Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Product analogue binding identifies the copper active site of particulate methane monooxygenase

Abstract

Nature’s primary methane-oxidizing enzyme, the membrane-bound particulate methane monooxygenase (pMMO), catalyses the oxidation of methane to methanol. Copper is required for pMMO activity, and decades of structural and spectroscopic studies have sought to identify the active site among three candidates: the CuB, CuC and CuD sites. Challenges associated with the isolation of active pMMO hindered identification of its catalytic centre; however, we have recently shown that reconstituting pMMO into native lipid nanodiscs stabilizes its structure and restores its activity. Here, such active samples were incubated with 2,2,2-trifluoroethanol, a product analogue that serves as a readily visualized active-site probe. Interactions between 2,2,2-trifluoroethanol and the CuD site were observed with pulsed electron nuclear double resonance spectroscopy and cryoelectron microscopy, implicating CuD and the surrounding hydrophobic pocket as the likely site of methane oxidation. Use of these orthogonal techniques on parallel samples is a powerful approach that can circumvent difficulties in interpreting metalloenzyme cryoelectron microscopy maps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CryoEM structure of M. capsulatus (Bath) pMMO in native lipid nanodiscs.
Fig. 2: Parallel EPR and cryoEM studies of pMMO in native lipid nanodiscs.
Fig. 3: ENDOR spectroscopic analysis of TFE interacting with the pMMO copper sites.
Fig. 4: ENDOR detection of a specific interaction between the pMMO CuD site and TFE.
Fig. 5: CryoEM structures of pMMO in native lipid nanodiscs with 0× and 20× TFE.

Similar content being viewed by others

Data availability

The models of pMMO in native lipid nanodiscs (7S4H), for KCN-treated (8SR5), KCN-treated and copper-reloaded (8SR4), 20× TFE (8OYI), cross-linked 20× TFE (8SQW), 20× TFB (8SR2) and cross-linked 20× TFB (8SR1) samples are available in the Protein Data Bank (PDB). Corresponding cryoEM maps are available at the Electron Microscopy Data Bank (EMDB). Other data are available in the main text, Supplementary Information or from the authors on reasonable request. Source Data are provided with this paper.

References

  1. Arndtsen, B. A., Bergman, R. G., Mobley, T. A. & Peterson, T. H. Selective intermolecular carbon–hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 28, 154–162 (1995).

    CAS  Google Scholar 

  2. Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003).

    CAS  PubMed  Google Scholar 

  3. Tang, P., Zhu, Q. J., Wu, Z. X. & Ma, D. Methane activation: the past and future. Energy Environ. Sci. 7, 2580–2591 (2014).

    CAS  Google Scholar 

  4. Haynes, C. A. & Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10, 331–339 (2014).

    CAS  PubMed  Google Scholar 

  5. Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol-a critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017).

    CAS  Google Scholar 

  6. Dummer, N. F. et al. Methane oxidation to methanol. Chem. Rev. 123, 6359–6411 (2022).

  7. Lawton, T. J. & Rosenzweig, A. C. Methane-oxidizing enzymes: an upstream problem in biological gas-to-liquids conversion. J. Am. Chem. Soc. 138, 9327–9340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ross, M. O. & Rosenzweig, A. C. A tale of two methane monooxygenases. J. Biol. Inorg. Chem. 22, 307–319 (2017).

    CAS  PubMed  Google Scholar 

  10. Banerjee, R., Jones, J. C. & Lipscomb, J. D. Soluble methane monooxygenase. Annu. Rev. Biochem. 88, 409–431 (2019).

    CAS  PubMed  Google Scholar 

  11. Koo, C. W. & Rosenzweig, A. C. Biochemistry of aerobic biological methane oxidation. Chem. Soc. Rev. 50, 3424–3436 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Prior, S. D. & Dalton, H. The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J. Gen. Microbiol. 131, 155–163 (1985).

    CAS  Google Scholar 

  13. Ross, M. O. et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science 364, 566–570 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jodts, R. J. et al. Coordination of the copper centers in particulate methane monooxygenase: comparison between methanotrophs and characterization of the Cuc site by EPR and ENDOR spectroscopies. J. Am. Chem. Soc. 143, 15358–15368 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Op den Camp, H. J. et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1, 293–306 (2009).

    CAS  PubMed  Google Scholar 

  16. Kruse, T., Ratnadevi, C. M., Erikstad, H. A. & Birkeland, N. K. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph ‘Candidatus Methylacidiphilum kamchatkense’ strain Kam1 and comparison with its closest relatives. BMC Genomics 20, 642 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Hakemian, A. S. et al. The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry 47, 6793–6801 (2008).

    CAS  PubMed  Google Scholar 

  18. Sirajuddin, S. et al. Effects of zinc on particulate methane monooxygenase activity and structure. J. Biol. Chem. 289, 21782–21794 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177–182 (2005).

    CAS  PubMed  Google Scholar 

  20. Smith, S. M. et al. Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochemistry 50, 10231–10240 (2011).

    CAS  PubMed  Google Scholar 

  21. Koo, C. W., Tucci, F. J., He, Y. & Rosenzweig, A. C. Recovery of particulate methane monooxygenase activity in a lipid bilayer. Science 375, 1287–1291 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Griese, J. J. & Högbom, M. Location-specific quantification of protein-bound metal ions by X-ray anomalous dispersion: Q-XAD. Acta Crystallogr. D 75, 764–771 (2019).

    CAS  Google Scholar 

  23. Ro, S. Y. et al. From micelles to bicelles: effect of the membrane on particulate methane monooxygenase activity. J. Biol. Chem. 293, 10457–10465 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Peisach, J. & Blumberg, W. E. Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch. Biochem. Biophys. 165, 691–708 (1974).

    CAS  PubMed  Google Scholar 

  25. Pogni, R., Baratto, M. C., Diaz, A. & Basosi, R. EPR characterization of mono(thiosemicarbazones) copper(II) complexes. Note II. J. Inorg. Biochem. 79, 333–337 (2000).

    CAS  PubMed  Google Scholar 

  26. Yu, S. S.-F. et al. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 185, 5915–5924 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Davydov, R., Valentine, A. M., Komar-Panicucci, S., Hoffman, B. M. & Lippard, S. J. An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K: the effects of component interactions and the binding of small molecules to the diiron(III) center. Biochemistry 38, 4188–4197 (1999).

    CAS  PubMed  Google Scholar 

  28. Smoukov, S. K. et al. Product binding to the diiron(III) and mixed-valence diiron centers of methane monooxygenase hydroxylase studied by 1,2H and 19F ENDOR spectroscopy. J. Am. Chem. Soc. 124, 2657–2663 (2002).

    CAS  PubMed  Google Scholar 

  29. Smith, D. D. S. & Dalton, H. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath). Eur. J. Biochem. 182, 667–671 (1989).

    CAS  PubMed  Google Scholar 

  30. Furuto, T., Takeguchi, M. & Okura, I. Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J. Mol. Catal. A: Chem. 144, 257–261 (1999).

    CAS  Google Scholar 

  31. Wieczorek, A. S., Drake, H. L. & Kolb, S. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol. Ecol. 77, 28–39 (2011).

    CAS  PubMed  Google Scholar 

  32. Mims, W. B. Pulsed endor experiments. Proc. Roy. Soc. Lond. 283, 452–457 (1965).

    CAS  Google Scholar 

  33. Grupp, A. & Mehring, M. in Modern Pulsed and Continuous-Wave Electron Spin Resonance (eds Kevan, L. & Bowman, M. K.) 195–229 (Wiley, 1990).

  34. Doan, P. E., Lees, N. S., Shanmugam, M. & Hoffman, B. M. Simulating suppression effects in pulsed ENDOR, and the ‘hole in the middle’ of Mims and Davies ENDOR spectra. Appl. Magn. Reson. 37, 763–779 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Houseman, A. L. P. et al. 14,15N, 13C, 57Fe, and 1,2H Q-band ENDOR study of iron–sulfur proteins with clusters that have endogenous sulfur ligands. Biochemistry 31, 2073–2080 (1992).

    CAS  PubMed  Google Scholar 

  36. Erlandsen, H., Flatmark, T., Stevens, R. C. & Hough, E. Crystallographic analysis of the human phenylalanine hydroxylase catalytic domain with bound catechol inhibitors at 2.0 A resolution. Biochemistry 37, 15638–15646 (1998).

    CAS  PubMed  Google Scholar 

  37. Goldfeder, M., Kanteev, M., Isaschar-Ovdat, S., Adir, N. & Fishman, A. Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins. Nat. Commun. 5, 4505 (2014).

    CAS  PubMed  Google Scholar 

  38. Burrows, K. J., Cornish, A., Scott, D. & Higgins, I. J. Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b. J. Gen. Microbiol. 130, 327–3333 (1984).

    Google Scholar 

  39. Carosati, E., Sciabola, S. & Cruciani, G. Hydrogen bonding interactions of covalently bonded fluorine atoms: from crystallographic data to a new angular function in the GRID force field. J. Med. Chem. 47, 5114–5125 (2004).

    CAS  PubMed  Google Scholar 

  40. Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. & Subramaniam, S. Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy. Proc. Natl Acad. Sci. USA 111, 11709–11714 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS  PubMed  Google Scholar 

  43. Fang, J. S. & Findlay, R. H. The use of a classic lipid extraction method for simultaneous recovery of organic pollutants and microbial lipids from sediments. J. Microbiol. Methods 27, 63–71 (1996).

    Google Scholar 

  44. Bayburt, T. H. & Sligar, S. G. Membrane protein assembly into nanodiscs. FEBS Lett. 584, 1721–1727 (2010).

    CAS  PubMed  Google Scholar 

  45. Ro, S. Y. et al. Native top-down mass spectrometry provides insights into the copper centers of membrane-bound methane monooxygenase. Nat. Commun. 10, 2675 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Davoust, C. E., Doan, P. E. & Hoffman, B. M. Q-band pulsed electron spin-echo spectrometer and its application to ENDOR and ESEEM. J. Magn. Reson. 119, 38–44 (1996).

    CAS  Google Scholar 

  47. Doan, P. E. Combining steady-state and dynamic methods for determining absolute signs of hyperfine interactions: pulsed ENDOR saturation and recovery (PESTRE). J. Magn. Reson. 208, 76–86 (2011).

    CAS  PubMed  Google Scholar 

  48. Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).

  49. Hoffman, B. M., Martinsen, J. & Venters, R.A. General theory of polycrystalline ENDOR patterns. g and hyperfine tensors of arbitrary symmetry and relative orientation. J. Magn. Reson. 59, 110–123 (1984).

  50. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  PubMed  Google Scholar 

  51. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    CAS  PubMed  Google Scholar 

  55. Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015).

    PubMed  Google Scholar 

  56. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    PubMed  PubMed Central  Google Scholar 

  57. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Cryst. D66, 486–501 (2010).

    Google Scholar 

  59. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    CAS  Google Scholar 

  60. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS  PubMed  Google Scholar 

  61. Pettersen, E. F. et al. UCSF ChimeraX: atructure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    CAS  PubMed  Google Scholar 

  62. Farabella, I. et al. TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits. J. Appl. Crystallogr. 48, 1314–1323 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R35GM118035 (A.C.R.), R01GM111097 (B.M.H.), T32GM105538 (F.J.T.), F31ES034283 (F.J.T.), and T32GM008382 (R.J.J.), as well as the NSF MCB-1908587 (B.M.H) This work used resources of the Northwestern Structural Biology Facility and the Northwestern Keck Biophysics Facility, which are supported by the NCI CCSG P30 CA060553 grant awarded to the Robert H. Lurie Comprehensive Cancer Center. Metal analysis was performed at the Northwestern University Quantitative Bio-element Imaging Center generously supported by NASA Ames Research Center NNA06CB93G. Some of this work was performed at the National Center for CryoEM Access and Training (NCCAT) and the Simons Electron Microscopy Center located at the New York Structural Biology Center, supported by the NIH Common Fund Transformative High Resolution Cryo-Electron Microscopy program (U24 GM129539) and by grants from the Simons Foundation (SF349247) and NY State Assembly. We thank L. Mazhar for experimental assistance, Y. He for guidance in cryoEM, P. Doan for helpful discussions, J. Pattie for computer-related support and M. Ho for assistance during revisions.

Author information

Authors and Affiliations

Authors

Contributions

F.J.T., R.J.J., B.M.H. and A.C.R. conceptualized the work and designed experiments. F.J.T. and R.J.J. performed experiments, analysed data and prepared figures. F.J.T., R.J.J., B.M.H. and A.C.R. contributed to writing and editing the manuscript.

Corresponding authors

Correspondence to Brian M. Hoffman or Amy C. Rosenzweig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Kallol Ray, Uhn-Soo Cho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24 and Table 1.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tucci, F.J., Jodts, R.J., Hoffman, B.M. et al. Product analogue binding identifies the copper active site of particulate methane monooxygenase. Nat Catal 6, 1194–1204 (2023). https://doi.org/10.1038/s41929-023-01051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01051-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing