Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room temperature photo-promoted iron-catalysed arene C–H alkenylation without Grignard reagents

Abstract

Iron is inexpensive, non-toxic and the most abundant transition metal in the Earth’s crust, rendering iron-catalysed C–H activations attractive yet particularly challenging. Despite major advances, iron-catalysed C–H activations have been linked to high reaction temperatures or the use of reactive Grignard reagents. Here we present iron-catalysed ketimine C–H activations at ambient reaction temperature with the help of blue light in the absence of additives, utilizing easily accessible cis-[Fe(H)2(dppe)2] (where dppe is 1,2-bis(diphenylphosphino)ethane) as a single component precatalyst. Mild reaction conditions, high atom economy and the lack of Grignard reagents are distinguishing features of the iron-catalysed C–H alkenylation manifold. Detailed mechanistic investigations by deuterium labelling, isolation of organometallic intermediates and in operando light-emitting diode nuclear magnetic resonance spectroscopy revealed the role of the light and an oxidative addition to an iron(0) complex as the modus operandi for the C–H activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of strategies for C–H activation of aromatic imines.
Fig. 2: Optimization of the photo-promoted iron-catalysed C–H activation.
Fig. 3: Scope for photo-promoted iron-catalysed alkenylation of imines 1.
Fig. 4: Stoichiometric reactions with iron-dihydride precatalysts.
Fig. 5: In situ LED-NMR spectroscopy experiments.
Fig. 6: Deuterium labelling experiments.
Fig. 7: On/off experiments.
Fig. 8: Proposed mechanism for the photo-promoted iron-catalysed C–H activation of phenone imines with blue light.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information, or from the authors on reasonable request. Crystal structure data have been deposited at the Cambridge Crystallographic Data Centre (CCDC nos. 21922112192227 and 22801022280104), and crystallographic data are provided in Supplementary Information. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk. Spectroscopic and kinetic data that support the findings of this study are freely available in Zenodo data repository, with https://doi.org/10.5281/zenodo.10138296.

References

  1. Rogge, T. et al. C–H activation. Nat. Rev. Methods Prim. 1, 1–31 (2021).

    Google Scholar 

  2. Ackermann, L. Carboxylate-assisted transition metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

  3. Colby, D. A., Tsai, A. S., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed chelation-assisted C–H bond functionalization reactions. Acc. Chem. Res. 45, 814–825 (2012).

  4. Arockiam, P. B., Bruneau, C. & Dixneuf, P. H. Ruthenium(II)-catalyzed C–H bond activation and functionalization. Chem. Rev. 112, 5879–5918 (2012).

    CAS  Google Scholar 

  5. Davies, H. M. L. & Morton, D. Collective approach to advancing C–H functionalization. ACS Cent. Sci. 3, 936–943 (2017).

    CAS  PubMed Central  Google Scholar 

  6. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    CAS  Google Scholar 

  7. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    CAS  Google Scholar 

  8. Rej, S., Ano, Y. & Chatani, N. Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev. 120, 1788–1887 (2020).

    CAS  Google Scholar 

  9. Sun, C.-L., Li, B.-J. & Shi, Z.-J. Direct C–H transformation via iron catalysis. Chem. Rev. 111, 1293–1314 (2010).

    Google Scholar 

  10. Satoh, T. & Miura, M. Transition metal-catalyzed regioselective arylation and vinylation of carboxylic acids. Synthesis 2010, 3395–3409 (2010).

  11. Manan, R. S. & Zhao, P. Merging rhodium-catalysed C–H activation and hydroamination in a highly selective [4+2] imine/alkyne annulation. Nat. Commun. 7, 11506 (2016).

    PubMed Central  Google Scholar 

  12. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    CAS  PubMed Central  Google Scholar 

  13. Gao, K., Lee, P.-S., Fujita, T. & Yoshikai, N. Cobalt-catalyzed hydroarylation of alkynes through chelation-assisted C–H bond activation. J. Am. Chem. Soc. 132, 12249–12251 (2010).

    CAS  Google Scholar 

  14. Lee, P.-S., Fujita, T. & Yoshikai, N. Cobalt-catalyzed room-temperature addition of aromatic imines to alkynes via directed C–H bond activation. J. Am. Chem. Soc. 133, 17283–17295 (2011).

  15. Fallon, B. J. et al. C–H activation/functionalization catalyzed by simple, well-defined low-valent cobalt complexes. J. Am. Chem. Soc. 137, 2448–2451 (2015).

    CAS  Google Scholar 

  16. Gandeepan, P. et al. 3d transition metals for C–H activation. Chem. Rev. 119, 2192–2452 (2019).

    CAS  Google Scholar 

  17. Yoshino, T. & Matsunaga, S. Cobalt-catalyzed C(sp3)–H functionalization reactions. Asian J. Org. Chem. 7, 1193–1205 (2018).

    CAS  Google Scholar 

  18. Nakao, Y. Hydroarylation of alkynes catalyzed by nickel. Chem. Rec. 11, 242–251 (2011).

    CAS  Google Scholar 

  19. Khake, S. M. & Chatani, N. Nickel-catalyzed C–H functionalization using a non-directed strategy. Chem 6, 1056–1081 (2020).

    CAS  Google Scholar 

  20. Liu, Y.-H., Xia, Y.-N. & Shi, B.-F. Ni-catalyzed chelation-assisted direct functionalization of inert C–H bonds. Chin. J. Chem. 38, 635–662 (2020).

    CAS  Google Scholar 

  21. Hirano, K. & Miura, M. Recent advances in copper-mediated direct biaryl coupling. Chem. Lett. 44, 868–873 (2015).

    CAS  Google Scholar 

  22. Shang, R., Ilies, L. & Nakamura, E. Iron-catalyzed C–H bond activation. Chem. Rev. 117, 9086–9139 (2017).

    CAS  PubMed  Google Scholar 

  23. Cera, G. & Ackermann, L. Iron-catalyzed C–H functionalization processes. Top. Curr. Chem. 374, 57 (2016).

    Google Scholar 

  24. Jia, T., Zhao, C., He, R., Chen, H. & Wang, C. Iron-carbonyl-catalyzed redox-neutral [4+2] annulation of N–H imines and internal alkynes by C–H bond activation. Angew. Chem. Int. Ed. 55, 5268–5271 (2016).

    CAS  Google Scholar 

  25. Kimura, N., Kochi, T. & Kakiuchi, F. Iron-catalyzed regioselective anti-Markovnikov addition of C–H bonds in aromatic ketones to alkenes. J. Am. Chem. Soc. 139, 14849–14852 (2017).

    CAS  PubMed  Google Scholar 

  26. Kimura, N., Kochi, T. & Kakiuchi, F. Iron‐catalyzed ortho‐selective C−H alkylation of aromatic ketones with N‐alkenylindoles and partial indolylation via 1,4‐iron migration. Asian J. Org. Chem. 8, 1115–1117 (2019).

    CAS  Google Scholar 

  27. Messinis, A. M., Finger, L. H., Hu, L. & Ackermann, L. Allenes for versatile iron-catalyzed C–H activation by weak O-coordination: mechanistic insights by kinetics, intermediate isolation, and computation. J. Am. Chem. Soc. 142, 13102–13111 (2020).

    CAS  Google Scholar 

  28. Messinis, A. M., Oliveira, J. C. A., Stückl, A. C. & Ackermann, L. Cyclometallated iron(II) alkoxides in iron-catalyzed C–H activations by weak O-carbonyl chelation. ACS Catal. 12, 4947–4960 (2022).

    CAS  Google Scholar 

  29. Kimura, N., Katta, S., Kitazawa, Y., Kochi, T. & Kakiuchi, F. Iron-catalyzed ortho C–H homoallylation of aromatic ketones with methylenecyclopropanes. J. Am. Chem. Soc. 143, 4543–4549 (2021).

    CAS  Google Scholar 

  30. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

  31. Wang, C.-S., Dixneuf, P. H. & Soulé, J.-F. Photoredox catalysis for building C–C bonds from C(sp2)–H bonds. Chem. Rev. 118, 7532–7585 (2018).

    CAS  Google Scholar 

  32. Guillemard, L. & Wencel-Delord, J. When metal-catalyzed C–H functionalization meets visible-light photocatalysis. Beilstein J. Org. Chem. 16, 1754–1804 (2020).

    CAS  PubMed Central  Google Scholar 

  33. Mendelsohn, L. N. et al. Visible-light-enhanced cobalt-catalyzed hydrogenation: switchable catalysis enabled by divergence between thermal and photochemical pathways. ACS Catal. 11, 1351–1360 (2021).

    CAS  Google Scholar 

  34. Cuthbertson, J. D. & Macmillan, D. W. C. The direct arylation of allylic sp3 C–H bonds via organic and photoredox catalysis. Nature 519, 74–77 (2015).

    CAS  PubMed Central  Google Scholar 

  35. Kalyani, D., Mcmurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011).

    CAS  PubMed Central  Google Scholar 

  36. Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    CAS  PubMed Central  Google Scholar 

  37. Wegeberg, C. & Wenger, O. S. Luminescent first-row transition metal complexes. JACS Au 1, 1860–1876 (2021).

    CAS  PubMed Central  Google Scholar 

  38. Stephenson, C. R. J., Yoon, T. & MacMillan, D. W. C. Visible Light Photocatalysis in Organic Chemistry (Wiley, 2018).

  39. Dombray, T. et al. Iron-catalyzed C–H borylation of arenes. J. Am. Chem. Soc. 137, 4062–4065 (2015).

    CAS  Google Scholar 

  40. Zhou, W. J. et al. Light runs across iron catalysts in organic transformations. Chem. Eur. J. 26, 15052–15064 (2020).

    CAS  PubMed  Google Scholar 

  41. Bautista, M. T., Bynum, L. D. & Schauer, C. K. Synthesis of η2-dihydrogen complex, trans-{Fe(η2-H2)(H)[1,2-bis(diphenylphosphino)-ethane]2}[BF4]: an experiment for an advanced inorganic chemistry laboratory involving synthesis and NMR properties of an η2-H2 complex. J. Chem. Educ. 73, 988 (1996).

  42. Azizian, H. & Morris, R. H. Photochemical synthesis and reactions of FeH(C6H4PPhCH2CH2PPh2)(PPh2PCH2CH2PPh2). Inorg. Chem. 22, 6–9 (1983).

    CAS  Google Scholar 

  43. Lehnherr, D. et al. Discovery of a photoinduced dark catalytic cycle using in situ LED-NMR spectroscopy. J. Am. Chem. Soc. 140, 13843–13853 (2018).

    CAS  PubMed  Google Scholar 

  44. Hoye, T. R., Eklov, B. M., Ryba, T. D., Voloshin, M. & Yao, L. J. No-D NMR (no-deuterium proton NMR) spectroscopy: a simple yet powerful method for analyzing reaction and reagent solutions. Org. Lett. 6, 953–956 (2004).

    CAS  PubMed  Google Scholar 

  45. Suslick, B. A. & Tilley, T. D. Mechanistic interrogation of alkyne hydroarylations catalyzed by highly reduced single-component cobalt complexes. J. Am. Chem. Soc. 142, 11203–11218 (2020).

  46. Frohnapfel, D. S. & Templeton, J. L. Transition metal η2-vinyl complexes. Coord. Chem. Rev. 206–207, 199–235 (2000).

  47. Goumans, T. P. M. et al. Photodissociation of the phosphine-substituted transition metal carbonyl complexes Cr(CO)5L and Fe(CO)4L: a theoretical study. J. Am. Chem. Soc. 125, 3558–3567 (2003).

    CAS  PubMed  Google Scholar 

  48. Salassa, L., Garino, C., Salassa, G., Gobetto, R. & Nervi, C. Mechanism of ligand photodissociation in photoactivable [Ru(bpy)2L2]2+ complexes: a density functional theory study. J. Am. Chem. Soc. 130, 9590–9597 (2008).

    CAS  PubMed  Google Scholar 

  49. Casitas, A., Krause, H., Goddard, R. & Fürstner, A. Elementary steps of iron catalysis: exploring the links between iron-alkyl and iron-olefin complexes for their relevance in C–H activation and C–C bond formation. Angew. Chem. Int. Ed. 54, 1521–1526 (2015).

  50. Yu, C., Zhang, W.-X. & Xi, Z. Cyclobutadiene sandwich complexes of nickel and iron from cyclization of 1,3-butadiene dianions: synthesis and structural characterization. Organometallics 37, 4100–4104 (2018).

    CAS  Google Scholar 

  51. Aranyos, A. et al. Novel electron-rich bulky phosphine ligands facilitate the palladium-catalyzed preparation of diaryl ethers. J. Am. Chem. Soc. 121, 4369–4378 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

Generous support by the DFG (SPP 1807 Gottfried-Wilhelm-Leibniz award to L.A.), the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant agreement no. 895404 to A.M.M. and ERC advanced grant agreement no. 101021358 to L.A.) and FCI Kekulé Fellowship no. 110091 (T.v.M.) is gratefully acknowledged. We thank C. Golz (Göttingen University) for assistance with the X-ray diffraction analysis and I. Maksso for measuring inductively coupled plasma mass spectrometry solutions.

Author information

Authors and Affiliations

Authors

Contributions

A.M.M. unravelled the photo-promoted iron-catalysed C–H activation of imines, conducted the mechanistic studies, explored the substrate scope assisted by T.v.M. and M.S., and wrote the paper with revisions provided by the other authors. M.S. performed the Grignard studies. L.A. conceived and directed the research programme and revised the paper.

Corresponding author

Correspondence to Lutz Ackermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Brian Patrick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–52, Tables 1–6 and References.

Supplementary Data 1

CIF file of the crystal structure of compound 4a.

Supplementary Data 2

CIF file of the crystal structure of compound 4b.

Supplementary Data 3

CIF file of the crystal structure of compound 4c.

Supplementary Data 4

CIF file of the crystal structure of compound 4d.

Supplementary Data 5

CIF file of the crystal structure of compound 4e.

Supplementary Data 6

CIF file of the crystal structure of compound 4f.

Supplementary Data 7

CIF file of the crystal structure of compound 4g.

Supplementary Data 8

CIF file of the crystal structure of compound 5a.

Supplementary Data 9

CIF file of the crystal structure of compound 5b.

Supplementary Data 10

CIF file of the crystal structure of compound 5c.

Supplementary Data 11

CIF file of the crystal structure of compound 6a.

Supplementary Data 12

CIF file of the crystal structure of compound 6b.

Supplementary Data 13

CIF file of the crystal structure of compound 6c.

Supplementary Data 14

CIF file of the crystal structure of compound 8.

Supplementary Data 15

CIF file of the crystal structure of compound 10a.

Supplementary Data 16

CIF file of the crystal structure of compound 10b.

Supplementary Data 17

CIF file of the crystal structure of compound E-3aa.

Supplementary Data 18

CIF file of the crystal structure of compound E-3aa″.

Supplementary Data 19

CIF file of the crystal structure of compound E-3aj.

Supplementary Data 20

CIF file of the crystal structure of compound Z-3ea.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messinis, A.M., von Münchow, T., Surke, M. et al. Room temperature photo-promoted iron-catalysed arene C–H alkenylation without Grignard reagents. Nat Catal 7, 273–284 (2024). https://doi.org/10.1038/s41929-023-01105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01105-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing