Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts

Abstract

Fe–N–C catalysts are the most promising platinum group metal-free oxygen-reduction catalysts, but they suffer from a low density of active metal sites and the so-called activity–stability trade-off. Here we report an Fe–N–C catalyst prepared by adding an optimal amount of H2 to the traditional inert atmosphere during the thermal activation. The presence of H2 significantly increases the total density of FeN4 sites, suppressing the unstable pyrrolic-N-coordinated S1 sites and favouring the stable pyridinic-N-coordinated S2 sites with shortened Fe–N bond lengths. We propose that the intrinsically stable S2 sites are probably arranged in well-graphitized carbon layers, and the S1 sites exist in less-graphitized carbon. H2 could remove unstable S1 sites and retain stable S2 sites during the pyrolysis to break the challenging activity–stability trade-off. The Fe–N–C catalyst in membrane electrode assemblies maintains a current density of 67 mA cm−2 at 0.8 V (H2–air) after 30,000 voltage cycles (0.60 to 0.95 V under H2–air), achieving encouraging durability and performance simultaneously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis principles and catalytic properties.
Fig. 2: MEA performance of the Fe–N–C catalysts.
Fig. 3: Analysis of Fe coordination environments induced from a pyrolysis atmosphere.
Fig. 4: Morphologies of the Fe–N–C catalysts.
Fig. 5: Structural analysis of the Fe–N–C catalysts.
Fig. 6: DFT calculations to elucidate activity and stability improvement.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and Supplementary Information, or from the authors upon request. Source data are provided with this paper.

References

  1. Wang, X. X., Swihart, M. T. & Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2, 578–589 (2019).

    Article  CAS  Google Scholar 

  2. He, Y. & Wu, G. PGM-free oxygen-reduction catalyst development for proton-exchange membrane fuel cells: challenges, solutions and promises. Acc. Mater. Res. 3, 224–236 (2022).

    Article  CAS  Google Scholar 

  3. Wang, W., Jia, Q., Mukerjee, S. & Chen, S. Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials. ACS Catal. 9, 10126–10141 (2019).

    Article  CAS  Google Scholar 

  4. Martinez, U. et al. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction. Adv. Mater. 31, 1806545 (2019).

    Article  Google Scholar 

  5. Zhang, H. et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139, 14143–14149 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, S. et al. Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 7, 652–663 (2022).

    Article  CAS  Google Scholar 

  7. Asset, T., Maillard, F. & Jaouen, F. in Supported Metal Single Atom Catalysis (eds Serp, P. & Minh, D. P.) 531–582 (Wiley, 2022).

  8. Glibin, V. P., Dodelet, J.-P. & Zhang, G. Energetics and thermodynamic stability of potential Fe(II)-hexa-aza-active sites for O2 reduction in PEM fuel cells. SusMat 2, 731–748 (2022).

    Article  CAS  Google Scholar 

  9. Liu, S., Shi, Q. & Wu, G. Solving the activity–stability trade-off riddle. Nat. Catal. 4, 6–7 (2021).

    Article  Google Scholar 

  10. Liu, K., Wu, G. & Wang, G. Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reduction. J. Phys. Chem. C 121, 11319–11324 (2017).

    Article  CAS  Google Scholar 

  11. Mao, K., Yang, L., Wang, X., Wu, Q. & Hu, Z. Identifying iron-nitrogen/carbon active structures for oxygen reduction reaction under the effect of electrode potential. J. Phys. Chem. Lett. 11, 2896–2901 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Shao, Y., Dodelet, J.-P., Wu, G. & Zelenay, P. PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges. Adv. Mater. 31, 1807615 (2019).

    Article  Google Scholar 

  13. Kumar, K. et al. On the influence of oxygen on the degradation of Fe‐N‐C catalysts. Angew. Chem. Int. Ed. 59, 3235–3243 (2020).

    Article  CAS  Google Scholar 

  14. Zhu, Y. et al. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 10, 1902844 (2020).

    Article  CAS  Google Scholar 

  15. Li, J. et al. Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2021).

    Article  Google Scholar 

  16. Marshall-Roth, T. et al. A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat. Commun. 11, 5283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Menga, D. et al. Resolving the dilemma of Fe–N–C catalysts by the selective synthesis of tetrapyrrolic active sites via an imprinting strategy. J. Am. Chem. Soc. 143, 18010–18019 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Muñoz-Becerra, K., Venegas, R., Duque, L., Zagal, J. H. & Recio, F. J. Recent advances of Fe–N–C pyrolyzed catalysts for the oxygen reduction reaction. Curr. Opin. Electrochem. 23, 154–161 (2020).

    Article  Google Scholar 

  19. Lefèvre, M., Dodelet, J. P. & Bertrand, P. O2 reduction in PEM fuel cells: activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors. J. Phys. Chem. B 104, 11238–11247 (2000).

    Article  Google Scholar 

  20. Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron and cobalt. Science 332, 443–447 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Proietti, E. et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011).

    Article  PubMed  Google Scholar 

  22. Lefèvre, M., Proietti, E., Jaouen, F. & Dodelet, J.-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).

    Article  PubMed  Google Scholar 

  23. Kramm, U. I. et al. On an easy way to prepare metal–nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc. 138, 635–640 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Jaouen, F. & Dodelet, J.-P. O2 reduction mechanism on non-noble metal catalysts for PEM fuel cells. Part I: experimental rates of O2 electroreduction, H2O2 electroreduction and H2O2 disproportionation. J. Phys. Chem. C 113, 15422–15432 (2009).

    Article  CAS  Google Scholar 

  25. Tabassum, H. et al. Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C. Energy Environ. Sci. 15, 4190–4200 (2022).

    Article  CAS  Google Scholar 

  26. Kumar, K. et al. Fe–N–C electrocatalysts’ durability: effects of single atoms’ mobility and clustering. ACS Catal. 11, 484–494 (2021).

    Article  CAS  Google Scholar 

  27. Workman, M. J., Serov, A., Tsui, L., Atanassov, P. & Artyushkova, K. Fe–N–C catalyst graphitic layer structure and fuel cell performance. ACS Energy Lett. 2, 1489–1493 (2017).

    Article  CAS  Google Scholar 

  28. Malko, D., Kucernak, A. & Lopes, T. In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nat. Commun. 7, 13285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mehmood, A. et al. High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 5, 311–323 (2022).

    Article  CAS  Google Scholar 

  30. Zhang, H. et al. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 12, 2548–2558 (2019).

    Article  CAS  Google Scholar 

  31. Laviron, E. Surface linear potential sweep voltammetry: equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account. J. Electroanal. Chem. Interf. Electrochem. 52, 395–402 (1974).

    Article  CAS  Google Scholar 

  32. Zhang, H. et al. Standardized protocols for evaluating platinum group metal-free oxygen reduction reaction electrocatalysts in polymer electrolyte fuel cells. Nat. Catal. 5, 455–462 (2022).

    Article  CAS  Google Scholar 

  33. Osmieri, L., Cullen, D. A., Chung, H. T., Ahluwalia, R. K. & Neyerlin, K. C. Durability evaluation of a Fe–N–C catalyst in polymer electrolyte fuel cell environment via accelerated stress tests. Nano Energy 78, 105209 (2020).

    Article  CAS  Google Scholar 

  34. Qiao, Z. et al. Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14, 4948–4960 (2021).

    Article  CAS  Google Scholar 

  35. Shi, Q. et al. Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy Environ. Sci. 13, 3544–3555 (2020).

    Article  CAS  Google Scholar 

  36. Zitolo, A. et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Kramm, U. I., Ni, L. & Wagner, S. 57Fe Mössbauer spectroscopy characterization of electrocatalysts. Adv. Mater. 31, 1805623 (2019).

    Article  Google Scholar 

  38. Ni, L. et al. Identification of the catalytically dominant iron environment in iron- and nitrogen-doped carbon catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 144, 16827–16840 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Mineva, T. et al. Understanding active sites in pyrolyzed Fe–N–C catalysts for fuel cell cathodes by bridging density functional theory calculations and 57Fe Mössbauer spectroscopy. ACS Catal. 9, 9359–9371 (2019).

    Article  CAS  Google Scholar 

  40. Thompson, E., Danks, A. E., Bourgeois, L. & Schnepp, Z. Iron-catalyzed graphitization of biomass. Green Chem. 17, 551–556 (2015).

    Article  CAS  Google Scholar 

  41. Jaouen, F., Lefèvre, M., Dodelet, J.-P. & Cai, M. Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores? J. Phys. Chem. B 110, 5553–5558 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, X. et al. Single-iron site catalysts with self-assembled dual-size architecture and hierarchical porosity for proton-exchange membrane fuel cells. Appl. Catal. B 279, 119400 (2020).

    Article  CAS  Google Scholar 

  43. Uddin, A. et al. High power density platinum group metal-free cathodes for polymer electrolyte fuel cells. ACS Appl. Mater. Interfaces 12, 2216–2224 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Y. et al. Facile synthesis of MOF-derived concave cube nanocomposite by self-templated toward lightweight and wideband microwave absorption. Carbon 186, 574–588 (2022).

    Article  CAS  Google Scholar 

  45. Zheng, L., Zhao, Y., Zhang, H., Xia, W. & Tang, J. Space-confined anchoring of Fe–Nx on concave N-doped carbon cubes for catalyzing oxygen reduction. ChemSusChem 15, e202102642 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401–187405 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Wan, X. et al. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).

    Article  CAS  Google Scholar 

  48. Wu, G. & Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 46, 1878–1889 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, M. & Feng, Z. Pitfalls in X-ray absorption spectroscopy analysis and interpretation: a practical guide for general users. Curr. Opin. Electrochem. 30, 100803 (2021).

    Article  CAS  Google Scholar 

  50. Mohd Adli, N. et al. Engineering atomically dispersed FeN4 active sites for CO2 electroreduction. Angew. Chem. Int. Ed. 60, 1022–1032 (2021).

    Article  CAS  Google Scholar 

  51. Liu, S. et al. Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts. Angew. Chem. Int. Ed. 59, 21698–21705 (2020).

    Article  CAS  Google Scholar 

  52. Saveleva, V. A. et al. Fe–N–C electrocatalyst and its electrode: are we talking about the same material? ACS Appl. Energy Mater. 6, 611–616 (2023).

    Article  CAS  Google Scholar 

  53. Hess, W. M. & Herd, C. R. in Carbon Black: Science and Technology (eds Donnet, J.-B. et al) 89–173 (Routledge, 2018).

  54. Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111 (2011).

    Article  PubMed  Google Scholar 

  55. Xie, X. et al. Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nat. Catal. 3, 1044–1054 (2020).

    Article  CAS  Google Scholar 

  56. Vitos, L., Ruban, A. V., Skriver, H. L. & Kollár, J. The surface energy of metals. Surf. Sci. 411, 186–202 (1998).

    Article  CAS  Google Scholar 

  57. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964).

    Article  Google Scholar 

  58. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133–1138 (1965).

    Article  Google Scholar 

  59. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  60. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  61. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  63. Norskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  64. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106–084114 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office. Scanning transmission electron microscopy research was supported by the Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory. This work was in part authored by Argonne National Laboratory, which is operated for the US DOE by the University of Chicago Argonne LLC under contract no. DE-AC02-06CH11357. G. Wu also thanks the New York State’s Center of Excellence in Materials Informatics (CMI) at the University at Buffalo, as well as the National Science Foundation (CBET-1604392, 1804326 and 2223467), for partial support.

Author information

Authors and Affiliations

Authors

Contributions

G. Wu, J.-P.D. and Y.Z. were the primary writers of the paper. Y.Z., J.L., B.Z., S.K. and G. Wu designed the catalyst synthesis and performed the electrochemical experiments, characterized the catalyst and analysed the data. C.L. and J.X. carried out fuel cell tests and data analysis. D.A.C. and M.J.Z. together performed the electron microscopy imaging and further characterizations. B. Li and G. Wang designed and performed DFT calculations. M.L., M.W. and Z.F. designed and performed X-ray absorption spectroscopy and data analysis. R.P.H., E.E.A., B. Lavina and D.J.M. designed and performed Mössbauer spectroscopy experiments and data analysis. G. Wu supervised the execution of the overall project.

Corresponding authors

Correspondence to Guofeng Wang, Jian Xie, Deborah J. Myers or Gang Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Yaqiong Su, Kavita Kumar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Tables 1–16 and Notes 1–5.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Li, C., Li, B. et al. Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nat Catal 6, 1215–1227 (2023). https://doi.org/10.1038/s41929-023-01062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01062-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing