methyl group causes a drastic alteration on the carbohydrate orientation and on the surrounding water shell. J. Am. Chem. Soc. 129, 9458–9467 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Corzana, F. et al. New insights into α-GalNAc-Ser motif: influence of hydrogen bonding versus solvent interactions on the preferred conformation. J. Am. Chem. Soc. 128, 14640–14648 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Invernizzi, M. & Parrinello, M. Exploration vs convergence speed in adaptive-bias enhanced sampling. J. Chem. Theory Comput. 18, 3988–3996 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sondergaard, C. R., Olsson, M. H., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Holm, L. Dali server: structural unification of protein families. Nucleic Acids Res. 50, W210–W215 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gaiser, O. J. et al. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-β-glucanase. J. Mol. Biol. 357, 1211–1225 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Tsai, L. C., Shyur, L. F., Cheng, Y. S. & Lee, S. H. Crystal structure of truncated Fibrobacter succinogenes 1,3-1,4-β-d-glucanase in complex with β-1,3-1,4-cellotriose. J. Mol. Biol. 354, 642–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Pillai, B. et al. Crystal structure of scytalidoglutamic peptidase with its first potent inhibitor provides insights into substrate specificity and catalysis. J. Mol. Biol. 365, 343–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Del Amo-Maestro, L. et al. Molecular and in vivo studies of a glutamate-class prolyl-endopeptidase for coeliac disease therapy. Nat. Commun. 13, 4446 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yabuki, Y., Kubota, K., Kojima, M., Inoue, H. & Takahashi, K. Identification of a glutamine residue essential for catalytic activity of aspergilloglutamic peptidase by site-directed mutagenesis. FEBS Lett. 569, 161–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Sasaki, H. et al. The crystal structure of an intermediate dimer of aspergilloglutamic peptidase that mimics the enzyme-activation product complex produced upon autoproteolysis. J. Biochem. 152, 45–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Chandra, N. R., Prabu, M. M., Suguna, K. & Vijayan, M. Structural similarity and functional diversity in proteins containing the legume lectin fold. Protein Eng. 14, 857–866 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Undheim, E. A. B. & Jenner, R. A. Phylogenetic analyses suggest centipede venom arsenals were repeatedly stocked by horizontal gene transfer. Nat. Commun. 12, 818 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haitjema, C. H. et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat. Microbiol. 2, 17087 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Y. et al. Molecular dating of the emergence of anaerobic rumen fungi and the impact of laterally acquired genes. mSystems 4, e00247-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pedram, K. et al. Lysosomal cathepsin D mediates endogenous mucin glycodomain catabolism in mammals. Proc. Natl Acad. Sci. USA 119, e2117105119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Varki, A. Selectin ligands. Proc. Natl Acad. Sci. USA 91, 7390–7397 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cohen, M. & Varki, A. Modulation of glycan recognition by clustered saccharide patches. Int. Rev. Cell Mol. Biol. 308, 75–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Lathem, W. W. et al. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol. Microbiol. 45, 277–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Rillahan, C. D. & Paulson, J. C. Glycan microarrays for decoding the glycome. Annu. Rev. Biochem. 80, 797–823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murin, C. D. et al. Structure of 2G12 Fab2 in complex with soluble and fully glycosylated HIV-1 Env by negative-stain single-particle electron microscopy. J. Virol. 88, 10177–10188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Daniels, C. N. & Saunders, K. O. Antibody responses to the HIV-1 envelope high mannose patch. Adv. Immunol. 143, 11–73 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, C. D. et al. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog. 17, e1009407 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, Y. H. et al. The GAGOme: a cell-based library of displayed glycosaminoglycans. Nat. Methods 15, 881–888 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Narimatsu, Y. et al. Genetic glycoengineering in mammalian cells. J. Biol. Chem. 296, 100448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grys, T. E., Siegel, M. B., Lathem, W. W. & Welch, R. A. The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. Infect. Immun. 73, 1295–1303 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luis, A. S. & Hansson, G. C. Intestinal mucus and their glycans: a habitat for thriving microbiota. Cell Host Microbe 31, 1087–1100 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Kumar, P. et al. EatA, an immunogenic protective antigen of enterotoxigenic Escherichia coli, degrades intestinal mucin. Infect. Immun. 82, 500–508 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pedram, K. et al. Design of a mucin-selective protease for targeted degradation of cancer-associated mucins. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01840-6 (2023).

  60. Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Pham, D. et al. Epidemiology, modern diagnostics and the management of mucorales infections. J. Fungi (Basel) 9, 659 (2023).

    Article  CAS  Google Scholar 

  62. Hoenigl, M. et al. The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries. Lancet Microbe 3, e543–e552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smith, C. & Lee, S. C. Current treatments against mucormycosis and future directions. PLoS Pathog. 18, e1010858 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jones, P. G., Hammell, K. L., Gettinby, G. & Revie, C. W. Detection of emamectin benzoate tolerance emergence in different life stages of sea lice, Lepeophtheirus salmonis, on farmed Atlantic salmon, Salmo salar L. J. Fish Dis. 36, 209–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Khalturin, K. et al. Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Dev. Biol. 309, 32–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Siebert, S. et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 365, eaav9314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Scappaticci, A. A. Jr, Kahn, F. & Kass-Simon, G. Nematocyst discharge in Hydra vulgaris: differential responses of desmonemes and stenoteles to mechanical and chemical stimulation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 157, 184–191 (2010).

    Article  PubMed  Google Scholar 

  68. Bull, C., Joshi, H. J., Clausen, H. & Narimatsu, Y. Cell-based glycan arrays—a practical guide to dissect the human glycome. STAR Protoc. 1, 100017 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Narimatsu, Y. et al. An atlas of human glycosylation pathways enables display of the human glycome by gene engineered cells. Mol. Cell 75, 394–407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Plattner, C., Hofener, M. & Sewald, N. One-pot azidochlorination of glycals. Org. Lett. 13, 545–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  76. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  78. Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kirschner, K. N. et al. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 29, 622–655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Salomon-Ferrer, R., Gotz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).

    Article  CAS  Google Scholar 

  82. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  83. Warshel, A. & Levitt, M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103, 227–249 (1976).

    Article  CAS  PubMed  Google Scholar 

  84. Kuhne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article  PubMed  Google Scholar 

  85. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).

    Article  CAS  Google Scholar 

  86. VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  87. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B Condens. Matter 54, 1703–1710 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Marcos-Alcalde, I., Lopez-Vinas, E. & Gomez-Puertas, P. MEPSAnd: minimum energy path surface analysis over n-dimensional surfaces. Bioinformatics 36, 956–958 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Novo Nordisk Foundation (NNF22OC0076899 to H.J.J., NNF20SA0067193 to B.H. and NNF210071658 to H.C.), the Danish National Research Foundation (DNRF107), the Lundbeck Foundation, the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 787684 (to C.B.), the Spanish Ministry of Science, Innovation and Universities (BFU2016-75633-P, PID2019-105451GB-100, PID2022-136362NB-100, PID2021-127622OB-100, PID2020-118893GB-100 and CEX2021-001202-M), Gobierno de Aragón (E34_R17 and LMP58_18) with FEDER (2014–2020) funds for ‘Building Europe from Aragón’ for financial support (to R.H.-G.), and the Agency for Management of University and Research Grants of Catalonia (AGAUR, 2021-SGR-00680 to C.R.). We thank ALBA (Barcelona, Spain) synchrotron beamline XALOC, and Red Española de Supercomputación (RES-BSC) for computer time in CTE-Power and MareNostrum IV. Q.L. thanks the EU for a Marie-Skłodowska Curie fellowship (MCSA-IF-2020, agreement no. 101025071). R.H.-G. thanks M. del Carmen Hurtado-Lago for help with the design of Fig. 5c.

Author information

Authors and Affiliations

Authors

Contributions

Y.N., C.B., B.H., H.C., H.J.J. and R.H.-G. conceived and directed the study. Y.N. and C.B. performed most of the experimental analysis. B.H., H.J.J. and L.H. performed the bioinformatics. F.D. and R.V. contributed to recombinant expression and purification. V.T. and D.S.-N. expressed and purified the HC7ΔCBM and Mucor mucinases. V.T. crystallized the HC7ΔCBM and HC7ΔCBM-E200A, and R.H.-G. solved and built the crystal structures. F.C. performed the MD simulations. Q.L. and C.R. performed MD and QM/MM enhanced sampling simulations. I.C. synthetized the glycopeptides. Y.N., H.C. and R.H.-G. wrote the paper, and all authors edited and approved the final version.

Corresponding authors

Correspondence to Yoshiki Narimatsu or Ramon Hurtado-Guerrero.

Ethics declarations

Competing interests

The University of Copenhagen has filed a patent application on the cell-based display platform (US20190330601A1). GlycoDisplay Aps, Copenhagen, Denmark, has obtained a licence to the field of the patent application. Y.N. and H.C. are co-founders of GlycoDisplay Aps and hold ownership in the company. The other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Elisa Fadda and Shinya Fushinobu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Tables 1 and 2 and Methods.

Reporting Summary

Supplementary Data

Supplementary source data.

Source data

Source Data Figs. 1c, 2b,c,e,f, 3a and 4e

Data used to generate the graph.

Source Data Figs. 2d and 4d

Unprocessed gel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narimatsu, Y., Büll, C., Taleb, V. et al. A family of di-glutamate mucin-degrading enzymes that bridges glycan hydrolases and peptidases. Nat Catal 7, 386–400 (2024). https://doi.org/10.1038/s41929-024-01116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01116-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing