Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CO2 fixation into carbon nanofibres using electrochemical–thermochemical tandem catalysis

Abstract

Carbon dioxide (CO2) fixation into value-added solid carbon such as carbon nanofibres (CNF) for longer-term storage represents a promising avenue for achieving net-negative carbon emissions. However, directly converting CO2 to CNF via thermocatalytic approaches faces thermodynamic constraints, while electrocatalytic methods typically lead to amorphous carbon with limited yields or require energy-intensive conditions (>720 °C). Here, we present an electrocatalytic–thermocatalytic tandem strategy for CNF production, which circumvents the aforementioned thermodynamic limitations by integrating the co-electrolysis of CO2 and water into syngas (CO and H2) with a subsequent thermochemical process at relatively mild conditions (370–450 °C, 1 atm), yielding CNF at a high production rate (average 2.5 gcarbon gmetals−1 h−1). The optimal coordinated actions of FeCo alloy and extra metallic Co were ascertained to enhance the dissociative activation of syngas and favour the carbon–carbon bond formation to produce CNF. This tandem strategy opens a door to leverage renewable energy for decarbonizing CO2 into valuable solid carbon products while producing renewable H2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Feasibility and demonstration of CNF formation from the CO and H2 reaction.
Fig. 2: In situ structural characterizations of CeO2-supported FeCo-based catalysts.
Fig. 3: Theoretical studies on the stability and reactivity of iron–cobalt catalysts.
Fig. 4: Electrochemical–thermochemical tandem process for producing CNFs and renewable H2.

Similar content being viewed by others

Data availability

The source data that support the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Article  PubMed  Google Scholar 

  2. Matthews, H. D. & Wynes, S. Current global efforts are insufficient to limit warming to 1.5 °C. Science 376, 1404–1409 (2022).

    Article  PubMed  CAS  Google Scholar 

  3. Chen, S., Liu, J., Zhang, Q., Teng, F. & McLellan, B. C. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew. Sust. Energ. Rev. 167, 112537 (2022).

    Article  CAS  Google Scholar 

  4. Wang, D., Xie, Z., Porosoff, M. D. & Chen, J. G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics. Chem 7, 2277–2311 (2021).

    Article  CAS  Google Scholar 

  5. Jiang, X., Nie, X., Guo, X., Song, C. & Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 120, 7984–8034 (2020).

    Article  PubMed  CAS  Google Scholar 

  6. Xie, Z. & Chen, J. G. Bimetallic-derived catalytic structures for CO2-assisted ethane activation. Acc. Chem. Res. https://doi.org/10.1021/acs.accounts.3c00348 (2023).

  7. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  8. Ge, L. et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 8, 663–692 (2022).

    Article  CAS  Google Scholar 

  9. She, X., Wang, Y., Xu, H., Chi Edman Tsang, S. & Ping Lau, S. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels. Angew. Chem. Int. Ed. 61, e202211396 (2022).

    Article  CAS  Google Scholar 

  10. Jin, J. et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 617, 724–729 (2023).

    Article  PubMed  CAS  Google Scholar 

  11. Lin, H., Luo, S., Zhang, H. & Ye, J. Perspective toward solar-driven carbon recycling. Joule 6, 294–314 (2022).

    Article  CAS  Google Scholar 

  12. Biswas, A. N. et al. Oxygenate production from plasma-activated reaction of CO2 and ethane. Am. Chem. Soc. Energy Lett. 7, 236–241 (2022).

    Article  CAS  Google Scholar 

  13. George, A. et al. A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization. Renew. Sust. Energ. Rev. 135, 109702 (2021).

    Article  CAS  Google Scholar 

  14. Wang, Q., Kalathil, S., Pornrungroj, C., Sahm, C. D. & Reisner, E. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nat. Catal. 5, 633–641 (2022).

    Article  CAS  Google Scholar 

  15. Schwarz, F. M., Moon, J., Oswald, F. & Müller, V. Biological hydrogen storage and release through multiple cycles of bi-directional hydrogenation of CO2 to formic acid in a single process unit. Joule 6, 1304–1319 (2022).

    Article  CAS  Google Scholar 

  16. Biswas, A. N., Winter, L. R., Xie, Z. & Chen, J. G. Utilizing CO2 as a reactant for C3 oxygenate production via tandem reactions. J. Am. Chem. Soc. Au 3, 293–305 (2023).

    CAS  Google Scholar 

  17. Lee, M. G. et al. Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions. Nat. Catal. 6, 310–318 (2023).

    Article  CAS  Google Scholar 

  18. Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Biniek, K., Henderson, K., Rogers, M. & Santoni, G. Driving CO2 emissions to zero (and beyond) with carbon capture, use, and storage. McKinsey Quarterly (30 June, 2020).

  20. Moon, S. & Prasad, Y. E., Global Carbon Nano Materials Market by Product Type: Global Opportunity Analysis and Industry Forecast, 2021–2031 (Allied Market Research, 2022).

  21. Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10, 865 (2019).

  22. Zuraiqi, K. et al. Direct conversion of CO2 to solid carbon by Ga-based liquid metals. Energy Environ. Sci. 15, 595–600 (2022).

    Article  CAS  Google Scholar 

  23. Ye, L. et al. Low‐temperature CO2 reduction using Mg–Ga liquid metal interface. Adv. Mater. Interfaces 10, 2201625 (2023).

    Article  CAS  Google Scholar 

  24. Ren, J., Li, F.-F., Lau, J., González-Urbina, L. & Licht, S. One-pot synthesis of carbon nanofibers from CO2. Nano Lett. 15, 6142–6148 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Wu, H. et al. One-pot synthesis of nanostructured carbon materials from carbon dioxide via electrolysis in molten carbonate salts. Carbon 106, 208–217 (2016).

    Article  CAS  Google Scholar 

  26. Ruiz-Cornejo, J. C., Sebastián, D. & Lázaro, M. J. Synthesis and applications of carbon nanofibers: a review. Rev. Chem. Eng. 36, 493–511 (2020).

    Article  CAS  Google Scholar 

  27. Shi, T., Li, Z., Guo, J., Gong, H. & Gu, C. Research progress on CNTs/CNFs-modified cement-based composites—a review. Constr. Build. Mater. 202, 290–307 (2019).

    Article  CAS  Google Scholar 

  28. Metaxa, Z. S., Konsta-Gdoutos, M. S. & Shah, S. P. Carbon nanofiber–reinforced cement-based materials. Transp. Res. Rec. 2142, 114–118 (2010).

    Article  CAS  Google Scholar 

  29. Ilinova, A. & Kuznetsova, E. CC(U)S initiatives: prospects and economic efficiency in a circular economy. Energy Rep. 8, 1295–1301 (2022).

    Article  Google Scholar 

  30. Sharma, R. & Kar, K. K. in Handbook of Nanocomposite Supercapacitor Materials I: Characteristics (ed. Kar, K. K.) 215–245 (Springer, 2020).

  31. Annesini, M. C., Piemonte, V. & Turchetti, L. Carbon formation in the steam reforming process: a thermodynamic analysis based on the elemental composition. Chem. Eng. Trans. https://doi.org/10.1016/j.energy.2021.119993 (2007).

  32. Alipour, Z., Babu Borugadda, V., Wang, H. & Dalai, A. K. Syngas production through dry reforming: a review on catalysts and their materials, preparation methods and reactor type. Chem. Eng. J. 452, 139416 (2023).

    Article  CAS  Google Scholar 

  33. Rodriguez, N. M. A review of catalytically grown carbon nanoflbers. J. Mater. Res. 8, 3233–3250 (1993).

  34. Xie, Z., Winter, L. R. & Chen, J. G. Bimetallic-derived catalysts and their application in simultaneous upgrading of CO2 and ethane. Matter 4, 408–440 (2021).

    Article  CAS  Google Scholar 

  35. Fan, H. et al. Dynamic state and active structure of Ni–Co catalyst in carbon nanofiber growth revealed by in situ transmission electron microscopy. Am. Chem. Soc. Nano 15, 17895–17906 (2021).

    CAS  Google Scholar 

  36. Young, D. J., Zhang, J., Geers, C. & Schütze, M. Recent advances in understanding metal dusting: a review. Mater. Corros. 62, 7–28 (2011).

    Article  CAS  Google Scholar 

  37. Guo, X., Vullum, P. E. & Venvik, H. J. Inhibition of metal dusting corrosion on Fe-based alloy by combined near surface severe plastic deformation (NS-SPD) and thermochemical treatment. Corros. Sci. 190, 109702 (2021).

    Article  CAS  Google Scholar 

  38. Khadra, G. et al. Structure and magnetic properties of FeCo clusters: carbon environment and annealing effects. J. Phys. Chem. C 121, 10713–10718 (2017).

    Article  CAS  Google Scholar 

  39. Carta, D., Mountjoy, G., Apps, R. & Corrias, A. Effect of the support on the formation of FeCo alloy nanoparticles in an SBA-16 mesoporous silica matrix: an X-ray absorption spectroscopy. Study J. Phys. Chem. C 116, 12353–12365 (2012).

    Article  CAS  Google Scholar 

  40. Van Ravenhorst, I. K. et al. On the cobalt carbide formation in a Co/TiO2 Fischer–Tropsch synthesis catalyst as studied by high-pressure, long-term operando X-ray absorption and diffraction. ACS Catal. 11, 2956–2967 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu, P. & Nørskov, J. K. Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 3, 3814–3818 (2001).

    Article  CAS  Google Scholar 

  42. Rodriguez, J. The chemical properties of bimetallic surfaces: importance of ensemble and electronic effects in the adsorption of sulfur and SO2. Prog. Surf. Sci. 81, 141–189 (2006).

    Article  CAS  Google Scholar 

  43. Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article  Google Scholar 

  44. Li, H. et al. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni–N–C catalyst in a membrane electrode assembly electrolyzer. Energy Environ. Sci. 16, 1502–1510 (2023).

    Article  CAS  Google Scholar 

  45. Nitopi, S. et al. Progress and perspectives of electrochemical co2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  PubMed  CAS  Google Scholar 

  46. Saha, P., Amanullah, S. & Dey, A. Selectivity in electrochemical CO2 reduction. Acc. Chem. Res. 55, 134–144 (2022).

    Article  PubMed  CAS  Google Scholar 

  47. Sheng, W. et al. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 10, 1180–1185 (2017).

    Article  CAS  Google Scholar 

  48. Cavaliere, P. in Water Electrolysis for Hydrogen Production (ed. Cavaliere, P.) 509–541 (Springer, 2023).

  49. Du, Z. et al. A review of hydrogen purification technologies for fuel cell vehicles. Catalysts 11, 393 (2021).

    Article  CAS  Google Scholar 

  50. Douglas, A., Carter, R., Li, M. & Pint, C. L. Toward small-diameter carbon nanotubes synthesized from captured carbon dioxide: critical role of catalyst coarsening. Am. Chem. Soc. Appl. Mater. Interfaces 10, 19010–19018 (2018).

    Article  CAS  Google Scholar 

  51. Chupas, P. J. et al. A versatile sample-environment cell for non-ambient X-ray scattering experiments. J. Appl. Crystallogr. 41, 822–824 (2008).

    Article  CAS  Google Scholar 

  52. Marinkovic, N. S. et al. Synchrotron catalysis consortium (SCC) at NSLS-II: dedicated beamline facilities for in situ and operando characterization of catalysts. Synchrotron Radiat. N. 33, 4–9 (2020).

    Article  Google Scholar 

  53. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  PubMed  CAS  Google Scholar 

  54. Xie, Z. et al. Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nat. Commun. 11, 1887 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Xie, Z., Wang, X., Chen, X., Liu, P. & Chen, J. G. General descriptors for CO2-assisted selective C–H/C–C bond scission in ethane. J. Am. Chem. Soc. 144, 4186–4195 (2022).

    Article  PubMed  CAS  Google Scholar 

  56. Dujardin, E., Ebbesen, T. W., Krishnan, A. & Treacy, M. M. J. Purification of single-shell nanotubes. Adv. Mater. 10, 611–613 (1998).

    Article  CAS  Google Scholar 

  57. Wang, I.-W. et al. Catalytic decomposition of methane into hydrogen and high-value carbons: combined experimental and DFT computational study. Catal. Sci. Technol. 11, 4911–4921 (2021).

    Article  CAS  Google Scholar 

  58. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  59. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  60. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  61. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  62. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  63. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  CAS  Google Scholar 

  64. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  65. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  66. Henkelman, G. & Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  67. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  68. Moruzzi, V. L., Marcus, P. M., Schwarz, K. & Mohn, P. Ferromagnetic phases of bcc and fcc Fe, Co, and Ni. Phys. Rev. B 34, 1784–1791 (1986).

    Article  CAS  Google Scholar 

  69. Liu, A. Y. & Singh, D. J. General-potential study of the electronic and magnetic structure of FeCo. Phys. Rev. B 46, 11145–11148 (1992).

    Article  CAS  Google Scholar 

  70. Li, C., Freeman, A. J. & Fu, C. L. Electronic structure and magnetic properties of the hcp Co(0001) surface. J. Magn. Magn. Mater. 94, 134–140 (1991).

    Article  CAS  Google Scholar 

  71. Faraoun, H. I., Zhang, Y. D., Esling, C. & Aourag, H. Crystalline, electronic, and magnetic structures of θ-Fe3C, χ-Fe5C2, and η-Fe2C from first principle calculation. J. Appl. Phys. https://doi.org/10.1063/1.2194118 (2006).

  72. Gao, Y. et al. First-principles study on surface structural, magnetic and electronic properties of alloyed cementite with Co or Ni. Comput. Mater. Sci. 85, 154–158 (2014).

    Article  CAS  Google Scholar 

  73. Shein, I. R., Medvedeva, N. I. & Ivanovskii, A. L. Electronic and structural properties of cementite-type M3X (M = Fe, Co, Ni; X = C or B) by first principles calculations. Phys. B 371, 126–132 (2006).

  74. Chiou, W. C. & Carter, E. A. Structure and stability of Fe3C-cementite surfaces from first principles. Surf. Sci. 530, 88–100 (2003).

    Article  Google Scholar 

  75. Broos, R. J. P., Klumpers, B., Zijlstra, B., Filot, I. A. W. & Hensen, E. J. M. A quantum-chemical study of the CO dissociation mechanism on low-index Miller planes of ϴ-Fe3C. Catal. Today 342, 152–160 (2020).

    Article  CAS  Google Scholar 

  76. Shen, X. et al. Carburized cobalt catalyst for the Fischer–Tropsch synthesis. Catal. Sci. Technol. 11, 6564–6572 (2021).

    Article  CAS  Google Scholar 

  77. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  78. Liu, Z. et al. Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2–Cu2O catalyst. Science 368, 513–517 (2020).

    Article  PubMed  CAS  Google Scholar 

  79. Reuter, K. & Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2001).

    Article  Google Scholar 

  80. Reuter, K. & Scheffler, M. Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2. Phys. Rev. B 68, 045407 (2003).

    Article  Google Scholar 

  81. Kang, J. et al. Surface characterization and methane activation on SnOx/Cu2O/Cu(111) inverse oxide/metal catalysts. Phys. Chem. Chem. Phys. 23, 17186–17196 (2021).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (grant numbers DE-SC0012704 and DE-FG02-13ER16381). This research used resources of the Center for Functional Nanomaterials (CFN) and beamlines 7-BM (QAS) and 8-ID (ISS) of the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (contract nos DE-SC0012704 and DE-SC0012653), US DOE Office of Science User Facilities. Beamline operations were supported in part by the Synchrotron Catalysis Consortium (US DOE, Office of Basic Energy Sciences, grant no. DE-SC0012335). We acknowledge the assistance of Z. Lin, A. Ooi and D. Huang in performing Raman and ICP measurements. The DFT calculations were performed using computational resources at the Center for Functional Nanomaterials, a user facility at Brookhaven National Laboratory and at the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US DOE under contract no. DE-AC02-05CH11231. S.G. acknowledges the National Science Foundation Graduate Research Fellowship Program (DGE-2036197).

Author information

Authors and Affiliations

Authors

Contributions

Z.X., S.G. and J.G.C. conceived the idea and designed the research; Z.X. carried out catalyst synthesis, reactions, in situ synchrotron measurements, product separation, energy cost and CO2 emission assessments, and analysis of all the experimental data; Z.X. and S.H. performed the electron microscopy imaging; S.G. contributed to the discussion, conducted Raman and ICP measurements, and assisted with the materials preparation and electrochemical experiments. E.H. conducted all the DFT calculations and theoretical data analysis under the supervision of P.L. and J.G.C.; Z.X. and E.H. prepared the initial draft; Z.X., E.H., S.G., P.L. and J.G.C. reviewed and revised the manuscript; and J.G.C. and P.L. supervised the whole project.

Corresponding authors

Correspondence to Ping Liu or Jingguang G. Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Figs. 1–57 and Tables 1–16.

Supplementary Data 1

DFT-optimized atomic coordinates information.

Source data

Source Data Fig. 1

Feasibility and demonstration of CNF formation.

Source Data Fig. 2

In situ structural characterizations.

Source Data Fig. 3

Theoretical studies on catalyst stability and reactivity.

Source Data Fig. 4

Electrochemical–thermochemical tandem-reactor experimental results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Huang, E., Garg, S. et al. CO2 fixation into carbon nanofibres using electrochemical–thermochemical tandem catalysis. Nat Catal 7, 98–109 (2024). https://doi.org/10.1038/s41929-023-01085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01085-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing