Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-induced Pd catalyst enables C(sp2)–C(sp2) cross-electrophile coupling bypassing the demand for transmetalation

A preprint version of the article is available at ChemRxiv.

Abstract

Transition metal-catalysed cross-coupling is a versatile tool for the construction of (hetero)biaryl scaffolds. However, the cross-electrophile coupling using abundant (hetero)aryl halides and pseudohalides is still in its infancy. In particular, a robust and general method for the cross-electrophile coupling would allow unparalleled entry into the vast collection of commercially available, structurally diverse (hetero)aryl halides and pseudohalides as coupling partners. Here we demonstrate a ligand-controlled visible light-driven mono-metallic cross-electrophile coupling platform in which the synergistic operation of a dual palladium catalytic cycle differentiates the electrophiles based on the bond dissociation enthalpy. This method is mild and selective and displays efficacy towards a wide range of functional groups and challenging heteroaryls. The power of the transformation has been revealed through the synthesis of (hetero)biaryl cores of various pharmaceuticals and diversification of peptides. Bypassing the traditional transmetalation step, this technology enables a general strategy for the cross-electrophile coupling of (hetero)aryl halides and pseudohalides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: C(sp2)–C(sp2) XEC via visible light-driven Pd catalysis.
Fig. 2: Proposed mechanistic hypothesis and evaluation of reaction parameters.
Fig. 3: The scope of XEC of (hetero)aryl iodides with (hetero)aryl bromides.
Fig. 4: The scope of XEC of (hetero)aryl iodides with (hetero)aryl bromides.
Fig. 5: The scope of XEC of (hetero)aryl triflate with (hetero)aryl halides.

Similar content being viewed by others

Data availability

All data relating to materials and methods, experimental procedures, mechanistic studies, characterization data and NMR spectra are available in Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2220229 (L80), 2220165 (complex E) and 2286772 (complex F). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Bringmann, G., Günther, C., Ochse, M., Schupp, O. & Tasler, S. Biaryls in Nature: A Multi-Faceted Class of Stereochemically, Biosynthetically, and Pharmacologically Intriguing Secondary Metabolites (Springer, 2001).

  2. Hajduk, P. J., Bures, M., Praestgaard, J. & Fesik, S. W. Privileged molecules for protein binding identified from NMR-based screening. J. Med. Chem. 43, 3443 (2000).

    CAS  Google Scholar 

  3. Wu, J. S., Cheng, S. W., Cheng, Y. J. & Hsu, C. S. Donor–acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. Chem. Soc. Rev. 44, 1113–1154 (2015).

    CAS  Google Scholar 

  4. Kaes, C., Katz, A. & Hosseini, M. W. Bipyridine: the most widely used ligand. a review of molecules comprising at least two 2,2′-bipyridine units. Chem. Rev. 100, 3553–3590 (2000).

    CAS  Google Scholar 

  5. Hansen, E. C. et al. New ligands for nickel catalysis from diverse pharmaceutical heterocycle libraries. Nat. Chem. 8, 1126–1130 (2016).

    CAS  PubMed Central  Google Scholar 

  6. Meijere, A. D. & Diederich, F. Metal-Catalyzed Cross-Coupling Reactions 2nd edn, Vol. 1 (Wiley-VCH, 2004).

  7. Magano, J. & Dunetz, J. R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 111, 2177–2250 (2011).

    CAS  Google Scholar 

  8. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    CAS  Google Scholar 

  9. García-Melchor, M., Braga, A. A., Lledós, A., Ujaque, G. & Maseras, F. Computational perspective on Pd-catalyzed C–C crosscoupling reaction mechanisms. Acc. Chem. Res. 46, 2626–2634 (2013).

    Google Scholar 

  10. Cox, P. A., Leach, A. G., Campbell, A. D. & Lloyd-Jones, G. C. Protodeboronation of heteroaromatic, vinyl, and cyclopropyl boronic acids: pH–rate profiles, autocatalysis, and disproportionation. J. Am. Chem. Soc. 138, 9145–9157 (2016).

    CAS  Google Scholar 

  11. Cox, P. A. et al. Base-catalyzed aryl-B(OH)2 protodeboronation revisited: from concerted proton transfer to liberation of a transient aryl anion. J. Am. Chem. Soc. 139, 13156–13165 (2017).

    CAS  Google Scholar 

  12. Cook, X. A. F., de Gombert, A., McKnight, J., Pantaine, L. R. E. & Willis, M. C. The 2-pyridyl problem: challenging nucleophiles in cross-coupling arylations. Angew. Chem. Int. Ed. 60, 11068–11091 (2021).

    CAS  Google Scholar 

  13. Knapp, D. M., Gillis, E. P. & Burke, M. D. A general solution for unstable boronic acids: slow-release cross-coupling from air-stable MIDA boronates. J. Am. Chem. Soc. 131, 6961–6963 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Markovic, T., Rocke, B. N., Blakemore, D. C., Mascitti, V. & Willis, M. C. Pyridine sulfinates as general nucleophilic coupling partners in palladium-catalyzed cross-coupling reactions with aryl halides. Chem. Sci. 8, 4437–4442 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Alberico, D., Scott, M. E. & Lautens, M. Aryl–aryl bond formation by transition metal-catalyzed direct arylation. Chem. Rev. 107, 174–238 (2007).

    CAS  PubMed  Google Scholar 

  16. Grover, J., Prakash, G., Goswami, N. & Maiti, D. Traditional and sustainable approaches for the construction of C–C bonds by harnessing C–H arylation. Nat. Commun. 13, 1085 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, Y. D., Lan, J. B. & You, J. S. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).

    CAS  PubMed  Google Scholar 

  18. Zhou, M., Tsien, J. & Qin, T. Sulfur(IV)-mediated unsymmetrical heterocycle cross-couplings. Angew. Chem. Int. Ed. 59, 7372–7376 (2020).

    CAS  Google Scholar 

  19. Hilton, M. C. et al. Heterobiaryl synthesis by contractive C–C coupling via P(V) intermediates. Science 362, 799–804 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    CAS  PubMed Central  Google Scholar 

  21. Hassan, J., Sévignon, M., Gozzi, C., Schulz, E. & Lemaire, M. Aryl–aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 102, 1359–1470 (2002).

    CAS  Google Scholar 

  22. Khan, F., Dlugosch, M., Liu, X. & Banwell, M. G. The palladium-catalyzed Ullmann cross-coupling reaction: a modern variant on a time-honored process. Acc. Chem. Res. 51, 1784–1795 (2018).

    CAS  Google Scholar 

  23. Chow, W. K., So, C. M., Lau, C. P. & Kwong, F. Y. Palladium-catalyzed borylation of aryl mesylates and tosylates and their applications in one-pot sequential Suzuki–Miyaura biaryl synthesis. Chem. Eur. J. 17, 6913–6917 (2011).

    CAS  Google Scholar 

  24. Molander, G. A., Trice, S. L. J., Kennedy, S. M., Dreher, S. D. & Tudge, M. T. Scope of the palladium-catalyzed aryl borylation utilizing bis-boronic acid. J. Am. Chem. Soc. 134, 11667–11673 (2012).

    CAS  PubMed Central  Google Scholar 

  25. Knappke, C. E. I. et al. Reductive cross-coupling reactions between two electrophiles. Chem. Eur. J. 20, 6828–6842 (2014).

    CAS  Google Scholar 

  26. Tang, J. et al. Chemoselective cross-coupling between two different and unactivated C(aryl)–O bonds enabled by chromium catalysis. J. Am. Chem. Soc. 142, 7715–7720 (2020).

    CAS  Google Scholar 

  27. Yi, L., Ji, T., Chen, K.-Q., Chen, X.-Y. & Rueping, M. Nickel-catalyzed reductive cross-couplings: new opportunities for carbon–carbon bond formations through photochemistry and electrochemistry. CCS Chem. 4, 9–30 (2022).

    CAS  Google Scholar 

  28. Ackerman, L. K. G., Lovell, M. M. & Weix, D. J. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates. Nature 524, 454–457 (2015).

    CAS  PubMed Central  Google Scholar 

  29. Huang, L., Ackerman, L. K. G., Kang, K., Parsons, A. M. & Weix, D. J. LiCl-accelerated multimetallic cross-coupling of aryl chlorides with aryl triflates. J. Am. Chem. Soc. 141, 10978–10983 (2019).

    CAS  PubMed Central  Google Scholar 

  30. Kang, K., Huang, L. & Weix, D. J. Sulfonate versus sulfonate: nickel and palladium multimetallic cross-electrophile coupling of aryl triflates with aryl tosylates. J. Am. Chem. Soc. 142, 10634–10640 (2020).

    CAS  PubMed Central  Google Scholar 

  31. Kang, K., Loud, N. L., DiBenedetto, T. A. & Weix, D. J. A general, multimetallic cross-Ullmann biheteroaryl synthesis from heteroaryl halides and heteroaryl triflates. J. Am. Chem. Soc. 143, 21484–21491 (2021).

    CAS  PubMed Central  Google Scholar 

  32. Wu, T.-F., Zhang, Y.-J., Fu, Y., Liu, F.-J., Tang, J.-T., Liu, P., Toste, F. D. & Ye, B. Zirconium-redox-shuttled cross-electrophile coupling of aromatic and heteroaromatic halides. Chem 7, 1963–1974 (2021).

    CAS  PubMed Central  Google Scholar 

  33. Chuentragool, P., Kurandina, D. & Gevorgyan, V. Catalysis with palladium complexes photoexcited by visible light. Angew. Chem. Int. Ed. 58, 11586–11598 (2019).

    CAS  Google Scholar 

  34. Zhou, W.-J., Cao, G.-M., Zhang, Z.-P. & Yu, D.-G. Visible light-induced palladium-catalysis in organic synthesis. Chem. Lett. 48, 181–191 (2019).

    CAS  Google Scholar 

  35. Torres, G. M., Liu, Y. & Arndtsen, B. A. A dual light-driven palladium catalyst: breaking the barriers in carbonylation reactions. Science 368, 318–323 (2020).

    CAS  Google Scholar 

  36. Ratushnyy, M., Kvasovs, N., Sarkar, S. & Gevorgyan, V. Visible light‐induced palladium‐catalyzed generation of aryl radicals from aryl triflates. Angew. Chem. Int. Ed. 59, 10316–10320 (2020).

    CAS  Google Scholar 

  37. Marchese, A. D. et al. Pd(0)/blue light-promoted carboiodination-reaction evidence for reversible C–I bond formation via a radical pathway. J. Am. Chem. Soc. 144, 20554–20560 (2022).

    CAS  PubMed  Google Scholar 

  38. Bellotti, P., Koy, M., Gutheil, C., Heuvela, S. & Glorius, F. Three-component three-bond forming cascade via palladium photoredox catalysis. Chem. Sci. 12, 1810–1817 (2021).

    CAS  Google Scholar 

  39. Kancherla, R. et al. Oxidative addition to palladium(0) made easy through photoexcited-state metal catalysis: experiment and computation. Angew. Chem. Int. Ed. 58, 3412–3416 (2019).

    CAS  Google Scholar 

  40. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

  41. Chilamari, M., Immel, J. R., Chen, P.-H., Alghafli, B. M. & Bloom, S. Flavin metallaphotoredox catalysis: synergistic synthesis in water. ACS Catal. 12, 4175–4181 (2022).

    CAS  PubMed Central  Google Scholar 

  42. Zhou, W.-J. et al. Visible-light-driven palladium-catalyzed radical alkylation of C–H bonds with unactivated alkyl bromides. Angew. Chem. Int. Ed. 56, 15683–15687 (2017).

    CAS  Google Scholar 

  43. Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki–Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).

    CAS  PubMed Central  Google Scholar 

  44. Kim, S.-H. & Rieke, R. D. 2-Pyridyl and 3-pyridylzinc bromides: direct preparation and coupling reaction. Tetrahedron 66, 3135–3146 (2010).

    CAS  Google Scholar 

  45. O’Neill, B. T., Yohannes, D., Bundesmann, M. W. & Arnold, E. P. Total synthesis of (±)-cytisine. Org. Lett. 2, 4201–4204 (2000).

    Google Scholar 

  46. Reichert, E. C., Feng, K., Sather, A. C. & Buchwald, S. L. Pd-catalyzed amination of base-sensitive five-membered heteroaryl halides with aliphatic amines. J. Am. Chem. Soc. 145, 3323–3329 (2023).

    CAS  PubMed Central  Google Scholar 

  47. Zhang, C., Vinogradova, E. V., Spokoyny, A. M., Buchwald, S. L. & Pentelute, B. L. Arylation chemistry for bioconjugation. Angew. Chem. Int. Ed. 58, 4810–4839 (2019).

    CAS  Google Scholar 

  48. Carrico, I. S. Chemoselective modification of proteins: hitting the target. Chem. Soc. Rev. 37, 1423–1431 (2008).

    CAS  Google Scholar 

  49. Xue, L., Karpenko, I. A., Hiblot, J. & Johnsson, K. Imaging and manipulating proteins in live cells through covalent labelling. Nat. Chem. Biol. 11, 917–923 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support received from the Science and Engineering Research Board (CRG/2022/004197) is gratefully acknowledged. The authors are thankful for the financial support from Bristol Myers Squibb. Financial support received from the University Grants Commission–India (fellowship to S.M.), Prime Minister’s Research Fellows – India (Ministry of Human Resource Development) (fellowship to P.G. and S.G.) and Indian Institute of Technology Bombay (fellowship to S.R., D.R. and V.S.) are gratefully acknowledged. G.K.L. acknowledges support from the J.C. Bose fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and D.M. conceived the concept. All authors designed, performed and analysed the experiments. D.M. supervised the experimental work. S.M. and D.M. prepared the paper.

Corresponding author

Correspondence to Debabrata Maiti.

Ethics declarations

Competing interests

A patent application (application number 202321010040) has been filed by the Indian Institute of Technology Bombay based on the work described in this paper. The authors declare no other competing financial interests.

Peer review

Peer review information

Nature Catalysis thanks Krishnamoorthy Muralirajan, Da-Gang Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–19, Figs. 1–9 and references.

Supplementary Data 1

CheckCIF data of all crystals reported in the article.

Supplementary Data 2

Crystallographic data for L80; CCDC reference 2220229.

Supplementary Data 3

Crystallographic data for complex E; CCDC reference 2220165.

Supplementary Data 4

Crystallographic data for complex F; CCDC reference 2286772.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, S., Ghosh, P., Raja, D. et al. Light-induced Pd catalyst enables C(sp2)–C(sp2) cross-electrophile coupling bypassing the demand for transmetalation. Nat Catal 7, 285–294 (2024). https://doi.org/10.1038/s41929-024-01109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01109-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing