Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct measurement of the oxygen reduction reaction kinetics on iron phthalocyanine using advanced transient voltammetry

Abstract

Platinum group metal (PGM)-free catalysts are promising candidates to replace PGM catalysts for the oxygen reduction reaction in fuel cells. While methodologies to determine the number of active sites are under intense development, experimentally quantifying the parameters governing the kinetics of the reaction remains rare, albeit its potential for paving the pathways for future catalysts development. The use of transient voltammetry to probe electrocatalytic reactions by varying the measurement timescales and quantifying the reaction parameters via detailed microkinetic models has shown immense success in uncovering hidden mechanistic insights, connecting theory and experiments. Here we present the application of Fourier-transformed alternating-current voltammetry for analysis of the oxygen reduction reaction electrocatalysis on a model PGM-free catalyst, iron-phthalocyanine, to decipher the kinetic and thermodynamic parameters governing the reaction. These parameters are used to shed light on the limiting steps governing the reaction and to present possible avenues to increase the performance of PGM-free catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rotating ring disc measurement and CV of FePc adsorbed on XC72.
Fig. 2: FTacV measurements.
Fig. 3: Comparison between the experimental and simulated FTacV harmonics.
Fig. 4: Comparison of simulated and experimental kinetic currents.
Fig. 5: Experimentally determined free-energy diagrams.
Fig. 6: Simulated kinetic currents, redox and adsorption kinetics constants.

Similar content being viewed by others

Data availability

All data and codes are available from the authors upon request.

Code availability

All simulations in this work were conducted using codes available for download on GitHub (https://github.com/Snitkoff-Sol/Reaction-parameters-of-ORR.git).

References

  1. Cullen, D. A. et al. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021).

    Article  ADS  CAS  Google Scholar 

  2. Chen, Y. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc–air battery and hydrogen–air fuel cell. Nat. Commun. 9, 1–12 (2018).

    Article  ADS  Google Scholar 

  3. Thompson, S. T. & Papageorgopoulos, D. Platinum group metal-free catalysts boost cost competitiveness of fuel cell vehicles. Nat. Catal. 2, 558–561 (2019).

    Article  CAS  Google Scholar 

  4. Osmieri, L. & Meyer, Q. Recent advances in integrating platinum group metal-free catalysts in proton exchange membrane fuel cells. Curr. Opin. Electrochem. 31, 100847 (2022).

    Article  CAS  Google Scholar 

  5. Muñoz-Becerra, K., Venegas, R., Duque, L., Zagal, J. H. & Recio, F. J. Recent advances of Fe-NC pyrolyzed catalysts for the oxygen reduction reaction. Curr. Opin. Electrochem. 23, 154–161 (2020).

    Article  Google Scholar 

  6. Kozhushner, A., Zion, N. & Elbaz, L. Methods for assessment and measurement of the active site density in platinum group metal–free oxygen reduction reaction catalysts. Curr. Opin. Electrochem. 25, 100620 (2021).

    Article  CAS  Google Scholar 

  7. Holby, E. F., Wang, G. & Zelenay, P. Acid stability and demetalation of PGM-free ORR electrocatalyst structures from density functional theory: a model for ‘single-atom catalyst’ dissolution. ACS Catal. 10, 14527–14539 (2020).

    Article  CAS  Google Scholar 

  8. Banham, D. et al. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 285, 334–348 (2015).

    Article  ADS  CAS  Google Scholar 

  9. Wang, Y., Laborda, E., Ward, K. R., Tschulik, K. & Compton, R. G. A kinetic study of oxygen reduction reaction and characterization on electrodeposited gold nanoparticles of diameter between 17 nm and 40 nm in 0.5 M sulfuric acid. Nanoscale 5, 9699–9708 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Zagal, J. H. & Koper, M. T. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 55, 14510–14521 (2016).

    Article  CAS  Google Scholar 

  11. Thompson, S. T. et al. ElectroCat: DOE’s approach to PGM-free catalyst and electrode R&D. Solid State Ion. 319, 68–76 (2018).

    Article  CAS  Google Scholar 

  12. Snitkoff-Sol, R. Z. et al. Quantifying the electrochemical active site density of precious metal-free catalysts in situ in fuel cells. Nat. Catal. 5, 163–170 (2022).

    Article  CAS  Google Scholar 

  13. Anantharaj, S., Karthik, P. E. & Noda, S. The significance of properly reporting turnover frequency in electrocatalysis research. Angew. Chem. Int. Ed. 60, 23051–23067 (2021).

    Article  CAS  Google Scholar 

  14. Govindarajan, N., Kastlunger, G., Heenen, H. H. & Chan, K. Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go? Chem. Sci. 13, 14–26 (2022).

    Article  CAS  Google Scholar 

  15. Dickens, C. F., Kirk, C. & Nørskov, J. K. Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. J. Phys. Chem. C 123, 18960–18977 (2019).

    Article  CAS  Google Scholar 

  16. Nørskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis (John Wiley & Sons, 2014).

  17. Luo, M. & Koper, M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt (111). Nat. Catal. 5, 615–623 (2022).

    Article  CAS  Google Scholar 

  18. Marshall, A. T. & Herritsch, A. Understanding the hydrogen and oxygen evolution reactions through microkinetic models. ECS Trans. 85, 121 (2018).

    Article  CAS  Google Scholar 

  19. Geppert, J., Kubannek, F., Röse, P. & Krewer, U. Identifying the oxygen evolution mechanism by microkinetic modelling of cyclic voltammograms. Electrochim. Acta 380, 137902 (2021).

    Article  CAS  Google Scholar 

  20. Haisch, T. et al. The origin of the hysteresis in cyclic voltammetric response of alkaline methanol electrooxidation. Phys. Chem. Chem. Phys. 22, 16648–16654 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Geppert, J. et al. Microkinetic analysis of the oxygen evolution performance at different stages of iridium oxide degradation. JACS 144, 13205–13217 (2022).

    Article  CAS  Google Scholar 

  22. Zouraris, D. Electrochemical Study of Redox Enzymes and Their Utilization on Modified Electrodes. PhD thesis, DSpace (2021); https://doi.org/10.26240/heal.ntua.20463

  23. Adamson, H., Bond, A. M. & Parkin, A. Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry. Chem. Commun. 53, 9519–9533 (2017).

    Article  CAS  Google Scholar 

  24. Adamson, H. et al. Analysis of HypD disulfide redox chemistry via optimization of fourier transformed ac voltammetric data. Anal. Chem. 89, 1565–1573 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Adamson, H. et al. Retuning the catalytic bias and overpotential of a [NiFe]-hydrogenase via a single amino acid exchange at the electron entry/exit site. JACS 139, 10677–10686 (2017).

    Article  CAS  Google Scholar 

  26. Bano, K., Nafady, A., Zhang, J. & Bond, A. M. Electrode kinetics associated with tetracyanoquinodimethane (TCNQ), TCNQ•–, and TCNQ2–redox chemistry in acetonitrile as determined by analysis of higher harmonic components derived from fourier transformed large amplitude ac voltammetry. J. Phys. Chem. C 115, 24153–24163 (2011).

    Article  CAS  Google Scholar 

  27. Bond, A. M. et al. An integrated instrumental and theoretical approach to quantitative electrode kinetic studies based on large amplitude Fourier transformed a.c. voltammetry: a mini review. Electrochem. Commun. 57, 78–83 (2015).

    Article  CAS  Google Scholar 

  28. Bonke, S. A., Bond, A. M., Spiccia, L. & Simonov, A. N. Parameterization of water electrooxidation catalyzed by metal oxides using Fourier transformed alternating current voltammetry. JACS 138, 16095–16104 (2016).

    Article  CAS  Google Scholar 

  29. Chen, L. et al. Electrochemical reduction of CO2 with an oxide‐derived lead nano‐coralline electrode in dimcarb. ChemElectroChem 4, 1402–1410 (2017).

    Article  CAS  Google Scholar 

  30. Gavaghan, D. J. et al. Use of Bayesian inference for parameter recovery in DC and AC voltammetry. ChemElectroChem 5, 917–935 (2018).

    Article  CAS  Google Scholar 

  31. Gundry, L. et al. Recent advances and future perspectives for automated parameterisation, Bayesian inference and machine learning in voltammetry. Chem. Commun. 57, 1855–1870 (2021).

    Article  CAS  Google Scholar 

  32. Gundry, L. et al. A comparison of Bayesian inference strategies for parameterisation of large amplitude AC voltammetry derived from total current and Fourier transformed versions. ChemElectroChem 8, 2238–2258 (2021).

    Article  CAS  Google Scholar 

  33. Guo, S.-X. et al. Advanced spatiotemporal voltammetric techniques for kinetic analysis and active site determination in the electrochemical reduction of CO2. Acc. Chem. Res. 55, 241–251 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Guo, S.-X., Bond, A. M. & Zhang, J. Fourier transformed large amplitude alternating current voltammetry: principles and applications. Rev. Polarogr. 61, 21–32 (2015).

    Article  Google Scholar 

  35. Guo, S.-X. et al. Facile electrochemical co-deposition of a graphene–cobalt nanocomposite for highly efficient water oxidation in alkaline media: direct detection of underlying electron transfer reactions under catalytic turnover conditions. Phys. Chem. Chem. Phys. 16, 19035–19045 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Kennedy, G. F., Bond, A. M. & Simonov, A. N. Modelling ac voltammetry with MECSim: facilitating simulation–experiment comparisons. Curr. Opin. Electrochem. 1, 140–147 (2017).

    Article  CAS  Google Scholar 

  37. Lee, C.-Y. et al. Detailed electrochemical studies of the tetraruthenium polyoxometalate water oxidation catalyst in acidic media: identification of an extended oxidation series using Fourier transformed alternating current voltammetry. Inorg. Chem. 51, 11521–11532 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, C.-Y. et al. Theoretical and experimental investigation of surface-confined two-center metalloproteins by large-amplitude Fourier transformed ac voltammetry. J. Electroanal. Chem. 656, 293–303 (2011).

    Article  CAS  Google Scholar 

  39. Lertanantawong, B. et al. Study of the underlying electrochemistry of polycrystalline gold electrodes in aqueous solution and electrocatalysis by large amplitude Fourier transformed alternating current voltammetry. Langmuir 24, 2856–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Y. et al. Lindqvist polyoxoniobate ion-assisted electrodeposition of cobalt and nickel water oxidation catalysts. ACS Appl. Mater. Interfaces 7, 16632–16644 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Simonov, A. N. et al. New insights into the analysis of the electrode kinetics of flavin adenine dinucleotide redox center of glucose oxidase immobilized on carbon electrodes. Langmuir 30, 3264–3273 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Friedman, A., Snitkoff-Sol, R. Z., Honig, H. C. & Elbaz, L. Simplified FTacV model to quantify the electrochemically active site density in PGM-free ORR catalysts. Electrochim. Acta 463, 142865 (2023).

    Article  CAS  Google Scholar 

  43. Zhang, Y. et al. Direct detection of electron transfer reactions underpinning the tin-catalyzed electrochemical reduction of CO2 using Fourier-transformed ac voltammetry. ACS Catal. 7, 4846–4853 (2017).

    Article  CAS  Google Scholar 

  44. Zhang, Y., Simonov, A. N., Zhang, J. & Bond, A. M. Fourier transformed alternating current voltammetry in electromaterials research: direct visualisation of important underlying electron transfer processes. Curr. Opin. Electrochem. 10, 72–81 (2018).

    Article  CAS  Google Scholar 

  45. Robinson, M., Ounnunkad, K., Zhang, J., Gavaghan, D. & Bond, A. Integration of heuristic and automated parametrization of three unresolved two-electron surface-confined polyoxometalate reduction processes by AC voltammetry. ChemElectroChem 5, 3771–3785 (2018).

    Article  CAS  Google Scholar 

  46. Zhang, X. et al. Oxomolybdate anchored on copper for electrocatalytic hydrogen production over the entire pH range. Appl. Catal. B 249, 227–234 (2019).

    Article  CAS  Google Scholar 

  47. Pletcher, D., Tian, Z.-Q. & Williams, D. Developments in Electrochemistry: Science Inspired by Martin Fleischmann (John Wiley & Sons, 2014).

  48. Lloyd-Laney, H. O., Robinson, M. J., Bond, A. M., Parkin, A. & Gavaghan, D. J. A spotter’s guide to dispersion in non-catalytic surface-confined voltammetry experiments. J. Electroanal. Chem. 894, 115204 (2021).

    Article  CAS  Google Scholar 

  49. Li, J., Kennedy, G. F., Bond, A. M. & Zhang, J. Demonstration of superiority of the Marcus–Hush electrode kinetic model in the electrochemistry of dissolved decamethylferrocene at a gold-modified electrode by Fourier-transformed alternating current voltammetry. J. Phys. Chem. C 122, 9009–9014 (2018).

    Article  CAS  Google Scholar 

  50. Li, J., Kennedy, G. F., Gundry, L., Bond, A. M. & Zhang, J. Application of Bayesian inference in Fourier-transformed alternating current voltammetry for electrode kinetic mechanism distinction. Anal. Chem. 91, 5303–5309 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Lloyd-Laney, H. et al. A multiple-technique approach to inferring bio-electrochemical reaction parameters. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.14519709.v1 (2022).

  52. Mashkina, E. & Bond, A. M. Implementation of a statistically supported heuristic approach to alternating current voltammetric harmonic component analysis: re-evaluation of the macrodisk glassy carbon electrode kinetics for oxidation of ferrocene in acetonitrile. Anal. Chem. 83, 1791–1799 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Honda, K., Waki, Y., Matsumoto, A., Kondo, B. & Shimai, Y. Amorphous carbon having higher catalytic activity toward oxygen reduction reaction: quinone and carboxy groups introduced onto its surface. Diam. Relat. Mater. 107, 107900 (2020).

    Article  ADS  CAS  Google Scholar 

  54. Zagal, J., Bindra, P. & Yeager, E. A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J. Electrochem. Soc. 127, 1506 (1980).

    Article  ADS  CAS  Google Scholar 

  55. Zagal, J. H. Metallophthalocyanines as catalysts in electrochemical reactions. Coord. Chem. Rev. 119, 89–136 (1992).

    Article  CAS  Google Scholar 

  56. Zagal, J. H. & Bedioui, F. Electrochemistry of N4 Macrocyclic Metal Complexes Vol. 2 (Springer, 2016).

  57. Venegas, R. et al. Experimental reactivity descriptors of M–N–C catalysts for the oxygen reduction reaction. Electrochim. Acta 332, 135340 (2020).

    Article  CAS  Google Scholar 

  58. Specchia, S., Atanassov, P. & Zagal, J. H. Mapping transition metal–nitrogen–carbon catalyst performance on the critical descriptor diagram. Curr. Opin. Electrochem. 27, 100687 (2021).

    Article  CAS  Google Scholar 

  59. Loyola, C. Z., Ureta-Zañartu, S., Zagal, J. H. & Tasca, F. Activity volcano plots for the oxygen reduction reaction using FeN4 complexes: from reported experimental data to the electrochemical meaning. Curr. Opin. Electrochem. 32, 100923 (2022).

    Article  CAS  Google Scholar 

  60. Alsudairi, A. et al. Resolving the iron phthalocyanine redox transitions for ORR catalysis in aqueous media. J. Phys. Chem. Lett. 8, 2881–2886 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Friedman, A. et al. Application of molecular catalysts for the oxygen reduction reaction in alkaline fuel cells. ACS Appl. Mater. Interfaces 13, 58532–58538 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Ramaswamy, N. & Mukerjee, S. Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: acid versus alkaline media. Adv. Phys. Chem. (2012).

  63. Ramaswamy, N., Tylus, U., Jia, Q. & Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. JACS 135, 15443–15449 (2013).

    Article  CAS  Google Scholar 

  64. Zúñiga, C. et al. Elucidating the mechanism of the oxygen reduction reaction for pyrolyzed Fe-NC catalysts in basic media. Electrochem. Commun. 102, 78–82 (2019).

    Article  Google Scholar 

  65. Rebarchik, M., Bhandari, S., Kropp, T. & Mavrikakis, M. How noninnocent spectator species improve the oxygen reduction activity of single-atom catalysts: microkinetic models from first-principles calculations. ACS Catal. 10, 9129–9135 (2020).

    Article  CAS  Google Scholar 

  66. Zouraris, D. & Karantonis, A. Determination of kinetic and thermodynamic parameters from large amplitude Fourier transform ac voltammetry of immobilized electroactive species. J. Electroanal. Chem. 876, 114729 (2020).

    Article  CAS  Google Scholar 

  67. Zouraris, D., Karnaouri, A., Xydou, R., Topakas, E. & Karantonis, A. Exploitation of enzymes for the production of biofuels: electrochemical determination of kinetic parameters of LPMOs. Appl. Sci. 11, 4715 (2021).

    Article  CAS  Google Scholar 

  68. Honig, H. C. & Elbaz, L. Degradation mechanisms of platinum group metal-free oxygen reduction reaction catalyst based on iron phthalocyanine. ChemElectroChem 10, e202300042 (2023).

    Article  CAS  Google Scholar 

  69. Kulkarni, A., Siahrostami, S., Patel, A. & Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Calle-Vallejo, F., Martínez, J., García-Lastra, J., Abad, E. & Koper, M. Oxygen reduction and evolution at single-metal active sites: comparison between functionalized graphitic materials and protoporphyrins. Surf. Sci. 607, 47–53 (2013).

    Article  ADS  CAS  Google Scholar 

  71. Calle-Vallejo, F., Martínez, J. I. & Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys. Chem. Chem. Phys. 13, 15639–15643 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Koper, M. T. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).

    Article  CAS  Google Scholar 

  73. Koper, M. T. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    Article  CAS  Google Scholar 

  74. Mukherjee, B. Solvothermally synthesized iron phthalocyanine nanostructure for high ORR response: a joint experimental investigation and DFT analysis. J. Electrochem. Soc. 167, 116501 (2020).

    Article  ADS  CAS  Google Scholar 

  75. Resasco, J. et al. Enhancing the connection between computation and experiments in electrocatalysis. Nat. Catal. 5, 374–381 (2022).

    Article  Google Scholar 

  76. Zhang, J. et al. Advances in thermodynamic–kinetic model for analyzing the oxygen evolution reaction. ACS Catal. 10, 8597–8610 (2020).

    Article  CAS  Google Scholar 

  77. Tao, H. B. et al. Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. JACS 141, 13803–13811 (2019).

    Article  CAS  Google Scholar 

  78. Hansen, H. A., Viswanathan, V. & Nørskov, J. K. Unifying kinetic and thermodynamic analysis of 2 e and 4 e reduction of oxygen on metal surfaces. J. Phys. Chem. C 118, 6706–6718 (2014).

    Article  CAS  Google Scholar 

  79. Snitkoff, R. Z., Levy, N., Ozery, I., Ruthstein, S. & Elbaz, L. Imidazole decorated reduced graphene oxide: a biomimetic ligand for selective oxygen reduction electrocatalysis with metalloporphyrins. Carbon 143, 223–229 (2019).

    Article  CAS  Google Scholar 

  80. Elbaz, L., Korin, E., Soifer, L. & Bettelheim, A. Evidence for the formation of cobalt porphyrin–quinone complexes stabilized at carbon-based surfaces toward the design of efficient non-noble-metal oxygen reduction catalysts. J. Phys. Chem. Lett. 1, 398–401 (2010).

    Article  CAS  Google Scholar 

  81. Elbaz, L., Korin, E., Soifer, L. & Bettelheim, A. Mediation at high potentials for the reduction of oxygen to water by cobalt porphyrin–quinone systems in porous aerogel carbon electrodes. J. Electrochem. Soc. 157, B27–B31 (2010).

    Article  CAS  Google Scholar 

  82. Acerbi, L. & Ma, W. J. Practical Bayesian optimization for model fitting with Bayesian adaptive direct search. Preprint at arXiv https://doi.org/10.48550/arXiv.1705.04405 (2017).

Download references

Acknowledgements

This work was conducted in the framework of the Israeli Fuel Cells and Hydrogen Consortium (IFCC), and the Hydrogen Technologies Center (H2Tech), part of the Israel National Institute for Sustainable Energy (NISE). It was supported by the Israel Ministry of Energy, The Israel Ministry of Science, and the Israel Science Foundation (ISF). R.Z.S.-S. thanks the Israeli Ministry of Energy for his fellowship.

Author information

Authors and Affiliations

Authors

Contributions

R.Z.S.-S. contributed to the ideation of this work, conducted most of the experiments in this work, wrote the model and simulation, analysed most of the data, and contributed to the writing of this manuscript. O.R. helped with some of the FTacV measurements, A.M.B. contributed to the analysis and provided valuable insights, and L.E. contributed to the ideation of this work, analysis and writing of this manuscript.

Corresponding author

Correspondence to Lior Elbaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Chang Hyuck Choi, Tatyana V. Reshetenko and Laetitia Dubau for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1 and 2, methods, discussion and Notes 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snitkoff-Sol, R.Z., Rimon, O., Bond, A.M. et al. Direct measurement of the oxygen reduction reaction kinetics on iron phthalocyanine using advanced transient voltammetry. Nat Catal 7, 139–147 (2024). https://doi.org/10.1038/s41929-023-01086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01086-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing