Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective deoxygenation of biomass-derived carbonyl compounds on Zn via electrochemical Clemmensen reduction

Abstract

For reductive upgrading of lignocellulosic biomass intermediates containing carbonyl groups, deoxygenation is critical to increase the energy density and storage lifetime of bio-oils. However, electrochemical reduction that cleaves the C=O bond by hydrogenolysis to form an alkane is extremely challenging because the C=O bond more readily undergoes hydrogenation to form an alcohol and the resulting alcohol C–O bond is more difficult to cleave by hydrogenolysis. In traditional organic chemistry, the Clemmensen reduction uses Zn as a reductant to convert aldehydes and ketones to alkanes. Here we demonstrate the feasibility of the electrochemical Clemmensen reduction, which uses Zn not as a stoichiometric reductant but as an electrocatalytic cathode in an electrochemical cell. The factors that affect the electrochemical hydrogenolysis and hydrogenation pathways on Zn and the mechanistic reasons why Zn is particularly good at hydrogenolysis are elucidated, revealing the advantages of electrochemical Clemmensen reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduction of carbonyl compounds.
Fig. 2: Electrochemical hydrogenation and hydrogenolysis reactions.
Fig. 3: Comparison of Cu and Zn.
Fig. 4: The effect of potential.
Fig. 5: The effect of pH.
Fig. 6: Reduction pathways of 4-HBAL.
Fig. 7: Free energy diagrams of 4-HBAL reduction including the transition states.

Similar content being viewed by others

Data availability

The data that support the findings of this study are presented in the Article, Supplementary Information and Supplementary Data files. Source data are provided in Supplementary Data 1. Any other relevant data are also available from the corresponding authors upon reasonable request.

References

  1. Nigam, P. S. & Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37, 52–68 (2011).

    Article  CAS  Google Scholar 

  2. Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. Li, C., Zhao, X., Wang, A., Huber, G. W. & Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).

    Article  PubMed  CAS  Google Scholar 

  5. Mika, L. T., Cséfalvay, E. & Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev. 118, 505–613 (2018).

    Article  PubMed  CAS  Google Scholar 

  6. Mohan, D., Pittman, C. U. & Steele, P. H. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006).

    Article  CAS  Google Scholar 

  7. Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012).

    Article  CAS  Google Scholar 

  8. Gollakota, A. R. K., Reddy, M., Subramanyam, M. D. & Kishore, N. A review on the upgradation techniques of pyrolysis oil. Renew. Sustain. Energy Rev. 58, 1543–1568 (2016).

    Article  CAS  Google Scholar 

  9. Hu, X. et al. Polymerization on heating up of bio-oil: a model compound study. AIChE J. 59, 888–900 (2013).

    Article  CAS  Google Scholar 

  10. Wang, H., Lee, S. J., Olarte, M. V. & Zacher, A. H. Bio-oil stabilization by hydrogenation over reduced metal catalysts at low temperatures. ACS Sustain. Chem. Eng. 4, 5533–5545 (2016).

    Article  CAS  Google Scholar 

  11. Mortensen, P. M., Grunwaldt, J. D., Jensen, P. A., Knudsen, K. G. & Jensen, A. D. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 407, 1–19 (2011).

    Article  CAS  Google Scholar 

  12. Kim, S. et al. Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem. 21, 3715–3743 (2019).

    Article  CAS  Google Scholar 

  13. Cook, A., MacLean, H., St. Onge, P. & Newman, S. G. Nickel-catalyzed reductive deoxygenation of diverse C–O bond-bearing functional groups. ACS Catal. 11, 13337–13347 (2021).

    Article  CAS  Google Scholar 

  14. Magano, J. & Dunetz, J. R. Large-scale carbonyl reductions in the pharmaceutical industry. Org. Process Res. Dev. 16, 1156–1184 (2012).

    Article  CAS  Google Scholar 

  15. Lopez-Ruiz, J. A. et al. Understanding the role of metal and molecular structure on the electrocatalytic hydrogenation of oxygenated organic compounds. ACS Catal. 9, 9964–9972 (2019).

    Article  CAS  Google Scholar 

  16. Roylance, J. J., Kim, T. W. & Choi, K. S. Efficient and selective electrochemical and photoelectrochemical reduction of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan using water as the hydrogen source. ACS Catal. 6, 1840–1847 (2016).

    Article  CAS  Google Scholar 

  17. Bender, M. T., Yuan, X., Goetz, M. K. & Choi, K. S. Electrochemical hydrogenation, hydrogenolysis, and dehydrogenation for reductive and oxidative biomass upgrading using 5-hydroxymethylfurfural as a model system. ACS Catal. 12, 12349–12368 (2022).

    Article  CAS  Google Scholar 

  18. May, A. S. & Biddinger, E. J. Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions. ACS Catal. 10, 3212–3221 (2020).

    Article  CAS  Google Scholar 

  19. Chadderdon, X. H. et al. Mechanisms of furfural reduction on metal electrodes: distinguishing pathways for selective hydrogenation of bioderived oxygenates. J. Am. Chem. Soc. 139, 14120–14128 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. Lee, D. K. et al. The impact of 5-hydroxymethylfurfural (HMF)-metal interactions on the electrochemical reduction pathways of HMF on various metal electrodes. ChemSusChem 14, 4563–4572 (2021).

    Article  PubMed  CAS  Google Scholar 

  21. Yuan, X., Lee, K., Bender, M. T., Schmidt, J. R. & Choi, K. S. Mechanistic differences between electrochemical hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural and their pH dependence. ChemSusChem 15, e202200952 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nilges, P. & Schröder, U. Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals. Energy Environ. Sci. 6, 2925–2931 (2013).

    Article  CAS  Google Scholar 

  23. Clemmensen, E. Reduktion von ketonen und aldehyden zu den entsprechenden kohlenwasserstoffen unter anwendung von amalgamiertem zink und salzsäure. Ber. Dtsch. Chem. Ges. 46, 1837–1843 (1913).

    Article  Google Scholar 

  24. Yamamura, S. & Nishiyama, S. in Comprehensive Organic Synthesis (eds Trost, B. M. & Fleming, I.) 307–325 (Pergamon, 1991).

  25. Roylance, J. J. & Choi, K. S. Electrochemical reductive biomass conversion: direct conversion of 5-hydroxymethylfurfural (HMF) to 2,5-hexanedione (HD) via reductive ring-opening. Green Chem. 18, 2956–2960 (2016).

    Article  CAS  Google Scholar 

  26. Sekine, T., Yamura, A. & Sugino, K. Mechanism of hydrocarbon formation in the electrolytic reduction of acetone in aqueous sulfuric acid. J. Electrochem. Soc. 112, 439–443 (1965).

    Article  CAS  Google Scholar 

  27. Bisselink, R. J. M. et al. Identification of more benign cathode materials for the electrochemical reduction of levulinic acid to valeric acid. ChemElectroChem 6, 3285–3290 (2019).

    Article  CAS  Google Scholar 

  28. Mahinpey, N., Murugan, P., Mani, T. & Raina, R. Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor. Energy Fuels 23, 2736–2742 (2009).

    Article  CAS  Google Scholar 

  29. Lee, H. et al. Hydrogen adsorption engineering by intramolecular proton transfer on 2D nanosheets. NPG Asia Mater. 10, 441–454 (2018).

    Article  CAS  Google Scholar 

  30. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  31. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  32. Lamoureux, P. S., Singh, A. R. & Chan, K. pH effects on hydrogen evolution and oxidation over Pt(111): insights from first-principles. ACS Catal. 9, 6194–6201 (2019).

    Article  CAS  Google Scholar 

  33. Moreno-García, P. et al. Selective electrochemical reduction of CO2 to CO on Zn-based foams produced by Cu2+ and template-assisted electrodeposition. ACS Appl. Mater. Interfaces 10, 31355–31365 (2018).

    Article  PubMed  Google Scholar 

  34. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, 1966).

  35. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  38. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  PubMed  Google Scholar 

  39. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  CAS  Google Scholar 

  41. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  42. Monkhorst, H. J. & Pack, J. D. Special points for Brillonin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  43. Mathew, K., Kolluru, V. S. C., Mula, S., Steinmann, S. N. & Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Article  PubMed  Google Scholar 

  44. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  PubMed  Google Scholar 

  45. Steinmann, S. N., Michel, C., Schwiedernoch, R. & Sautet, P. Impacts of electrode potentials and solvents on the electroreduction of CO2: a comparison of theoretical approaches. Phys. Chem. Chem. Phys. 17, 13949–13963 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Gauthier, J. A. et al. Challenges in modeling electrochemical reaction energetics with polarizable continuum models. ACS Catal. 9, 920–931 (2019).

    Article  CAS  Google Scholar 

  47. Frisch, M. J. et al. Gaussian 16 Rev. C.01 (Gaussian, 2016).

  48. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  PubMed  CAS  Google Scholar 

  49. Tang, M. T., Liu, X., Ji, Y., Norskov, J. K. & Chan, K. Modeling hydrogen evolution reaction kinetics through explicit water–metal interfaces. J. Phys. Chem. C 124, 28083–28092 (2020).

    Article  CAS  Google Scholar 

  50. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  51. Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article  CAS  Google Scholar 

  52. Chang, K., Zhang, H., Chen, J. G., Lu, Q. & Cheng, M. J. Constant electrode potential quantum mechanical study of CO2 electrochemical reduction catalyzed by N-doped graphene. ACS Catal. 9, 8197–8207 (2019).

    Article  CAS  Google Scholar 

  53. Van Den Bossche, M., Skúlason, E., Rose-Petruck, C. & Jónsson, H. Assessment of constant-potential implicit solvation calculations of electrochemical energy barriers for H2 evolution on Pt. J. Phys. Chem. C 123, 4116–4124 (2019).

    Article  Google Scholar 

  54. Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    Article  PubMed  CAS  Google Scholar 

  55. Duan, Z. & Henkelman, G. Theoretical resolution of the exceptional oxygen reduction activity of Au(100) in alkaline media. ACS Catal. 9, 5567–5573 (2019).

    Article  CAS  Google Scholar 

  56. Hansen, H. A., Viswanathan, V. & Nørskov, J. K. Unifying kinetic and thermodynamic analysis of 2 e and 4 e reduction of oxygen on metal surfaces. J. Phys. Chem. C 118, 6706–6718 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Catalysis Science under award DE-SC0020983 (K.-S.C. and J.R.S.). We gratefully acknowledge the use of facilities and instrumentation supported by the National Science Foundation through the University of Wisconsin Materials Research Science and Engineering Center (DMR-1720415).

Author information

Authors and Affiliations

Authors

Contributions

K.-S.C. and J.R.S. supervised the project. X.Y. planned and performed all experiments, with the help of J.B.E., for the experiments in non-aqueous media, the stability tests and the scanning electron microscopy imaging, under the supervision of K.-S.C.; K.L. performed all computational calculations under the supervision of J.R.S. All authors discussed the results and contributed to writing the manuscript.

Corresponding authors

Correspondence to J. R. Schmidt or Kyoung-Shin Choi.

Ethics declarations

Competing interests

A patent that contains the experimental results shown in this manuscript has been filed by the Wisconsin Alumni Research Foundation (inventors, K.-S.C., X.Y. and J.B.E.; application number, 18/188,023; status, pending). The other authors (J.R.S. and K.L.) declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Michael Busch, Uwe Schröder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1–5 and ref. 1.

Supplementary Data 1

Source data for Figs. 3–5.

Supplementary Data 2

Atomic coordinates of the optimized models.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Lee, K., Eisenberg, J.B. et al. Selective deoxygenation of biomass-derived carbonyl compounds on Zn via electrochemical Clemmensen reduction. Nat Catal 7, 43–54 (2024). https://doi.org/10.1038/s41929-023-01066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01066-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing