Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pickering emulsion droplets and solid microspheres acting synergistically for continuous-flow cascade reactions

Abstract

Integration of multiple incompatible catalysts in one continuous-flow reaction system is of paramount significance for green synthetic chemistry. Here we develop a continuous-flow cascade catalytic system by co-packing micrometre-sized Pickering emulsion droplets and solid microspheres in a column reactor. This co-packed system can not only provide the optimum microenvironments for each incompatible catalyst but also enables them to work synergistically through directional transfer of reaction intermediates. The success of the concept is based on a phenomenon found here, namely coexistence of Pickering emulsion droplets and solid microspheres without droplet disruption even under flow and high pressure due to specific interfacial effects. As proof of concept, two chemoenzymatic cascade reactions for synthesis of chiral cyanohydrins and chiral esters were examined; both these reactions exhibited 7-fold to 77-fold enhanced catalysis efficiency compared with their batch reactions, 99% enantioselectivity and long-term operational stability (240 h).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the co-packing of PEDs and SMs.
Fig. 2: Investigation of the interactions between liquid droplets and SMs.
Fig. 3: Chemoenzymatic cascade synthesis of cyanohydrin.
Fig. 4: Directional transport effect.
Fig. 5: Chemoenzymatic cascade synthesis of chiral esters.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Schrittwieser, J. H., Velikogne, S., Hall, M. & Kroutil, W. Artificial biocatalytic linear cascades for preparation of organic molecules. Chem. Rev. 118, 270–348 (2018).

    CAS  Google Scholar 

  2. Vázquez-González, M., Wang, C. & Willner, I. Biocatalytic cascades operating on macromolecular scaffolds and in confined environments. Nat. Catal. 3, 256–273 (2020).

    Google Scholar 

  3. Sperl, J. M. & Sieber, V. Multienzyme cascade reactions—status and recent advances. ACS Catal. 8, 2385–2396 (2018).

    CAS  Google Scholar 

  4. Wang, Y. X., Zhao, Q. C., Haag, R. & Wu, C. Z. Biocatalytic synthesis using self-assembled polymeric nano- and microreactors. Angew. Chem. Int. Ed. 61, e202213974 (2022).

    CAS  Google Scholar 

  5. Isaacs, M. A. et al. A spatially orthogonal hierarchically porous acid–base catalyst for cascade and antagonistic reactions. Nat. Catal. 3, 921–931 (2020).

    CAS  Google Scholar 

  6. Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Google Scholar 

  7. Alonso, S. et al. Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis. Nat. Catal. 3, 319–328 (2020).

    CAS  Google Scholar 

  8. Li, X. Y. et al. Highly active enzyme–metal nanohybrids synthesized in protein–polymer conjugates. Nat. Catal. 2, 718–725 (2019).

    CAS  Google Scholar 

  9. Wang, N. M. et al. Chemical recycling of polyethylene by tandem catalytic conversion to propylene. J. Am. Chem. Soc. 144, 18526–18531 (2022).

    CAS  Google Scholar 

  10. Britton, J. & Raston, C. L. Multi-step continuous-flow synthesis. Chem. Soc. Rev. 46, 1250–1271 (2017).

    CAS  Google Scholar 

  11. Jiao, J. et al. Multi-step continuous-flow organic synthesis: opportunities and challenges. Chem. Eur. J. 27, 4817–4838 (2021).

    CAS  Google Scholar 

  12. Contente, M. L. & Paradisi, F. Self-sustaining closed-loop multienzyme mediated conversion of amines into alcohols in continuous reactions. Nat. Catal. 1, 452–459 (2018).

    CAS  Google Scholar 

  13. Tsubogo, T., Oyamada, H. & Kobayashi, S. Multi-step continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts. Nature 520, 329–332 (2015).

    CAS  Google Scholar 

  14. Yasukawa, T., Masuda, R. & Kobayashi, S. Development of heterogeneous catalyst systems for the continuous synthesis of chiral amines via asymmetric hydrogenation. Nat. Catal. 2, 1088–1092 (2019).

    CAS  Google Scholar 

  15. Sagmeister, P. et al. Advanced real-time process analytics for multi-step synthesis in continuous flow. Angew. Chem. Int. Ed. 60, 8139–8148 (2021).

    CAS  Google Scholar 

  16. Wang, H. et al. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci. Adv. 4, eaat2816 (2018).

    PubMed Central  Google Scholar 

  17. Russell, M. G. & Jamison, T. F. Seven-step continuous-flow synthesis of linezolid without intermediate purification. Angew. Chem. Int. Ed. 58, 7678–7681 (2019).

    CAS  Google Scholar 

  18. Sahoo, H. R., Kralj, J. G. & Jensen, K. F. Multi-step continuous-flow microchemical synthesis involving multiple reactions and separations. Angew. Chem. Int. Ed. 46, 5704–5708 (2007).

    CAS  Google Scholar 

  19. Cole-Hamilton, D. J. Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling. Science 299, 1702–1706 (2003).

    CAS  Google Scholar 

  20. Yu, T. et al. Recent advances in continuous-flow enantioselective catalysis. Chem. Eur. J. 26, 5729–5747 (2020).

    CAS  PubMed  Google Scholar 

  21. Altava, B., Burguete, M. I., García-Verdugo, E. & Luis, S. V. Chiral catalysts immobilized on achiral polymers: effect of the polymer support on the performance of the catalyst. Chem. Soc. Rev. 47, 2722–2771 (2018).

    CAS  PubMed  Google Scholar 

  22. Borah, P., Fianchini, M. & Pericàs, M. A. Assessing the role of site isolation and compartmentalization in packed-bed flow reactors for processes involving wolf-and-lamb scenarios. ACS Catal. 11, 6234–6242 (2021).

    CAS  Google Scholar 

  23. Wang, M. et al. Combining Pd nanoparticles on MOFs with cross-linked enzyme aggregates of lipase as powerful chemoenzymatic platform for one-pot dynamic kinetic resolution of amines. J. Catal. 378, 153–163 (2019).

    CAS  Google Scholar 

  24. Saito, Y., Nishizawa, K., Laroche, B., Ishitani, H. & Kobayashi, S. Continuous-flow synthesis of (R)-tamsulosin utilizing sequential heterogeneous catalysis. Angew. Chem. Int. Ed. 61, e202115643 (2022).

    CAS  Google Scholar 

  25. Li, Z. L. et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts. Joule 3, 570–583 (2019).

    CAS  Google Scholar 

  26. Ichitsuka, T., Takahashi, I., Koumura, N., Sato, K. & Kobayashi, S. Continuous synthesis of aryl amines from phenols utilizing integrated packed-bed flow systems. Angew. Chem. Int. Ed. 59, 15891–15896 (2020).

    CAS  Google Scholar 

  27. Durndell, L. J. et al. Cascade aerobic selective oxidation over contiguous dual-catalyst beds in continuous flow. ACS Catal. 9, 5345–5352 (2019).

    CAS  Google Scholar 

  28. Mattey, A. P. et al. Development of continuous-flow systems to access secondary amines through previously incompatible biocatalytic cascades. Angew. Chem. Int. Ed. 60, 18660–18665 (2021).

    CAS  Google Scholar 

  29. Zhang, M. et al. Compartmentalized droplets for continuous-flow liquid–liquid interface catalysis. J. Am. Chem. Soc. 138, 10173–10183 (2016).

    CAS  PubMed  Google Scholar 

  30. Zhang, M. et al. Ionic liquid-droplet microreactor for catalysis reactions not at equilibrium. J. Am. Chem. Soc. 139, 17387–17396 (2017).

    CAS  Google Scholar 

  31. Zhang, M. et al. Pickering emulsion droplet-based biomimetic microreactors for continuous-flow cascade reactions. Nat. Commun. 13, 475 (2022).

    CAS  PubMed Central  Google Scholar 

  32. Zhao, H., Ran, R., Wang, L., Li, C. S. & Zhang, S. J. Novel continuous process for methacrolein production in numerous droplet reactors. AIChE J. 66, e16239 (2020).

    CAS  Google Scholar 

  33. Zhang, H., Shang, M. J., Zhao, Y. C. & Su, Y. H. Process intensification of 2,2′-(4-nitrophenyl) dipyrromethane synthesis with a SO3H-functionalized ionic liquid catalyst in Pickering-emulsion-based packed-bed microreactors. Micromachines 12, 796 (2021).

    CAS  PubMed Central  Google Scholar 

  34. Wu, H., Du, X., Meng, X., Qiu, D. & Qiao, Y. A three-tiered colloidosomal microreactor for continuous-flow catalysis. Nat. Commun. 12, 6113 (2021).

    CAS  PubMed Central  Google Scholar 

  35. Tang, X. P. et al. Heteropoly acids-functionalized Janus particles as catalytic emulsifier for heterogeneous acylation in flow ionic liquid-in-oil Pickering emulsion. Colloid Surf. A 570, 191–198 (2019).

    CAS  Google Scholar 

  36. Crossley, S., Faria, J., Shen, M. & Resasco, D. E. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327, 68–72 (2010).

    CAS  Google Scholar 

  37. Ni, L., Yu, C., Wei, Q. B., Liu, D. M. & Qiu, J. S. Pickering emulsion catalysis: interfacial chemistry, catalyst design, challenges, and perspectives. Angew. Chem. Int. Ed. 61, e202115885 (2022).

    CAS  Google Scholar 

  38. Chang, F. Q., Vis, C. M., Ciptonugroho, W. & Bruijnincx, P. C. A. Recent developments in catalysis with Pickering emulsions. Green Chem. 23, 2575–2594 (2021).

    CAS  Google Scholar 

  39. Chen, Z. W. et al. Design of surface-active artificial enzyme particles to stabilize Pickering emulsions for high-performance biphasic biocatalysis. Adv. Mater. 28, 1682–1688 (2016).

    CAS  Google Scholar 

  40. Dedovets, D. et al. Multiphase microreactors based on liquid–liquid and gas–liquid dispersions stabilized by colloidal catalytic particles. Angew. Chem. Int. Ed. 61, e202107537 (2022).

    CAS  Google Scholar 

  41. Sun, Z., Glebe, U., Charan, H., Bçker, A. & Wu, C. Z. Enzyme–polymer conjugates as robust Pickering interfacial biocatalysts for efficient biotransformations and one‐pot cascade reactions. Angew. Chem. Int. Ed. 57, 13810–13814 (2018).

    CAS  Google Scholar 

  42. Schoonen, L. & van Hest, J. C. M. Compartmentalization approaches in soft matter science: from nanoreactor development to organelle mimics. Adv. Mater. 28, 1109–1128 (2016).

    CAS  Google Scholar 

  43. Jiang, S., da Silva, L. C., Ivanov, T., Mottola, M. & Landfester, K. Synthetic silica nano‐organelles for regulation of cascade reactions in multi‐compartmentalized systems. Angew. Chem. Int. Ed. 61, e202113784 (2022).

    CAS  Google Scholar 

  44. Deng, N. N., Yelleswarapu, M. & Huck, W. T. S. Monodisperse uni- and multicompartment liposomes. J. Am. Chem. Soc. 138, 7584–7591 (2016).

    CAS  Google Scholar 

  45. Jiang, H. et al. Engineering hybrid microgels as particulate emulsifiers for reversible Pickering emulsions. Chem. Sci. 13, 39–43 (2022).

    CAS  Google Scholar 

  46. Zhang, Q. H., Zhang, S. G. & Deng, Y. Q. Recent advances in ionic liquid catalysis. Green Chem. 13, 2619–2637 (2011).

    CAS  Google Scholar 

  47. Aveyard, R., Binks, B. P. & Clint, J. H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 100102, 503–546 (2003).

    Google Scholar 

  48. Wei, L. J., Yan, S., Wang, H. H. & Yang, H. Q. Fabrication of multi-compartmentalized mesoporous silica microspheres through a Pickering droplet strategy for enhanced CO2 capture and catalysis. NPG Asia Mater. 10, 899–911 (2018).

    CAS  Google Scholar 

  49. Wu, T. et al. Multi-body coalescence in Pickering emulsions. Nat. Commun. 6, 5929 (2015).

    Google Scholar 

  50. Eral, H. B., Manukyan, G. & Oh, J. M. Wetting of a drop on a sphere. Langmuir 27, 5340–5346 (2011).

    CAS  PubMed  Google Scholar 

  51. Wingstrand, E., Laurell, A., Fransson, L., Hult, K. & Moberg, C. Minor enantiomer recycling: metal catalyst, organocatalyst and biocatalyst working in concert. Chem. Eur. J. 15, 12107–12113 (2009).

    CAS  PubMed  Google Scholar 

  52. Lundgren, S., Wingstrand, E., Penhoat, M. & Moberg, C. Dual Lewis acid–Lewis base activation in enantioselective cyanation of aldehydes using acetyl cyanide and cyanoformate as cyanide sources. J. Am. Chem. Soc. 127, 11592–11593 (2005).

    CAS  PubMed  Google Scholar 

  53. Brunel, J. M. & Holmes, I. P. Chemically catalyzed asymmetric cyanohydrin syntheses. Angew. Chem. Int. Ed. 43, 2752–2778 (2004).

    CAS  Google Scholar 

  54. Denard, C. A., Hartwig, J. F. & Zhao, H. M. Multi-step one-pot reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. ACS Catal. 3, 2856–2864 (2013).

    CAS  Google Scholar 

  55. Kim, J. H. & Kim, G. J. Enantioselectivities of chiral Ti(IV) salen complexes immobilized on MCM-41 in asymmetric trimethylsilylcyanation of benzaldehyde. Catal. Lett. 92, 123–130 (2004).

    CAS  Google Scholar 

  56. Zhu, Y. Z., Fow, K. L., Chuah, G. K. & Jaenicke, S. Dynamic kinetic resolution of secondary alcohols combining enzyme-catalyzed transesterification and zeolite-catalyzed racemization. Chem. Eur. J. 13, 541–547 (2007).

    CAS  Google Scholar 

  57. Lozano, P., De Diego, T., Larnicol, M., Vaultier, M. & Iborra, J. L. Chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquids and ionic liquids/supercritical carbon dioxide systems. Biotechnol. Lett. 28, 1559–1565 (2006).

    CAS  Google Scholar 

  58. Lozano, P. et al. Long-term continuous chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol using ionic liquids and supercritical carbon dioxide. Green Chem. 11, 538–542 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (21925203, 22332002 and 21902093), the National Key Research and Development Program of China (2021YFC2101900), the Natural Science Research Foundation of Shanxi Province (202303021211016), the 100 Talent Project of Shanxi Province, the Fund for Shanxi ‘1331 Project’ and the Foundation of State Key Laboratory of Coal Conversion (grant number J24-25-909).

Author information

Authors and Affiliations

Authors

Contributions

H.Y. conceived and supervised the project. M.Z. executed the experiments and collected the data. T.L., J.Y and L.D. helped M.Z. to conduct part of the experiments. R.E. conducted the theoretical calculations. N.X. contributed to preparing some of the figures. B.P.B. and F.C. suggested varying the hydrophobicity of the SMs and analyzed the findings. H.Y. and M.Z. wrote the paper. All authors edited the paper.

Corresponding author

Correspondence to Hengquan Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Yuanhai Su, Ana Jurinjak Tusek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Methods, mass spectrometry data and references.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Ettelaie, R., Li, T. et al. Pickering emulsion droplets and solid microspheres acting synergistically for continuous-flow cascade reactions. Nat Catal 7, 295–306 (2024). https://doi.org/10.1038/s41929-024-01110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01110-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing