Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Achieving maximum overall light enhancement in plasmonic catalysis by combining thermal and non-thermal effects

Abstract

Plasmonic photocatalysis presents a promising method for light-to-matter conversion. However, most current studies focus on understanding the relative importance of thermal and non-thermal effects while their synergistic effects remained less studied. Here we propose an index, termed overall light effectiveness, to capture the combined impact of these light effects on reactions. By systematic variation of the thickness of catalyst layers, we isolated both thermal and non-thermal contributions and optimized them to achieve maximum light enhancement. We demonstrate the approach using a carbon dioxide hydrogenation reaction on titania-supported rhodium nanoparticles as a model reaction system. It shows a generalizable potential in the design of catalyst systems with optimum combinations of heating and light illumination, especially with broadband light illumination such as sunlight, for achieving the most economical light-to-matter conversion in plasmonic catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reactor set-up and calculated OLE.
Fig. 2: Separation of thermal and non-thermal contributions.
Fig. 3: Contributions from non-thermal and photothermal effects to total OLE.
Fig. 4: OLE under broadband white light illumination.

Similar content being viewed by others

Data availability

The data that support the findings of this paper are included in this manuscript and the Source Data. Data are also available from the corresponding author upon reasonable request. Source Data are provided with this paper.

References

  1. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    CAS  PubMed  Google Scholar 

  2. Dong, H. et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128–146 (2015).

    CAS  PubMed  Google Scholar 

  3. Kazuhito, H., Hiroshi, I. & Akira, F. TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269 (2005).

    Google Scholar 

  4. Yan, H. et al. Increasing quantum efficiency of polymer solar cells with efficient exciton splitting and long carrier lifetime by molecular doping at heterojunctions. ACS Energy Lett. 4, 1356–1363 (2019).

    CAS  Google Scholar 

  5. Zhang, X. et al. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett. 18, 1714–1723 (2018).

    CAS  PubMed  Google Scholar 

  6. Candish, L. et al. Photocatalysis in the life science industry. Chem. Rev. 122, 2907–2980 (2021).

    PubMed  Google Scholar 

  7. Zhang, Y. et al. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018).

    CAS  PubMed  Google Scholar 

  8. Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    CAS  PubMed  Google Scholar 

  9. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    CAS  PubMed  Google Scholar 

  10. Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).

    CAS  PubMed  Google Scholar 

  11. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    CAS  PubMed  Google Scholar 

  12. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95–103 (2014).

    CAS  Google Scholar 

  13. Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2013).

    Google Scholar 

  14. Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

    CAS  PubMed  Google Scholar 

  15. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    CAS  PubMed  Google Scholar 

  16. Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    CAS  PubMed  Google Scholar 

  17. Robatjazi, H., Bahauddin, S. M., Doiron, C. & Thomann, I. Direct plasmon-driven photoelectrocatalysis. Nano Lett. 15, 6155–6161 (2015).

    CAS  PubMed  Google Scholar 

  18. Dubi, Y., Un, I. W. & Sivan, Y. Thermal effects – an alternative mechanism for plasmon-assisted photocatalysis. Chem. Sci. 11, 5017–5027 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, X., Everitt, H. O. & Liu, J. Synergy between thermal and nonthermal effects in plasmonic photocatalysis. Nano Res. 13, 1268–1280 (2020).

    Google Scholar 

  20. Dubi, Y. & Sivan, Y. ‘Hot’ electrons in metallic nanostructures—non-thermal carriers or heating? Light Sci. Appl. 8, 89 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Dubi, Y., Un, I.-W. & Sivan, Y. Distinguishing thermal from nonthermal (‘hot’) carriers in illuminated molecular junctions. Nano Lett. 22, 2127–2133 (2022).

    CAS  PubMed  Google Scholar 

  22. Sivan, Y. & Dubi, Y. Recent developments in plasmon-assisted photocatalysis—a personal perspective. Appl. Phys. Lett. 117, 130501 (2020).

    CAS  Google Scholar 

  23. Dubi, Y., Un, I. W., Baraban, J. H. & Sivan, Y. Distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination. Nat. Catal. 5, 244–246 (2022).

    Google Scholar 

  24. Li, X., Zhang, X., Everitt, H. O. & Liu, J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 19, 1706–1711 (2019).

    CAS  PubMed  Google Scholar 

  25. Li, X., Everitt, H. O. & Liu, J. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Res. 12, 1906–1911 (2019).

    CAS  Google Scholar 

  26. Ma, R., Sun, J., Li, D. H. & Wei, J. J. Review of synergistic photo-thermo-catalysis: mechanisms, materials and applications. Int. J. Hydrog. Energy 45, 30288–30324 (2020).

    CAS  Google Scholar 

  27. Li, J. et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3−x. J. Mater. Chem. 7, 2821–2830 (2019).

    CAS  Google Scholar 

  28. Kamal, K. M. et al. Synergistic enhancement of photocatalytic CO2 reduction by plasmonic Au nanoparticles on TiO2 decorated N-graphene heterostructure catalyst for high selectivity methane production. Appl. Catal. B 307, 121181 (2022).

    CAS  Google Scholar 

  29. Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018).

    CAS  PubMed  Google Scholar 

  30. Kohno, Y. et al. Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J. Photochem. Photobiol. A Chem. 126, 117–123 (1999).

    CAS  Google Scholar 

  31. Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).

    CAS  PubMed  Google Scholar 

  32. Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2014).

    CAS  Google Scholar 

  33. Bakanov, A., Toropov, N. & Vartanyan, T. Optical properties of planar nanostructures based on semiconductor quantum dots and plasmonic metal nanoparticles. Opt. Spectrosc. 120, 477–481 (2016).

    CAS  Google Scholar 

  34. Un, I. W., Dubi, Y. & Sivan, Y. Photothermal nonlinearity in plasmon-assisted photocatalysis. Nanoscale 14, 5022–5032 (2022).

    CAS  PubMed  Google Scholar 

  35. Garnett, J. M. Colours in metal glasses, in metallic films, and in metallic solutions.—II. Philos. Trans. Math. Phys. Eng. Sci. 205, 237–288 (1906).

    CAS  Google Scholar 

  36. DeVore, J. R. Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416–419 (1951).

    CAS  Google Scholar 

  37. Rakić, A. D. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 34, 4755–4767 (1995).

    PubMed  Google Scholar 

  38. Zhan, C., Moskovits, M. & Tian, Z.-Q. Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3, 42–56 (2020).

    Google Scholar 

  39. Ou, W. et al. Plasmonic metal nanostructures: concepts, challenges and opportunities in photo-mediated chemical transformations. iScience 24, 101982 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Amendola, V., Pilot, R., Frasconi, M., Maragò, O. M. & Iatì, M. A. Surface plasmon resonance in gold nanoparticles: a review. J. Condens. Matter Phys. 29, 203002 (2017).

    Google Scholar 

  41. Weick, G., Ingold, G.-L., Jalabert, R. A. & Weinmann, D. Surface plasmon in metallic nanoparticles: renormalization effects due to electron-hole excitations. Phys. Rev. B 74, 165421 (2006).

    Google Scholar 

  42. Khurgin, J. B. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics 9, 453–471 (2020).

    CAS  Google Scholar 

  43. Sun, J.-P. et al. Influence of the temperature-dependent dielectric constant on the photoacoustic effect of gold nanospheres. Phys. Chem. Chem. Phys. 24, 29667–29682 (2022).

    CAS  PubMed  Google Scholar 

  44. He, W., Huang, X., Ma, X. & Zhang, J. Significant temperature effect on the LSPR properties of noble metal nanoparticles. J. Opt. 51, 142–153 (2022).

    Google Scholar 

  45. Geng, Z., Yu, Y. & Liu, J. Broadband plasmonic photocatalysis enhanced by photothermal light absorbers. J. Phys. Chem. C Nanomater. Interfaces 127, 17723–17731 (2023).

Download references

Acknowledgements

This work was supported by a grant from the National Science Foundation (no. CHE-1954838); the fund was used to support graduate students (Z.G. and Y.Y.) and access chemical supplies. Some characterizations were performed at the Duke University Shared Materials Instrumentation Facility, a member of the North Carolina Research Triangle Nanotechnology Network, which is supported by the National Science Foundation (award no. ECCS-2025064) as part of the National Nanotechnology Coordinated Infrastructure. We also thank H. O. Everitt from Army Research Laboratory-South for insightful discussions on this topic in general.

Author information

Authors and Affiliations

Authors

Contributions

J.L. conceived and supervised the research project. Z.G. and Y.Y. designed the experiments and carried out photocatalytic tests. Y.Y. fabricated photocatalysts and carried out SEM and X-ray photo-electron spectrometry characterization. Z.G. performed TEM characterization. A.J.O. contributed to the conceptual discussion and performed some of the initial experiments. Z.G. and Y.Y. analysed the results and wrote and revised the paper with input from the other authors.

Corresponding author

Correspondence to Jie Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Vivek Polshettiwar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7.

Source data

Source Data Figs. 1–4.

Statistical Source Data for Figs. 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Z., Yu, Y., Offen, A.J. et al. Achieving maximum overall light enhancement in plasmonic catalysis by combining thermal and non-thermal effects. Nat Catal 6, 1241–1247 (2023). https://doi.org/10.1038/s41929-023-01045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01045-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing