Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co(CN)3 catalysts with well-defined coordination structure for the oxygen reduction reaction

Abstract

Metal-nitrogen-doped carbon (M-N-C) catalysts are promising platinum group metals alternatives for fuel cell cathodes; however, their randomly formed, unpredictable coordinations complicate any structure–property investigation and lead to low active site density. Here we achieve dense and well-defined cobalt sites on the surfaces of Co(CN)3 microcrystals, which are identified by single-crystal X-ray diffraction and X-ray absorption spectroscopy. In situ infrared spectroscopy and density functional theory calculations elucidate that the high oxygen reduction reaction performance (half-wave potential is 0.90 V versus RHE) of the cubic Co(CN)3 is due to its tailored coordination environment that optimizes *OH desorption. The cyanide linkage with minimized spacing between cobalt atoms maximizes active sites’ spatial density, which boosts the anion-exchange membrane fuel cell peak power density to 1.67 W cm−2. The microcrystals with well-defined coordination structures can be used as Co-N-C analogues for their structure–property relationship investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology characterizations of the Co(CN)3 catalysts.
Fig. 2: Structure characterizations of the Co(CN)3 catalysts.
Fig. 3: Electrocatalytic ORR performance of the Co(CN)3 catalysts.
Fig. 4: Theoretical analysis.

Similar content being viewed by others

Data availability

The crystallographic information file obtained directly from SCXRD has been deposited in the CCDC with reference number of 2291782. Other datasets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    CAS  PubMed  Google Scholar 

  2. Wang, C.-Y. Fundamental models for fuel cell engineering. Chem. Rev. 104, 4727–4766 (2004).

    CAS  PubMed  Google Scholar 

  3. Zhu, C., Li, H., Fu, S., Du, D. & Lin, Y. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 45, 517–531 (2016).

    CAS  PubMed  Google Scholar 

  4. Zhang, J. et al. Recent insights on catalyst layers for anion exchange membrane fuel cells. Adv. Sci. 8, 2100284 (2021).

    CAS  Google Scholar 

  5. Yan, L. et al. Atomically precise electrocatalysts for oxygen reduction reaction. Chem 9, 280–432 (2023).

    CAS  Google Scholar 

  6. Sui, S. et al. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 5, 1808–1825 (2017).

    CAS  Google Scholar 

  7. Wu, J. & Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 46, 1848–1857 (2013).

    CAS  PubMed  Google Scholar 

  8. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    CAS  PubMed  Google Scholar 

  9. Hossen, M. M. et al. State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Appl. Catal. B 325, 121733 (2023).

    CAS  Google Scholar 

  10. Ji, S. et al. Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020).

    CAS  PubMed  Google Scholar 

  11. Adabi, H. et al. High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 6, 834–843 (2021).

    CAS  Google Scholar 

  12. He, Q. et al. Polymer-coating-induced synthesis of FeNx enriched carbon nanotubes as cathode that exceeds 1.0 W cm−2 peak power in both proton and anion exchange membrane fuel cells. J. Power Sources 489, 229499 (2021).

    CAS  Google Scholar 

  13. Palaniselvam, T., Kashyap, V., Bhange, S. N., Baek, J.-B. & Kurungot, S. Nanoporous graphene enriched with Fe/Co-N active sites as a promising oxygen reduction electrocatalyst for anion exchange membrane fuel cells. Adv. Funct. Mater. 26, 2150–2162 (2016).

    CAS  Google Scholar 

  14. Zhang, H. et al. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 12, 2548–2558 (2019).

    CAS  Google Scholar 

  15. Woo, J. et al. Promoting oxygen reduction reaction activity of Fe-N/C electrocatalysts by silica-coating-mediated synthesis for anion-exchange membrane fuel cells. Chem. Mater. 30, 6684–6701 (2018).

    CAS  Google Scholar 

  16. Liu, J. et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 8, 15938 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Peng, L. et al. Mesopore-rich Fe–N–C catalyst with FeN4–O–NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 34, e2202544 (2022).

    PubMed  Google Scholar 

  18. Saladino, R., Crestini, C., Ciciriello, F., Costanzo, G. & Di Mauro, E. Formamide chemistry and the origin of informational polymers. Chem. Biodivers. 4, 694–720 (2007).

    CAS  PubMed  Google Scholar 

  19. Nguyen, V. S. et al. Theoretical study of formamide decomposition pathways. J. Phys. Chem. A 115, 841–851 (2011).

    CAS  PubMed  Google Scholar 

  20. Gahlaut, A. & Paranjothy, M. Unimolecular decomposition of formamide via direct chemical dynamics simulations. Phys. Chem. Chem. Phys. 20, 8498–8505 (2018).

    CAS  PubMed  Google Scholar 

  21. Yeo, B.-E., Cho, Y.-S. & Huh, Y.-D. Evolution of the morphology of Cu2O microcrystals: cube to 50-facet polyhedron through beveled cube and rhombicuboctahedron. CrystEngComm 19, 1627–1632 (2017).

    CAS  Google Scholar 

  22. Robin, M. B. The color and electronic configurations of Prussian blue. Inorg. Chem. 1, 337–342 (1962).

    CAS  Google Scholar 

  23. Kaye, S. S. & Long, J. R. Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005).

    CAS  PubMed  Google Scholar 

  24. Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011).

    PubMed  Google Scholar 

  25. Vannerberg, N. G. The ESCA-spectra of sodium and potassium cyanide and of the sodium and potassium salts of the hexacyanometallates of the first transition metal series. Chem. Scr. 9, 122–126 (1976).

    CAS  Google Scholar 

  26. Zakaria, M. B. & Chikyow, T. Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments. Coord. Chem. Rev. 352, 328–345 (2017).

    CAS  Google Scholar 

  27. Lee, H. W. et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 5, 5280 (2014).

    CAS  PubMed  Google Scholar 

  28. Zhao, K.-M. et al. Insight into the mechanism of axial ligands regulating the catalytic activity of Fe-N4 sites for oxygen reduction reaction. Adv. Energy Mater. 12, 2103588 (2022).

    CAS  Google Scholar 

  29. Liu, X., Liu, Y., Yang, W., Feng, X. & Wang, B. Controlled axial coordination modification for transition metal single atom electrocatalyst. Chem. Eur. J. 28, e202201471 (2022).

    CAS  PubMed  Google Scholar 

  30. Zhao, T. et al. Assisting atomic dispersion of Fe in N-doped carbon by aerosil for high-efficiency oxygen reduction. ACS Appl. Mater. Interfaces 12, 25832–25842 (2020).

    CAS  PubMed  Google Scholar 

  31. Li, L. et al. Optimizing microenvironment of asymmetric N,S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 18, 2105387 (2022).

    CAS  Google Scholar 

  32. Holst-Olesen, K., Reda, M., Hansen, H. A., Vegge, T. & Arenz, M. Enhanced oxygen reduction activity by selective anion adsorption on non-precious-metal catalysts. ACS Catal. 8, 7104–7112 (2018).

    CAS  Google Scholar 

  33. Holst-Olesen, K., Silvioli, L., Rossmeisl, J. & Arenz, M. Enhanced oxygen reduction reaction on Fe/N/C catalyst in acetate buffer electrolyte. ACS Catal. 9, 3082–3089 (2019).

    CAS  Google Scholar 

  34. Wei, C. et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019).

    Google Scholar 

  35. Lazaridis, T., Stuhmeier, B. M., Gasteiger, H. A. & El-Sayed, H. A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat. Catal. 5, 363–373 (2022).

    CAS  Google Scholar 

  36. Liao, X. et al. Density functional theory for electrocatalysis. Energy Environ. Mater. 5, 157–185 (2021).

    Google Scholar 

  37. Liu, C. et al. Intrinsic activity of metal centers in metal–nitrogen–carbon single-atom catalysts for hydrogen peroxide synthesis. J. Am. Chem. Soc. 142, 21861–21871 (2020).

    CAS  PubMed  Google Scholar 

  38. Tang, C. et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021).

    CAS  PubMed  Google Scholar 

  39. Zhao, L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10, 1278 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    PubMed  Google Scholar 

  41. Fishman, M., Zhuang, H. L., Mathew, K., Dirschka, W. & Hennig, R. G. Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper. Phys. Rev. B 87, 245402 (2013).

    Google Scholar 

  42. Dong, J. C. et al. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 142, 715–719 (2020).

    CAS  PubMed  Google Scholar 

  43. Dong, J. C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    CAS  Google Scholar 

  44. Pan, Y. et al. Construction of N, P Co-doped carbon frames anchored with Fe single atoms and Fe2P nanoparticles as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv. Mater. 34, 2203621 (2022).

    CAS  Google Scholar 

  45. Tanaka, H. et al. Infrared reflection absorption spectroscopy of OH adsorption on the low index planes of Pt. Electrocatalysis 6, 295–299 (2015).

    CAS  Google Scholar 

  46. Mawhinney, D. B., Glass, J. A. & Yates, J. T. FTIR study of the oxidation of porous silicon. J. Phys. Chem. B 101, 1202–1206 (1997).

    CAS  Google Scholar 

  47. Enders, D., Nagao, T., Pucci, A., Nakayama, T. & Aono, M. Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold. Phys. Chem. Chem. Phys. 13, 4935–4941 (2011).

    CAS  PubMed  Google Scholar 

  48. Yao, Y., Zhu, S., Wang, H., Li, H. & Shao, M. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 140, 1496–1501 (2018).

    CAS  PubMed  Google Scholar 

  49. Kulkarni, A., Siahrostami, S., Patel, A. & Norskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    CAS  PubMed  Google Scholar 

  50. Nørskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T. in Fundamental Concepts in Heterogeneous Catalysis Ch. 8, 114–137 (John Wiley & Sons, 2014).

  51. Jia, Y. et al. Atomically dispersed Fe-N4 modified with precisely located S for highly efficient oxygen reduction. Nanomicro Lett. 12, 116 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mun, Y. et al. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 141, 6254–6262 (2019).

    CAS  PubMed  Google Scholar 

  53. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    CAS  PubMed  Google Scholar 

  54. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    CAS  Google Scholar 

  55. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Cryst. C71, 3–8 (2015).

    Google Scholar 

  56. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    CAS  Google Scholar 

  57. Bunau, O. & Joly, Y. Self-consistent aspects of X-ray absorption calculations. J. Phys. Condens. Matter 21, 345501 (2009).

    CAS  PubMed  Google Scholar 

  58. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Google Scholar 

  59. Kresse, G. F. Jürgen efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  60. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Google Scholar 

  61. Lin, C. Y., Zhang, L., Zhao, Z. & Xia, Z. Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production. Adv. Mater. 29, 1606635 (2017).

    Google Scholar 

  62. Gong, L. L. et al. Catalytic mechanisms and design principles for single-atom catalysts in highly efficient CO2 conversion. Adv. Energy Mater. 9, 1902625 (2019).

    CAS  Google Scholar 

  63. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

X.S. acknowledges financial support from the National Key Research and Development Program of China (2018YFA0702002, 2022YFA1504000), the Beijing Natural Science Foundation (Z210016) and the National Natural Science Foundation of China (21935001), Z.Z. acknowledges financial support from the National Key Research and Development Program of China (2019YFA0210300), S.T. acknowledges financial support from the National Natural Science Foundation of China (22101015) and the Fundamental Research Funds of Beijing University of Chemical Technology (buctrc202107) and J.D. acknowledges financial support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y2022006).

Author information

Authors and Affiliations

Authors

Contributions

K.S. designed and performed the synthetic and electrochemical experiments, characterized the catalyst and analysed the data. J.D. completed the XAFS characterization and corresponding data analysis. H.S. conducted the DFT calculations. X.W. assisted with the AEMFC testing. J.F. assisted with the in situ ATR-SEIRAS tests and data analysis. S.T., Z.Z. and X.S. supervised the execution of the overall project. The results of the manuscript were discussed by all authors.

Corresponding authors

Correspondence to Zhongbin Zhuang, Shubo Tian or Xiaoming Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Yaqiong Su and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29, Tables 1–5 and Notes 1 and 2.

Crystallographic Data 1

Crystallographic Information File obtained directly from SCXRD with CCDC no. 2291782.

Crystallographic Data 2

Crystallographic Information File of Co(CN)3 refined by XAS.

Crystallographic Data 3

The optimised strctures using for calcuating the density of states of each crystal plane and partial density of states of cobalt in each crystal plane of Co(CN)3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Dong, J., Sun, H. et al. Co(CN)3 catalysts with well-defined coordination structure for the oxygen reduction reaction. Nat Catal 6, 1164–1173 (2023). https://doi.org/10.1038/s41929-023-01047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01047-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing