Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air

Abstract

Charge transfer and mass transport to catalytic sites are critical factors in photocatalysis. However, achieving both simultaneously is challenging due to inherent trade-offs and interdependencies. Here we develop a microporous covalent organic framework featuring dense donor–acceptor lattices with engineered linkages. The donor–acceptor columnar π-arrays function as charge supply chains and as abundant water oxidation and oxygen reduction centres, while the one-dimensional microporous channels lined with rationally integrated oxygen atoms function as aligned conduits for instant water and oxygen delivery to the catalytic sites. This porous catalyst promotes photosynthesis with water and air to produce H2O2, combining a high production rate, efficiency and turnover frequency. This framework operates under visible light without the need of metal co-catalysts and sacrificial reagents, exhibits an apparent quantum efficiency of 17.5% at 420 nm in batch reactors and enables continuous, stable and clean H2O2 production in flow reactors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hexavalent electron donor–acceptor COFs.
Fig. 2: Crystal and pore structures.
Fig. 3: Frontier orbitals.
Fig. 4: Photosynthesis with water and air.
Fig. 5: Photophysical and electrochemical measurements.
Fig. 6: Reaction processes and pathways.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request. The atomistic coordinates for the final optimized structures are provided as Supplementary Data 1.

References

  1. Ciriminna, R., Albanese, L., Meneguzzo, F. & Pagliaro, M. Hydrogen peroxide: a key chemical for today’s sustainable development. ChemSusChem 9, 3374–3381 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Gao, G. et al. Advances in the production technology of hydrogen peroxide. Chin. J. Catal. 41, 1039–1047 (2020).

    Article  CAS  Google Scholar 

  3. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, T. et al. Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat. Commun. 13, 1034 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeng, X. et al. Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catal. 10, 3697–3706 (2020).

    Article  CAS  Google Scholar 

  6. Zhang, B. & Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 48, 2216–2264 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Alstrum-Acevedo, J. H., Brennaman, M. K. & Meyer, T. J. Chemical approaches to artificial photosynthesis. 2. Inorg. Chem. 44, 6802–6827 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Hou, H., Zeng, X. & Zhang, X. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59, 17356 (2020).

    Article  CAS  Google Scholar 

  9. Ji, X.-Y., Wang, Y.-Y. & Tao, J. Metal–organic frameworks for the photocatalytic oxygen reduction reaction to hydrogen peroxide. Mater. Chem. Front. 7, 5120–5139 (2023).

    Article  CAS  Google Scholar 

  10. Sun, Y., Han, L. & Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 49, 6605–6631 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Shiraishi, Y. et al. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 18, 985–993 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  ADS  PubMed  Google Scholar 

  13. Wang, H. et al. Covalent organic framework photocatalysts: structures and applications. Chem. Soc. Rev. 49, 4135–4165 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, R. et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50, 120–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, G.-B. et al. Covalent organic frameworks: emerging high-performance platforms for efficient photocatalytic applications. J. Mater. Chem. A 8, 6957–6983 (2020).

    Article  CAS  Google Scholar 

  16. Jin, S. et al. Creation of superheterojunction polymers via direct polycondensation: segregated and bicontinuous donor–acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation. J. Am. Chem. Soc. 137, 7817–7827 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Jin, S. et al. Charge dynamics in a donor–acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angew. Chem. Int. Ed. 52, 2017–2021 (2013).

    Article  ADS  CAS  Google Scholar 

  18. Feng, X. et al. An ambipolar covalent organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv. Mater. 24, 3026–3031 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Krishnaraj, C. et al. Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J. Am. Chem. Soc. 142, 20107–20116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kou, M. et al. Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew. Chem. Int. Ed. 61, e202200413 (2022).

    Article  CAS  Google Scholar 

  21. Chen, D. et al. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production. Angew. Chem. Int. Ed. 62, e202217479 (2023).

    Article  ADS  CAS  Google Scholar 

  22. Chang, J.-N. et al. Oxidation-reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2. Angew. Chem. Int. Ed. 62, e202218868 (2023).

    Article  ADS  CAS  Google Scholar 

  23. Liao, Q. et al. Regulating relative nitrogen locations of diazine functionalized covalent organic frameworks for overall H2O2 photosynthesis. Angew. Chem. Int. Ed. 62, e202310556 (2023).

    Article  CAS  Google Scholar 

  24. Das, P. et al. Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H2O2 production. J. Am. Chem. Soc. 145, 2975–2984 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Mou, Y. et al. Linkage microenvironment of azoles-related covalent organic frameworks precisely regulates photocatalytic generation of hydrogen peroxide. Angew. Chem. Int. Ed. 62, e202309480 (2023).

    Article  CAS  Google Scholar 

  26. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Jin, E. et al. Exceptional electron conduction in two-dimensional covalent organic frameworks. Chem 7, 3309–3324 (2021).

    Article  CAS  Google Scholar 

  28. Tan, K. T., Tao, S., Huang, N. & Jiang, D. Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nat. Commun. 12, 6747 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shiraishi, Y. et al. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4, 774–780 (2014).

    Article  CAS  Google Scholar 

  30. Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Wei, Z. et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 11, 2581–2589 (2018).

    Article  CAS  Google Scholar 

  32. Liu, L. et al. Linear conjugated polymers for solar-driven hydrogen peroxide production: the importance of catalyst stability. J. Am. Chem. Soc. 143, 19287–19293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, C. et al. Polarization engineering of covalent triazine frameworks for highly efficient photosynthesis of hydrogen peroxide from molecular oxygen and water. Adv. Mater. 34, 2110266 (2022).

    Article  CAS  Google Scholar 

  34. Cheng, H. et al. Rational design of covalent heptazine frameworks with spatially separated redox centers for high-efficiency photocatalytic hydrogen peroxide production. Adv. Mater. 34, 2107480 (2022).

    Article  CAS  Google Scholar 

  35. Tian, Q. et al. Nanospatial charge modulation of monodispersed polymeric microsphere photocatalysts for exceptional hydrogen peroxide production. Small 17, 2103224 (2021).

    Article  CAS  Google Scholar 

  36. Zhang, Y. et al. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 8, 361–371 (2023).

    Article  ADS  CAS  Google Scholar 

  37. Isaka, Y., Kawase, Y., Kuwahara, Y., Mori, K. & Yamashita, H. Two-phase system utilizing hydrophobic metal–organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 58, 5402–5406 (2019).

    Article  CAS  Google Scholar 

  38. Lu, J.-N. et al. Synergistic metal-nonmetal active sites in a metal-organic cage for efficient photocatalytic synthesis of hydrogen peroxide in pure water. Angew. Chem. Int. Ed. 62, e202308505 (2023).

    Article  ADS  CAS  Google Scholar 

  39. Zhang, Y. et al. Water flow induced piezoelectric polarization and sulfur vacancy boosting photocatalytic hydrogen peroxide evolution of cadmium sulfide nanorods. Appl. Catal. B Environ. 331, 122714 (2023).

    Article  CAS  Google Scholar 

  40. Wu, Q. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 12, 483 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Y. et al. Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. J. Mater. Chem. A 9, 515–522 (2021).

    Article  CAS  Google Scholar 

  42. Wu, S. & Quan, X. Design principles and strategies of photocatalytic H2O2 production from O2 reduction. ACS EST Eng. 2, 1068–1079 (2022).

    Article  CAS  Google Scholar 

  43. Chen, W. et al. Modulating benzothiadiazole-based covalent organic frameworks via halogenation for enhanced photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 16902–16909 (2020).

    Article  ADS  CAS  Google Scholar 

  44. Liu, Y. et al. Substoichiometric covalent organic frameworks with uncondensed aldehyde for highly efficient hydrogen peroxide photosynthesis in pure water. Appl. Catal. B Environ. 331, 122691 (2023).

    Article  CAS  Google Scholar 

  45. Chen, L. et al. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: a new two-electron water oxidation pathway. Adv. Mater. 32, 1904433 (2020).

    Article  CAS  Google Scholar 

  46. Esteves, C. H. A. et al. Identification of tobacco types and cigarette brands using an electronic nose based on conductive polymer/porphyrin composite sensors. ACS Omega 3, 6476–6482 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jouhara, A. et al. Fusing thiadiazole and terephthalate: a concept to promote the electrochemical performance of conjugated dicarboxylates. ChemSusChem 16, e202300286 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Cheng, J., Wan, S. & Cao, S. Promoting solar-driven hydrogen peroxide production over thiazole-based conjugated polymers via generating and converting singlet oxygen. Angew. Chem. Int. Ed. 62, e202310476 (2023).

    Article  CAS  Google Scholar 

  49. Wang, H., Yang, C., Chen, F., Zheng, G. & Han, Q. A. Crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202202328 (2022).

    Article  ADS  CAS  Google Scholar 

  50. Luo, Y. et al. Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction. Angew. Chem. Int. Ed. 62, e202305355 (2023).

    Article  CAS  Google Scholar 

  51. Qin, C. et al. Dual donor-acceptor covalent organic frameworks for hydrogen peroxide photosynthesis. Nat. Commun. 14, 5238 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Elstner, M. et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260–7268 (1998).

    Article  ADS  CAS  Google Scholar 

  53. Rüger, R. et al. Amsterdam Modeling Suite. SCM https://www.scm.com/doc.2019/DFTB/_downloads/DFTB.pdf (2019).

  54. Gaus, M., Goez, A. & Elstner, M. Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 9, 338–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Rappé, A. K., Casewit, C. J., Colwell, K., Goddard, W. A. III & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  Google Scholar 

  56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  59. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

D.J. gratefully acknowledges the funding from Singapore MOE Tier 2 grants (T2EP10220-0004 and T2EP10221-0012), Singapore MOE Tier 1 grants (A-0008368-00-00 and A-0008369-00-00) and Singapore A*STAR grant (U2102d2004). T.C.S. gratefully acknowledges the funding from Singapore MOE Tier 2 grants (MOE2019-T2-1-097 and MOE-T2EP50120-0004) and National Research Foundation Singapore NRF Investigatorship (NRF-NRFI-2018-04). Y.C. acknowledges the financial support from the China Scholarship Council (201906150104). H.Y. acknowledges the Alexander von Humboldt Foundation for financial support. M.P. and T.H. acknowledge Deutsche Forschungsgemeinschaft for support within CRC 1415 and SPP2244. We appreciate J. Wu for the use of the flow pump, C. Xue for providing the g-C3N4 sample and for the use of gas chromatography (thermal conductivity detector), N. Yan for the use of in situ DRIFTS and Y. Gu and X. Liu for the photoluminescence measurement. H.Y., M.P. and T.H. acknowledge ZIH Dresden for computer time. We also acknowledge the computing time provided on the high-performance computers Noctua 2 at the NHR Centre PC2.

Author information

Authors and Affiliations

Authors

Contributions

D.J. conceived the idea and led the project. R.L. and Y.C. conducted the experiments and measurements. H.Y., M.P. and T.H. performed the computational calculations. Y.G. and T.C.S. conducted and analysed the TA measurements. R.L., Y.C., H.Y., M.P., Y.G., T.C.S., T.H. and D.J. interpreted the results, and R.L., Y.C. and D.J. wrote the paper. All authors read and commented on the paper.

Corresponding author

Correspondence to Donglin Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Reiner Sebastian Sprick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Powder X-ray diffraction spectra.

a, b, Experimentally obtained PXRD patterns (blue cross), Pawley refined patterns (red curves), their differences (grey curves) and simulated sync AA-stacking modes (green curves) of Im-TP-BT-COF (a) and sp2c-TP-BT-COF (b).

Extended Data Fig. 2 Crystal structures.

ac, The top view of unit cells of Hz-TP-BT-COF (a), Im-TP-BT-COF (b) and sp2c-TP-BT-COF (c). df, The side view of unit cells of Hz-TP-BT-COF (d), Im-TP-BT-COF (e) and sp2c-TP-BT-COF (f).

Extended Data Fig. 3 Electrostatic potentials.

ac, Electrostatic potential map for Hz-TP-BT-COF (a) Im-TP-BT-COF (b) and sp2c-TP-BT-COF (c).

Extended Data Fig. 4 Active sites and photocatalytic cycles.

a, Active sites (BT and Ph) of the three COFs for oxygen reduction reaction. b, Photocatalytic cycle for oxygen reduction reaction over the BT unit of benzothiadiazole linker. c, Active site (Ph unit in pink) for oxygen evolution reaction. d, Photocatalytic cycle for oxygen evolution reaction over the Ph unit neighbouring to the triphenylene core.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–15, Figs. 1–53, Discussion and Tables 1–4.

Supplementary Data 1

Atomistic coordinates of optimized sync AA COF structures.

Supplementary Data 2

CIFs of optimized sync AA COF structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Chen, Y., Yu, H. et al. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat Catal 7, 195–206 (2024). https://doi.org/10.1038/s41929-023-01102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01102-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing