Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical acetate production from high-pressure gaseous and liquid CO2

Abstract

Electroreduction of CO2 (CO2RR) to high-value chemicals is important to environmental and energy landscapes, with one of the challenges being direct and efficient acetate production. Here we demonstrate a Cu(OH)2-derived Cu/CuOx catalyst that achieves 87% Faradaic efficiency for the CO2RR to acetate in KOH electrolytes with borate additives under 58 atm CO2(g). Dynamic electrolytic speciation reveals high and low concentrations of dissolved CO2(aq) and proton donor HCO3, respectively, as the key to acetate. In situ Raman spectroscopy suggests that the oxygen-bound bidentate intermediate *OCO* formed as the acetate precursor on Cu(I) under high pressures. Introducing CO2(l) to the interface between CO2(g) and the electrolyte by melting CO2(s) further increases [CO2(aq)] and boosts the acetate partial current density to 86 mA cm2 with 71% Faradaic efficiency. A Cu2+ cross-linked alginate coating layer on the cathode surface drastically enhances the durability of Cu/CuOx catalyst over a 20 h reaction, affording a potassium acetate yield of 30 mg h−1 cm−2 directly from the CO2RR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and characterization of SW-Cu(OH)2/Cu.
Fig. 2: CO2RR of SW-Cu(OH)2/Cu under 58 atm CO2(g).
Fig. 3: CO2RR selectivity between formate, acetate and ethanol.
Fig. 4: CO2RR mechanism on a Cu/CuOx catalyst explored by in situ Raman spectroscopy.
Fig. 5: CO2RR selectivity trend on a Cu(I)/Cu(0) catalyst.
Fig. 6: Boosting CO2RR performance by introducing CO2(l).

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available from the authors on request.

Code availability

All the MATLAB codes supporting the findings of this study are available in the Supplementary Information.

References

  1. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS  PubMed  Google Scholar 

  2. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Google Scholar 

  3. Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  PubMed  Google Scholar 

  4. Zhang, X. et al. Selective and high current CO2 electro-reduction to multicarbon products in near-neutral KCl electrolytes. J. Am. Chem. Soc. 143, 3245–3255 (2021).

    CAS  PubMed  Google Scholar 

  5. Lee, S. Y. et al. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 140, 8681–8689 (2018).

    CAS  PubMed  Google Scholar 

  6. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    CAS  PubMed  Google Scholar 

  7. Guo, Y. et al. Machine-learning-guided discovery and optimization of additives in preparing Cu catalysts for CO2 reduction. J. Am. Chem. Soc. 143, 5755–5762 (2021).

    CAS  PubMed  Google Scholar 

  8. Budiman, A. W. et al. Review of acetic acid synthesis from various feedstocks through different catalytic processes. Catal. Surv. Asia. 20, 173–193 (2016).

    CAS  Google Scholar 

  9. Zhu, Q. et al. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 10, 3851 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Liu, Y., Chen, S., Quan, X. & Yu, H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015).

    CAS  PubMed  Google Scholar 

  11. Wang, Y. et al. CO2 reduction to acetate in mixtures of ultrasmall (Cu)n,(Ag)m bimetallic nanoparticles. Proc. Natl Acad. Sci. USA 115, 278–283 (2018).

    CAS  PubMed  Google Scholar 

  12. Genovese, C., Ampelli, C., Perathoner, S. & Centi, G. Mechanism of C–C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green. Chem. 19, 2406–2415 (2017).

    CAS  Google Scholar 

  13. Wang, H. et al. CO2 electrolysis toward acetate: a review. Curr. Opin. Electrochem. 39, 101253 (2023).

    CAS  Google Scholar 

  14. Li, C., Zha, B. & Li, J. A SiW11Mn-assisted indium electrocatalyst for carbon dioxide reduction into formate and acetate. J. CO2 Util. 38, 299–305 (2020).

    CAS  Google Scholar 

  15. Zha, B., Li, C. & Li, J. Efficient electrochemical reduction of CO2 into formate and acetate in polyoxometalate catholyte with indium catalyst. J. Catal. 382, 69–76 (2020).

    CAS  Google Scholar 

  16. Qiu, X. F. et al. A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate. Angew. Chem. Int. Ed. 61, e202206470 (2022).

    CAS  Google Scholar 

  17. Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shen, Y. X. & Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 3, 245–255 (2020).

    CAS  Google Scholar 

  18. Kim, J., Cestellos-Blanco, S., Shen, Y. X., Cai, R. & Yang, P. Enhancing biohybrid CO2 to multicarbon reduction via adapted whole-cell catalysts. Nano Lett. 22, 5503–5509 (2022).

    CAS  PubMed  Google Scholar 

  19. Saeki, T., Hashimoto, K., Kimura, N., Omata, K. & Fujishima, A. Electrochemical reduction of CO2 with high current density in a CO2 + methanol medium II. CO formation promoted by tetrabutylammonium cation. J. Electroanal. Chem. 390, 77–82 (1995).

    Google Scholar 

  20. Aydin, R. & Köleli, F. Electrochemical reduction of CO2 on a polyaniline electrode under ambient conditions and at high pressure in methanol. J. Electroanal. Chem. 535, 107–112 (2002).

    CAS  Google Scholar 

  21. Aydin, R. & Köleli, F. Electrocatalytic conversion of CO2 on a polypyrrole electrode under high pressure in methanol. Synth. Met. 144, 75–80 (2004).

    CAS  Google Scholar 

  22. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    CAS  Google Scholar 

  23. Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat. Catal. 5, 738–745 (2022).

    CAS  Google Scholar 

  24. Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).

    CAS  PubMed  Google Scholar 

  25. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    CAS  Google Scholar 

  26. Choi, J. et al. Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environ. Sci. 12, 747–755 (2019).

    CAS  Google Scholar 

  27. Maitlis, P. M., Haynes, A., Sunley, G. J. & Howard, M. J. Methanol carbonylation revisited: thirty years on. J. Chem. Soc. Dalton Trans. 11, 2187–2196 (1996).

    Google Scholar 

  28. Qi, J. et al. Selective methanol carbonylation to acetic acid on heterogeneous atomically dispersed ReO4/SiO2 catalysts. J. Am. Chem. Soc. 142, 14178–14189 (2020).

    CAS  PubMed  Google Scholar 

  29. Konig, M., Vaes, J., Klemm, E. & Pant, D. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. iScience 19, 135–160 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Möller, T. et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy Environ. Sci. 14, 5995–6006 (2021).

    Google Scholar 

  31. Tan, Y. C., Lee, K. B., Song, H. & Oh, J. Modulating local CO2 concentration as a general strategy for enhancing C–C coupling in CO2 electroreduction. Joule 4, 1104–1120 (2020).

    CAS  Google Scholar 

  32. Li, J., Guo, J. & Dai, H. Probing dissolved CO2(aq) in aqueous solutions for CO2 electroreduciton and storage. Sci. Adv. 8, eabo0399 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, J. et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J. Am. Chem. Soc. 142, 7276–7282 (2020).

    CAS  PubMed  Google Scholar 

  34. Zhao, S. et al. Advances in Sn‑based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 11, 62 (2019).

    Google Scholar 

  35. Feaster, J. T. et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017).

    CAS  Google Scholar 

  36. Shaughnessy, C. I. et al. Intensified electrocatalytic CO2 conversion in pressure-tunable CO2-expanded electrolytes. ChemSusChem 12, 3761–3768 (2019).

    CAS  PubMed  Google Scholar 

  37. Shaughnessy, C. I. et al. Insights into pressure tunable reaction rates for electrochemical reduction of CO2 in organic electrolytes. Green. Chem. 22, 2434–2442 (2020).

    CAS  Google Scholar 

  38. Mishra, A. K. & De Leeuw, N. H. Mechanistic insights into the Cu(I) oxide-catalyzed conversion of CO2 to fuels and chemicals: a DFT approach. J. CO2 Util. 15, 96–106 (2016).

    CAS  Google Scholar 

  39. Marcandalli, G., Goyal, A. & Koper, M. T. M. Electrolyte effects on the Faradaic efficiency of CO2 reduction to CO on a gold electrode. ACS Catal. 11, 4936–4945 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    CAS  PubMed  Google Scholar 

  41. Giri, S. D. & Sarkar, A. Electrochemical study of bulk and monolayer copper in alkaline solution. J. Electrochem. Soc. 163, H252–H259 (2016).

    CAS  Google Scholar 

  42. Langford, J. I. & Wilson, A. J. C. Seherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978).

    CAS  Google Scholar 

  43. Baker, A. T. The ligand field spectra of copper(II) complexes. J. Chem. Educ. 75, 98–99 (1998).

    CAS  Google Scholar 

  44. Guo, D. et al. Borate-catalyzed carbon dioxide hydration via the carbonic anhydrase mechanism. Environ. Sci. Technol. 45, 4802–4807 (2011).

    CAS  PubMed  Google Scholar 

  45. Hu, G. et al. Carbon dioxide absorption into promoted potassium carbonate solutions: a review. Int. J. Greenh. Gas. Control. 53, 28–40 (2016).

    CAS  Google Scholar 

  46. Delahay, P. Potential-pH diagram of zinc and its applications to the study of zinc corrosion. J. Electrochem. Soc. 98, 101–105 (1951).

    CAS  Google Scholar 

  47. Haynes, W. M., Lide, D. R. & Bruno, T. J. CRC Handbook of Chemistry and Physics 95th edn, 5–81 (CRC, 2014).

  48. Lu, X. et al. In-situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. 142, 15438–15444 (2020).

    CAS  PubMed  Google Scholar 

  49. Wong, M. K., Shariff, A. M. & Bustam, M. A. Raman spectroscopic study on the equilibrium of carbon dioxide in aqueous monoethanolamine. RSC Adv. 6, 10816–10823 (2016).

    CAS  Google Scholar 

  50. Akemann, W. & Otto, A. The effect of atomic scale surface disorder on bonding and activation of adsorbates: vibrational properties of CO and CO2 on copper. Surf. Sci. 287, 104–109 (1993).

    Google Scholar 

  51. Shan, W. et al. In situ surface-enhanced Raman spectroscopic evidence on the origin of selectivity in CO2 electrocatalytic reduction. ACS Nano. 14, 11363–11372 (2020).

    CAS  PubMed  Google Scholar 

  52. Bohra, D. et al. Lateral adsorbate interactions inhibit HCOO while promoting CO selectivity for CO2 electrocatalysis on silver. Angew. Chem. 58, 1345–1349 (2019).

    CAS  Google Scholar 

  53. Frost, R. L. & Kloprogge, J. T. Raman spectroscopy of the acetates of sodium, potassium and magnesium at liquid nitrogen temperature. J. Mol. Struct. 526, 131–141 (2000).

    CAS  Google Scholar 

  54. San Andrés, M., De La Roja, J. M., Baonza, V. G. & Sancho, N. Verdigris pigment: a mixture of compounds. Input from Raman spectroscopy. J. Raman Spectrosc. 41, 1468–1476 (2010).

    Google Scholar 

  55. Buse, J., Otero, V. & Melo, M. New insights into synthetic copper greens: the search for specific signatures by Raman and infrared spectroscopy for their characterization in medieval artworks. Heritage 2, 1614–1629 (2019).

    Google Scholar 

  56. Heenen, H. H. et al. The mechanism for acetate formation in electrochemical CO(2) reduction on Cu: selectivity with potential, pH, and nanostructuring. Energy Environ. Sci. 15, 3878–3990 (2022).

    Google Scholar 

  57. Shao, F. et al. In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proc. Natl Acad. Sci. USA 119, e2118166119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    CAS  Google Scholar 

  59. Ting, L. R. L. et al. Enhancing CO2 electroreduction to ethanol on copper–silver composites by opening an alternative catalytic pathway. ACS Catal. 10, 4059–4069 (2020).

    CAS  Google Scholar 

  60. Favaro, M. et al. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6706–6711 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Qiu, R. et al. Enhanced electroreduction of CO2 to ethanol via enriched intermediates at high CO2 pressures. Green. Chem. 25, 684–691 (2023).

    CAS  Google Scholar 

  62. Hara, K., Tsuneto, A., Kudo, A. & Sakata, T. Electrochemical reduction of CO2 on a Cu electrode under high pressure: factors that determine the product selectivity. J. Electrochem. Soc. 141, 2097–2103 (1994).

    CAS  Google Scholar 

  63. Kas, R., Kortlever, R., Yılmaz, H., Koper, M. T. M. & Mul, G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2, 354–358 (2015).

    CAS  Google Scholar 

  64. Coquelet, C. et al. Transport of CO2: presentation of new thermophysical property measurements and phase diagrams. Energy Procedia 114, 6844–6859 (2017).

    CAS  Google Scholar 

  65. Meng, Y. et al. Highly active oxygen evolution integrated with efficient CO2 to CO electroreduction. Proc. Natl Acad. Sci. USA 116, 23915–23922 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Melchaeva, O. et al. Electrochemical reduction of protic supercritical CO2 on copper electrodes. ChemSusChem 10, 3660–3670 (2017).

    CAS  PubMed  Google Scholar 

  67. Speck, F. D. & Cherevko, S. Electrochemical copper dissolution: a benchmark for stable CO2 reduction on copper electrocatalysts. Electrochem. Commun. 115, 106739 (2020).

    CAS  Google Scholar 

  68. Cozzi, D., Desideri, P. G. & Lepri, L. The mechanism of ion exchange with alginic acid. J. Chromatogr. 40, 130–137 (1969).

    CAS  Google Scholar 

  69. Urbanova, M. et al. Interaction pathways and structure-chemical transformations of alginate gels in physiological environments. Biomacromolecules 20, 4158–4170 (2019).

    CAS  PubMed  Google Scholar 

  70. Zhang, B., Kumar, R. B., Dai, H. & Feldman, B. J. A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat. Med. 20, 948–953 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Braga, L. R., Sarantópoulos, C. I. G. L., Peres, L. & Braga, J. W. B. Evaluation of absorption kinetics of oxygen scavenger sachets using response surface methodology. Packag. Technol. Sci. 23, 351–361 (2010).

    CAS  Google Scholar 

  72. Rudolph, W. W., Irmer, G. & Konigsberger, E. Speciation studies in aqueous HCO3–CO32− solutions. A combined Raman spectroscopic and thermodynamic study. Dalton Trans. 7, 900–908 (2008).

    Google Scholar 

  73. Davis, A. R. & Oliver, B. G. A vibrational-spectroscopic study of the species present in the CO2–H2O system. J. Solut. Chem. 1, 329–339 (1972).

    CAS  Google Scholar 

  74. Stiles, P. L., Dieringer, J. A., Shah, N. C. & Duyne, van R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    CAS  Google Scholar 

  75. Camden, J. P., Dieringer, J. A., Zhao, J. & van Duyne, R. P. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc. Chem. Res. 41, 1653–1661 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Guo, Y. Jung and H. Gong for their warm help. This work was supported by Deng Family Gift Fund and the Stanford Bits and Watts Program. Part of this work was performed at Stanford Nano Shared Facilities (SNSF), supported by National Science Foundation under award ECCS-2026822.

Author information

Authors and Affiliations

Authors

Contributions

H.D. and J.L. designed the study. J.L., Y.K., X.Z., W.H., C.C., G.Z., G.C. and P.L. performed material synthesis and characterizations. J.L., Y.K., X.Z., F.W. and P.L. performed electrochemical and spectroscopic experiments. J.L. performed calculations and derivations. J.L. and H.D. prepared the paper. All authors participated in data analysis and result discussions.

Corresponding author

Correspondence to Hongjie Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Kevin Leonard, Gengfeng Zheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–5, Figs. 1–8, Tables 1–4 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Kuang, Y., Zhang, X. et al. Electrochemical acetate production from high-pressure gaseous and liquid CO2. Nat Catal 6, 1151–1163 (2023). https://doi.org/10.1038/s41929-023-01046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01046-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing