Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Congested C(sp3)-rich architectures enabled by iron-catalysed conjunctive alkylation

Abstract

Catalytic cross-coupling by transition metals has revolutionized the formation of carbon–carbon bonds in organic synthesis. However, the challenge of forming multiple alkyl–alkyl bonds in crowded environments remains largely unresolved. Here we report the regioselective functionalization of olefins with sp3-hybridized organohalides and organozinc reagents using a simple (terpyridine)iron catalyst. Aliphatic groups of various sizes are successfully installed on either olefinic carbon, furnishing a diverse array of products with congested cores featuring carbon- or heteroatom-substituted stereocentres. The method enables access to valuable but synthetically challenging C(sp3)-rich molecules, including alicyclic compounds bearing multiple contiguous stereocentres, through annulation cascades. Mechanistic and theoretical studies suggest a stepwise iron-mediated radical carbometallation pathway followed by outer-sphere carbon–carbon bond formation, which potentially opens the door to a broader scope of transformations and new chemical space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of an iron-catalysed strategy for conjunctive alkylation.
Fig. 2: Evaluation of reaction conditions (selected).
Fig. 3: Preliminary mechanistic investigations.
Fig. 4: Scope of olefins.
Fig. 5: Scope of dialkylation and synthetic utility.

Similar content being viewed by others

Data availability

DFT-optimized structures, relevant intrinsic reaction coordinate (IRC) and transition state movies and Mulliken spin population analysis files have been uploaded to zenodo.org (https://zenodo.org/records/8174459). All other data are available in the main text or the Supplementary Information, or from the authors upon reasonable request.

References

  1. Geist, E., Kirschning, A. & Schmidt, T. sp3sp3 coupling reactions in the synthesis of natural products and biologically active molecules. Nat. Prod. Rep. 31, 441–448 (2014).

    CAS  PubMed  Google Scholar 

  2. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  PubMed  Google Scholar 

  3. de Meijere, A. & Diederich, F. Metal-Catalysed Cross-Coupling Reactions (Wiley-VCH, 2004).

  4. Kranthikumar, R. Recent advances in C(sp3)–C(sp3) cross-coupling chemistry: a dominant performance of nickel catalysts. Organometallics 41, 667–679 (2022).

    CAS  Google Scholar 

  5. Choi, J. & Fu, G. C. Transition metal-catalysed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    CAS  PubMed  Google Scholar 

  7. Johnston, C. P., Smith, R. T., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp3sp3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322–325 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin, T. et al. A general alkyl–alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, W. et al. Electrochemically driven cross-electrophile coupling of alkyl halides. Nature 604, 292–297 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, W., Lavagnino, M. N., Gould, C. A., Alcazar, J. & MacMillan, D. W. C. A biomimetic SH2 cross-coupling mechanism for quaternary sp3-carbon formation. Science 374, 1258–1263 (2021).

    CAS  PubMed Central  Google Scholar 

  11. Wickham, L. & Giri, R. Transition metal (Ni, Cu, Pd)-catalysed alkene dicarbofunctionalization reactions. Acc. Chem. Res. 54, 3415–3437 (2021).

    CAS  PubMed Central  Google Scholar 

  12. Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).

    CAS  PubMed Central  Google Scholar 

  13. Dhungana, R. K. et al. Ni-catalysed regioselective 1,2-dialkylation of alkenes enabled by the formation of two C(sp3)–C(sp3) bonds. J. Am. Chem. Soc. 142, 20930–20936 (2020).

    CAS  PubMed Central  Google Scholar 

  14. Yang, T. et al. Chemoselective union of olefins, organohalides and redox-active esters enables regioselective alkene dialkylation. J. Am. Chem. Soc. 142, 21410–21419 (2020).

    CAS  Google Scholar 

  15. Wang, X.-X., Lu, X., He, S.-J. & Fu, Y. Nickel-catalysed three-component olefin reductive dicarbofunctionalization to access alkylborates. Chem. Sci. 11, 7950–7956 (2020).

    CAS  PubMed Central  Google Scholar 

  16. Terao, J., Saito, K., Nii, S., Kambe, N. & Sonoda, N. Regioselective double alkylation of styrenes with alkyl halides using a titanocene catalyst. J. Am. Chem. Soc. 120, 11822–11823 (1998).

  17. Mizutani, K., Shinokubo, H. & Oshima, K. Cobalt-catalysed three-component coupling reaction of alkyl halides, 1,3-dienes, and trimethylsilylmethylmagnesium chloride. Org. Lett. 5, 3959–3961 (2003).

    CAS  Google Scholar 

  18. Derosa, J., van der Puyl, V. A., Tran, V. T., Liu, M. & Engle, K. M. Directed nickel-catalysed 1,2-dialkylation of alkenyl carbonyl compounds. Chem. Sci. 9, 5278–5283 (2018).

    CAS  PubMed Central  Google Scholar 

  19. Rana, S., Biswas, J. P., Paul, S., Paik, A. & Maiti, D. Organic synthesis with the most abundant transition metal—iron: from rust to multitasking catalysts. Chem. Soc. Rev. 50, 243–472 (2021).

    CAS  Google Scholar 

  20. Piontek, A., Bisz, E. & Szostak, M. Iron-catalysed cross-couplings in the synthesis of pharmaceuticals: in pursuit of sustainability. Angew. Chem. Int. Ed. 57, 11116–11128 (2018).

    CAS  Google Scholar 

  21. Bellows, S. M., Cundari, T. R. & Holland, P. L. Spin crossover during β-hydride elimination in high-spin iron(II)- and cobalt(II)-alkyl complexes. Organometallics 32, 4741–4751 (2013).

    CAS  Google Scholar 

  22. Liu, L. et al. General method for iron-catalysed multicomponent radical cascades–cross-couplings. Science 374, 432–439 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, L. et al. Fe-catalysed three-component dicarbofunctionalization of unactivated alkenes with Grignard reagents. Chem. Sci. 11, 8301–8305 (2021).

    Google Scholar 

  24. Rotella, M. E., Sar, D., Liu, L. & Gutierrez, O. Fe-catalysed dicarbofunctionalization of electron-rich alkenes with Grignard reagents and (fluoro)alkyl halides. Chem. Commun. 57, 12508–12511 (2021).

    CAS  Google Scholar 

  25. Sklute, G., Cavender, H. & Marek, I. Carbozincation reactions of carbon–carbon multiple bonds. Org. React. 87, 507–763 (2015).

    CAS  Google Scholar 

  26. Huang, Q. et al. Iron-catalysed vinylzincation of terminal alkynes. J. Am. Chem. Soc. 144, 515–526 (2022).

    CAS  PubMed  Google Scholar 

  27. Zhang, C. et al. Enantiomerically enriched α-borylzinc reagents by nickel-catalyzed carbozincation of vinylboronic esters. J. Am. Chem. Soc. 143, 14189–14195 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ilies, L., Matsubara, T., Ichikawa, S., Asako, S. & Nakamura, E. Iron-catalysed directed alkylation of aromatic and olefinic carboxamides with primary and secondary alkyl tosylates, mesylates, and halides. J. Am. Chem. Soc. 136, 13126–13129 (2014).

    CAS  PubMed  Google Scholar 

  29. Newcomb, M. in Encyclopedia of Radicals in Chemistry, Biology and Materials (eds Chatgilialoglu, C. & Studer, A.) 107–124 (Wiley, 2012).

  30. Yi, X., Mao, R., Lavrencic, L. & Hu, X. Photocatalytic decarboxylative coupling of aliphatic N-hydroxyphthalimide esters with polyfluoroaryl nucleophiles. Angew. Chem. Int. Ed. 60, 23557–23563 (2021).

    CAS  Google Scholar 

  31. Eisenberg, D. C. & Norton, J. R. Hydrogen-atom transfer reactions of transition-metal hydrides. Isr. J. Chem. 31, 55–66 (1991).

    CAS  Google Scholar 

  32. Waser, J. & Carreira, E. M. Convenient synthesis of alkylhydrazides by the cobalt-catalysed hydrohydrazination reaction of olefins and azodicarboxylates. J. Am. Chem. Soc. 126, 5676–5677 (2004).

    CAS  Google Scholar 

  33. Barker, T. J. & Boger, D. L. Fe(III)/NaBH4-mediated free radical hydrofluorination of unactivated alkenes. J. Am. Chem. Soc. 134, 13588–13591 (2012).

    CAS  PubMed Central  Google Scholar 

  34. Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. Mn-, Fe-, and Co-catalysed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    CAS  PubMed Central  Google Scholar 

  35. Lo, J. C. et al. Fe-catalysed C–C bond construction from olefins via radicals. J. Am. Chem. Soc. 139, 2484–2503 (2017).

    CAS  PubMed Central  Google Scholar 

  36. Reiff, W. M., Erickson, N. E. & Baker, W. A. Jr. Mono(2,2′,2′-terpyridine) complexes of iron(II). Inorg. Chem. 8, 2019–2021 (1969).

    CAS  Google Scholar 

  37. England, J., Scarborough, C. C., Weyhermüller, T., Sproules, S. & Wieghardt, K. Electronic structures of the electron transfer series [M(bpy)3]n, [M(tpy)2]n, and [Fe(tbpy)3]n (M = Fe, Ru; n = 3+, 2+, 1+, 0, 1−): a Mössbauer spectroscopic and DFT study. Eur. J. Inorg. Chem. 2012, 4605–4621 (2012).

    CAS  Google Scholar 

  38. Tondreau, A. M. et al. Synthesis, electronic structure, and alkene hydrosilylation activity of terpyridine and bis(imino)pyridine iron dialkyl complexes. Organometallics 31, 4886–4893 (2012).

    CAS  Google Scholar 

  39. Halpern, J. Mechanistic aspects of homogeneous catalytic hydrogenation and related processes. Inorg. Chim. Acta 50, 11–19 (1981).

    CAS  Google Scholar 

  40. Kozuch, S. & Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44, 101–110 (2011).

    CAS  PubMed  Google Scholar 

  41. Poli, R. New phenomena in organometallic-mediated radical polymerization (OMRP) and perspectives for control of less active monomers. Chem. Eur. J. 21, 6988–7001 (2015).

    CAS  PubMed  Google Scholar 

  42. Franz, A. K. & Wilson, S. O. Organosilicon molecules with medicinal applications. J. Med. Chem. 56, 388–405 (2013).

    CAS  PubMed  Google Scholar 

  43. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA-approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    CAS  PubMed  Google Scholar 

  44. Baker, S. J. et al. Therapeutic potential of boron-containing compounds. Future Med. Chem. 1, 1275–1288 (2009).

    CAS  PubMed  Google Scholar 

  45. Shennan, B. D. A. et al. Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chem. Soc. Rev. 51, 5878–5929 (2022).

    CAS  PubMed  Google Scholar 

  46. Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 51, 4359–4369 (2008).

    CAS  PubMed  Google Scholar 

  47. Fujita, T., Fuchibe, K. & Ichikawa, J. Transition-metal-mediated and -catalysed C–F bond activation by fluorine elimination. Angew. Chem. Int. Ed. 58, 390–402 (2019).

    CAS  Google Scholar 

  48. Wang, M. & Casey, P. J. Protein prenylation: unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 17, 110–122 (2016).

    CAS  PubMed  Google Scholar 

  49. Iakovenko, R. O. et al. Reactions of CF3-enones with arenes under superelectrophilic activation: a pathway to trans-1,3-diaryl-1-CF3-indanes, new cannabinoid receptor ligands. Org. Biomol. Chem. 13, 8827–8842 (2015).

    CAS  PubMed  Google Scholar 

  50. Begue, J. P. & Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine (Wiley, 2008).

  51. Waibel, M. et al. Bibenzyl- and stilbene-core compounds with non-polar linker atom substituents as selective ligands for estrogen receptor beta. Eur. J. Med. Chem. 44, 3412–3424 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gasparyan, N. K., Gevorgyan, G. A., Paronikyan, R. G., Tumadzhyan, A. E. & Panosyan, G. A. Synthesis and biological activity of diaryl-substituted 3-morpholinopropanols. Pharm. Chem. J. 39, 361–363 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education of Singapore Academic Research Fund Tier 2 (A-8000034-00-00 (M.J.K.)), the Foundation of Wenzhou Science & Technology Bureau (ZY2020027 (T.-D.T. and P.-C.Q.)), the Institute of High Performance Computing and the Deputy Chief Executive Research Office (DCERO) A*STAR Career Development Fund (C210812008 (X.Z.)), the Manufacturing, Trade and Connectivity (MTC) Young Individual Research Grants (M22K3c0091 (X.Z.)) and the National Institutes of Health (GM129081 (P.L.H.)). X.Z. acknowledges the A*STAR Computational Resource Centre (A*CRC) of Singapore for the partial use of its high-performance computing facilities.

Author information

Authors and Affiliations

Authors

Contributions

M.J.K. and T.-D.T. conceived the project. T.-D.T., X.L. and P.-C.Q. developed the catalytic method. J.M.I.S. and P.L.H. designed and performed the Mössbauer studies. X.Z. designed and performed the DFT studies. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Patrick L. Holland, Xinglong Zhang or Ming Joo Koh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Kumar Vanka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–9, Figs. 1–43, Methods and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, TD., Serviano, J.M.I., Luo, X. et al. Congested C(sp3)-rich architectures enabled by iron-catalysed conjunctive alkylation. Nat Catal 7, 321–329 (2024). https://doi.org/10.1038/s41929-024-01113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01113-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing