Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visible light-mediated intermolecular crossed [2+2] cycloadditions using a MOF-supported copper triplet photosensitizer

Abstract

The photochemical [2+2] cycloaddition of styrenes provides a frequently used route for the synthesis of multi-substituted cyclobutanes. Despite the extensive studies in noble-metal and organo-photocatalysis, developing sustainable cycloaddition methods with copper photosensitizers is still in its infancy, largely owing to their low reactivity and photostability. Here we show that the introduction of a binap-ligated heteroleptic copper(I) complex to the linker of a microporous zirconium-based metal−organic framework produces a highly stable and reusable heterogeneous photocatalyst with an extended excited-state lifetime. Under visible light irradiation, this robust copper triplet photosensitizer efficiently promotes multiple intermolecular crossed [2+2] cycloadditions, including an underdeveloped cycloaddition reaction of simple styrenes with electron-deficient alkenes. Our findings suggest that metal–organic framework-based heterogenization strategies have the potential to advance copper photocatalysis and foster a variety of visible light-mediated energy-transfer processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visible light-induced intermolecular crossed [2+2] cycloadditions of styrenes.
Fig. 2: Catalyst preparation and characterization.
Fig. 3: Crossed [2+2] cycloaddition of styrenes with electron-deficient alkenes.
Fig. 4: Substrate scope of [2+2] cycloaddition between different styrenes.
Fig. 5: Crossed [2+2] cycloaddition of exocyclic arylidene azetidines, thietanes and oxetanes.
Fig. 6: Using a heterogenized approach to stabilize copper photosensitizers.
Fig. 7: Mechanistic investigation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in this manuscript and Source data or are available from the corresponding author upon reasonable request. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2240330 (Cu-1) and 2244329 (Cu-3). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Goetzke, F. W., Hell, A. M. L., van Dijk, L. & Fletcher, S. P. A catalytic asymmetric cross-coupling approach to the synthesis of cyclobutanes. Nat. Chem. 13, 880–886 (2021).

    CAS  Google Scholar 

  2. Dembitsky, V. M. Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 21, 1559–1581 (2014).

    CAS  Google Scholar 

  3. Namyslo, J. C. & Kaufmann, D. E. The application of cyclobutane derivatives in organic synthesis. Chem. Rev. 103, 1485–1538 (2003).

    CAS  Google Scholar 

  4. Wang, M. & Lu, P. Catalytic approaches to assemble cyclobutane motifs in natural product synthesis. Org. Chem. Front. 5, 254–259 (2018).

    CAS  Google Scholar 

  5. Poplata, S., Tröster, A., Zou, Y.-Q. & Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).

    CAS  PubMed Central  Google Scholar 

  6. Zhou, Q.-Q., Zou, Y.-Q., Lu, L.-Q. & Xiao, W.-J. Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angew. Chem. Int. Ed. 58, 1586–1604 (2019).

    CAS  Google Scholar 

  7. Sicignano, M., Rodríguez, R. I. & Alemán, J. Recent visible light and metal free strategies in [2+2] and [4+2] photocycloadditions. Eur. J. Org. Chem. 2021, 3303–3321 (2021).

    CAS  Google Scholar 

  8. Zhu, M., Zhang, X., Zheng, C. & You, S.-L. Energy-transfer-enabled dearomative cycloaddition reactions of indoles/pyrroles via excited-state aromatics. Acc. Chem. Res. 55, 2510–2525 (2022).

    CAS  Google Scholar 

  9. Ischay, M. A., Ament, M. S. & Yoon, T. P. Crossed intermolecular [2+2] cycloaddition of styrenes by visible light photocatalysis. Chem. Sci. 3, 2807–2811 (2012).

    CAS  Google Scholar 

  10. Riener, M. & Nicewicz, D. A. Synthesis of cyclobutane lignans via an organic single electron oxidant-electron relay system. Chem. Sci. 4, 2625–2629 (2013).

    CAS  Google Scholar 

  11. Das, S. et al. Asymmetric counteranion-directed photoredox catalysis. Science 379, 494–499 (2023).

    CAS  Google Scholar 

  12. Tanaka, K. et al. Redox potential controlled selective oxidation of styrenes for regio- and stereoselective crossed intermolecular [2 + 2] cycloaddition via organophotoredox catalysis. Org. Lett. 22, 5207–5211 (2020).

    CAS  Google Scholar 

  13. Li, R. et al. Photocatalytic regioselective and stereoselective [2 + 2] cycloaddition of styrene derivatives using a heterogeneous organic photocatalyst. ACS Catal. 7, 3097–3101 (2017).

    CAS  Google Scholar 

  14. Piane, J. J. et al. Organic photoredox-catalyzed cycloadditions under single-chain polymer confinement. ACS Catal. 10, 13251–13256 (2020).

    CAS  Google Scholar 

  15. Lu, Z. & Yoon, T. P. Visible light photocatalysis of [2+2] styrene cycloadditions by energy transfer. Angew. Chem. Int. Ed. 51, 10329–10332 (2012).

    CAS  Google Scholar 

  16. Liu, Z. et al. Aggregation-enabled intermolecular photo[2+2]cycloaddition of aryl terminal olefins by visible-light catalysis. CCS Chem. 2, 582–588 (2020).

    CAS  Google Scholar 

  17. Murray, P. R. D. et al. Intermolecular crossed [2 + 2] cycloaddition promoted by visible-light triplet photosensitization: expedient access to polysubstituted 2-oxaspiro[3.3]heptanes. J. Am. Chem. Soc. 143, 4055–4063 (2021).

    CAS  Google Scholar 

  18. Jiang, Y., Wang, C., Rogers, C. R., Kodaimati, M. S. & Weiss, E. A. Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots. Nat. Chem. 11, 1034–1040 (2019).

    CAS  PubMed Central  Google Scholar 

  19. Jiang, Y., López-Arteaga, R. & Weiss, E. A. Quantum dots photocatalyze intermolecular [2 + 2] cycloadditions of aromatic alkenes adsorbed to their surfaces via van der Waals interactions. J. Am. Chem. Soc. 144, 3782–3786 (2022).

    CAS  Google Scholar 

  20. Hernandez-Perez, A. C. & Collins, S. K. Heteroleptic Cu-based sensitizers in photoredox catalysis. Acc. Chem. Res. 49, 1557–1565 (2016).

    CAS  Google Scholar 

  21. Forero Cortés, P. A., Marx, M., Trose, M. & Beller, M. Heteroleptic copper complexes with nitrogen and phosphorus ligands in photocatalysis: overview and perspectives. Chem. Catal. 1, 298–338 (2021).

    Google Scholar 

  22. Brégent, T., Bouillon, J.-P. & Poisson, T. Copper-photocatalyzed contra-thermodynamic isomerization of polarized alkenes. Org. Lett. 22, 7688–7693 (2020).

    Google Scholar 

  23. Cruché, C., Neiderer, W. & Collins, S. K. Heteroleptic copper-based complexes for energy-transfer processes: EZ isomerization and tandem photocatalytic sequences. ACS Catal. 11, 8829–8836 (2021).

    Google Scholar 

  24. Rogge, S. M. et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 46, 3134–3184 (2017).

    CAS  PubMed Central  Google Scholar 

  25. Wei, Y.-S., Zhang, M., Zou, R. & Xu, Q. Metal–organic framework-based catalysts with single metal sites. Chem. Rev. 120, 12089–12174 (2020).

    CAS  Google Scholar 

  26. Chen, W. et al. Site-isolated azobenzene-containing metal–organic framework for cyclopalladated catalyzed Suzuki–Miyuara coupling in flow. ACS Appl. Mater. Interfaces 13, 51849–51854 (2021).

    CAS  Google Scholar 

  27. Ma, B. et al. Metal–organic framework supported copper photoredox catalysts for iminyl radical-mediated reactions. Angew. Chem. Int. Ed. 62, e202300233 (2023).

    CAS  Google Scholar 

  28. Liu, J. et al. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem. Soc. Rev. 51, 1045–1097 (2022).

    CAS  Google Scholar 

  29. Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    CAS  Google Scholar 

  30. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    PubMed  Google Scholar 

  31. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    PubMed  Google Scholar 

  32. Newsome, W. J. et al. Solid state multicolor emission in substitutional solid solutions of metal–organic frameworks. J. Am. Chem. Soc. 141, 11298–11303 (2019).

    CAS  PubMed  Google Scholar 

  33. Kalaj, M. & Cohen, S. M. Postsynthetic modification: an enabling technology for the advancement of metal–organic frameworks. ACS Cent. Sci. 6, 1046–1057 (2020).

    CAS  PubMed Central  Google Scholar 

  34. Li, J. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 4, 719–729 (2021).

    CAS  Google Scholar 

  35. Ma, X. et al. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J. Am. Chem. Soc. 143, 12220–12229 (2021).

    CAS  PubMed  Google Scholar 

  36. Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).

    CAS  PubMed  Google Scholar 

  37. Wang, C., deKrafft, K. E. & Lin, W. Pt nanoparticles@photoactive metal–organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 134, 7211–7214 (2012).

    CAS  PubMed  Google Scholar 

  38. Zhang, X. et al. Catalytic chemoselective functionalization of methane in a metal–organic framework. Nat. Catal. 1, 356–362 (2018).

    CAS  Google Scholar 

  39. Pi, Y. et al. Metal−organic frameworks integrate Cu photosensitizers and secondary building unit-supported Fe catalysts for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 142, 10302–10307 (2020).

    CAS  PubMed  Google Scholar 

  40. Kong, X.-J., Lin, Z., Zhang, Z.-M., Zhang, T. & Lin, W. Hierarchical integration of photosensitizing metal–organic frameworks and nickel-containing polyoxometalates for efficient visible-light-driven hydrogen evolution. Angew. Chem. Int. Ed. 55, 6411–6416 (2016).

    CAS  Google Scholar 

  41. Coote, S. C. & Bach, T. Enantioselective intermolecular [2+2] photocycloadditions of isoquinolone mediated by a chiral hydrogen-bonding template. J. Am. Chem. Soc. 135, 14948–14951 (2013).

    CAS  Google Scholar 

  42. Mejía, E. et al. A noble-metal-free system for photocatalytic hydrogen production from water. Chem. Eur. J. 19, 15972–15978 (2013).

    Google Scholar 

  43. Ischay, M. A., Lu, Z. & Yoon, T. P. [2+2] cycloadditions by oxidative visible light photocatalysis. J. Am. Chem. Soc. 132, 8572–8574 (2010).

    CAS  PubMed Central  Google Scholar 

  44. Lei, T. et al. General and efficient intermolecular [2+2] photodimerization of chalcones and cinnamic acid derivatives in solution through visible-light catalysis. Angew. Chem. Int. Ed. 56, 15407–15410 (2017).

    CAS  Google Scholar 

  45. Zhu, M., Zheng, C., Zhang, X. & You, S.-L. Synthesis of cyclobutane-fused angular tetracyclic spiroindolines via visible-light-promoted intramolecular dearomatization of indole derivatives. J. Am. Chem. Soc. 141, 2636–2644 (2019).

    CAS  Google Scholar 

  46. Girvin, Z. C. et al. Asymmetric photochemical [2 + 2]-cycloaddition of acyclic vinylpyridines through ternary complex formation and an uncontrolled sensitization mechanism. J. Am. Chem. Soc. 144, 20109–20117 (2022).

    CAS  PubMed Central  Google Scholar 

  47. Yu, X. & Cohen, S. M. Photocatalytic metal–organic frameworks for selective 2,2,2-trifluoroethylation of styrenes. J. Am. Chem. Soc. 138, 12320–12323 (2016).

    CAS  Google Scholar 

  48. Fan, Y., Zheng, H., Labalme, S. & Lin, W. Molecular engineering of metal–organic layers for sustainable tandem and synergistic photocatalysis. J. Am. Chem. Soc. 145, 4158–4165 (2023).

    CAS  Google Scholar 

  49. Ni, T., Caldwell, R. A. & Melton, L. A. The relaxed and spectroscopic energies of olefin triplets. J. Am. Chem. Soc. 111, 457–464 (1989).

    CAS  Google Scholar 

  50. He, J., Shao, Q., Wu, Q. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H borylation. J. Am. Chem. Soc. 139, 3344–3347 (2017).

    CAS  Google Scholar 

  51. Keller, S. et al. Luminescent copper(I) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands. Dalton Trans. 47, 14263–14276 (2018).

    CAS  Google Scholar 

  52. Roth, H. G., Romero, N. A. & Nicewicz, D. A. Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. Synlett 27, 714–723 (2016).

    CAS  Google Scholar 

  53. Cheng, X., Li, T., Liu, Y. & Lu, Z. Stereo- and enantioselective benzylic C–H alkenylation via photoredox/nickel dual catalysis. ACS Catal. 11, 11059–11065 (2021).

    CAS  Google Scholar 

  54. Shen, Y. et al. Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2. Nat. Commun. 14, 1117 (2023).

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank The University of Hong Kong, the Research Grants Council of the Hong Kong Special Administrative Region, People’s Republic of China (grant nos. 27301820 and 17313922 to J.H., 27200822 and 16302520 to P.C.Y.C., and 15301521 and 15300819 to T.W.B.L.), the Croucher Foundation, the Innovation and Technology Commission (HKSAR, China), and the National Natural Science Foundation of China (grant no. 22201236 to J.H. and 22172136 to T.W.B.L.) for their financial support. The authors thank C.-M. Che for help and discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.H. supervised the project and designed the experiments. J.G. developed the photocatalytic cycloadditions and expanded the substrate scope with the help of W.Y.T. Q.X., Z.L. and X.W. prepared and characterized the catalytic materials. L.-J.L. and K.-H.L. analysed the crystal structures of the heteroleptic copper complexes. W.-P.T., H.-X.S. and P.C.Y.C. measured the solid-state emission spectra. T.W.B.L. simulated the EXAFS spectra. J.H. wrote the manuscript with the contributions from J.G., Q.X. and L.-J.L.

Corresponding author

Correspondence to Jian He.

Ethics declarations

Competing interests

J.H., J.G. and Q.X. are listed as co-inventors of a US patent application, ‘Heterogeneous catalysts and methods making and using thereof’ (63/604,642). The patent describes the synthesis of heterogeneous copper photosensitizers and the photocatalytic performance presented in this manuscript. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jose Aleman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–45, Tables 1–10 and references.

Supplementary Data 1

Crystallographic data for complex Cu-1.

Supplementary Data 2

Crystallographic data for complex Cu-3.

Source data

Source Data Fig. 2

Raw data for Fig. 2c–e.

Source Data Fig. 6

Raw data for Fig. 6b,c.

Source Data Fig. 7

Raw data for Fig. 7a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Xia, Q., Tang, W.Y. et al. Visible light-mediated intermolecular crossed [2+2] cycloadditions using a MOF-supported copper triplet photosensitizer. Nat Catal 7, 307–320 (2024). https://doi.org/10.1038/s41929-024-01112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01112-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing