Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of oxide surface patches promoting H-spillover in Ru/(TiOx)MnO catalysts enables CO2 reduction to CO

Abstract

The migration of reducible metal oxides (for example, TiO2) to the surface of metal nanoparticles can inhibit sintering but has a strong negative impact on the catalytic activity. Here we reveal the in situ creation of TiOx patches over an MnO support to generate effective transport channels for hydrogen spillover to form more active hydrogen species on the MnO surface which are responsible for reducing CO2 to CO, a key reaction for CO2 conversion to high-value chemicals. The Ru/(TiOx)MnO (Ru/Ti/Mn) catalyst shows a 3.3-fold increase in reverse water-gas shift performance compared with conventional Ru/MnOx catalysts. Through a combination of physicochemical methods, including in situ studies, catalytic and kinetic data, and theoretical modelling, we demonstrate that the oxide–oxide interfaces are spontaneously generated during reductive treatment in H2, contributing to the increased activity. The results open perspectives for the design of novel selective hydrogenation catalysts via the in situ creation of oxide–oxide interfaces acting as hydrogen-species transport channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ru/Ti/Mn catalyst characterizations during in situ TiOx overlayer formation.
Fig. 2: Microscopy characterizations of the catalysts.
Fig. 3: CO2 reduction activities of Ru/Ti/Mn catalysts.
Fig. 4: Kinetic results and temperature-programmed experiments of the catalysts.
Fig. 5: Revealing mechanisms of enhanced CO2 reduction activity on Ru/Ti/Mn.
Fig. 6: Reaction path for hydrogen migration and the RWGS reaction.

Similar content being viewed by others

Data availability

Data presented in the main figures of the manuscript and the Supplementary Information are publicly available through the figshare repository (https://doi.org/10.6084/m9.figshare.24037167). The atomic coordinates of the optimized computational models are provided in Supplementary Data 1. All other relevant raw data are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Tauster, S. J., Fung, S. C., Baker, R. T. K. & Horsley, J. A. Strong-interactions in supported-metal catalysts. Science 211, 1121–1125 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Frey, H., Beck, A., Huang, X., van Bokhoven, J. A. & Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 983–987 (2022).

    Article  Google Scholar 

  4. Zhong, L. S. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538, 84–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Yan, G. et al. Reaction product-driven restructuring and assisted stabilization of a highly dispersed Rh-on-ceria catalyst. Nat. Catal. 5, 119–127 (2022).

    Article  Google Scholar 

  6. Li, D. D. et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat. Catal. 5, 99–108 (2022).

    Article  CAS  Google Scholar 

  7. Beaumont, S. K. et al. Combining in situ NEXAFS spectroscopy and CO2 methanation kinetics to study Pt and Co nanoparticle catalysts reveals key insights into the role of platinum in promoted cobalt catalysis. J. Am. Chem. Soc. 136, 9898–9901 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, S. & Li, W.-X. Sabatier principle of metal–support interaction for design of ultrastable metal nanocatalysts. Science 374, 1360–1365 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Ma, Y. et al. High‐density and thermally stable palladium single‐atom catalysts for chemoselective hydrogenations. Angew. Chem. Int. Ed. 132, 21797–21803 (2020).

    Article  Google Scholar 

  10. Sun, X. et al. In situ investigations on structural evolutions during the facile synthesis of cubic α-MoC1–x catalysts. J. Am. Chem. Soc. 144, 22589–22598 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Baldi, A., Narayan, T. C., Koh, A. L. & Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 13, 1143–1148 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Niu, Y. et al. Patterning the consecutive Pd3 to Pd1 on Pd2Ga surface via temperature-promoted reactive metal–support interaction. Sci. Adv. 8, eabq5751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Yu, J. et al. Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts. Nat. Commun. 12, 7209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748–755 (2019).

    Article  CAS  Google Scholar 

  16. Aitbekova, A. et al. Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction. J. Am. Chem. Soc. 140, 13736–13745 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Macino, M. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2, 873–881 (2019).

    Article  CAS  Google Scholar 

  18. Zhang, Y. et al. Structure sensitivity of Au–TiO2 strong metal–support interactions. Angew. Chem. Int. Ed. 60, 12074–12081 (2021).

    Article  CAS  Google Scholar 

  19. Zhang, Y. et al. Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts. Nat. Commun. 11, 3185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, J. et al. Enhanced CO2 methanation activity of Ni/anatase catalyst by tuning strong metal–support interactions. ACS Catal. 9, 6342–6348 (2019).

    Article  CAS  Google Scholar 

  21. Beck, A. et al. The dynamics of overlayer formation on catalyst nanoparticles and strong metal–support interaction. Nat. Commun. 11, 3220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deo, G. & Wachs, I. E. Surface oxide–support interaction (SOSI) for surface redox sites. J. Catal. 129, 307–312 (1991).

    Article  CAS  Google Scholar 

  23. Wang, H. et al. Strong oxide–support interactions accelerate selective dehydrogenation of propane by modulating the surface oxygen. ACS Catal. 10, 10559–10569 (2020).

    Article  CAS  Google Scholar 

  24. Zheng, X. et al. Strong oxide–support interaction over IrO2/V2O5 for efficient pH-universal water splitting. Adv. Sci. 9, e2104636 (2022).

    Article  Google Scholar 

  25. Seo, W. S. et al. Size‐dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed. 43, 1115–1117 (2004).

    Article  CAS  Google Scholar 

  26. Kang, H. et al. Converting poisonous sulfate species to an active promoter on TiO2 predecorated MnOx catalysts for the NH3-SCR reaction. ACS Appl. Mater. Interfaces 13, 61237–61247 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Zaki, M. I., Hasan, M. A., Pasupulety, L. & Kumari, K. Thermochemistry of manganese oxides in reactive gas atmospheres: Probing redox compositions in the decomposition course MnO2 → MnO. Thermochim. Acta 303, 171–181 (1997).

    Article  CAS  Google Scholar 

  28. Wang, J. J. et al. A highly selective and stable ZnO–ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 3, e1701290 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ilton, E. S., Post, J. E., Heaney, P. J., Ling, F. T. & Kerisit, S. N. XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 366, 475–485 (2016).

    Article  CAS  Google Scholar 

  30. Liu, Y. H. et al. MXene-based quantum dots optimize hydrogen production via spontaneous evolution of Cl- to O-terminated surface groups. Energy Environ. Mater. e12438 (2022).

  31. Li, X. et al. Controlling CO2 hydrogenation selectivity by metal‐supported electron transfer. Angew. Chem. Int. Ed. 59, 19983–19989 (2020).

    Article  CAS  Google Scholar 

  32. Wang, Q. et al. Tuned selectivity and enhanced activity of CO2 methanation over Ru catalysts by modified metal–carbonate interfaces. J. Energy Chem. 64, 38–46 (2022).

    Article  CAS  Google Scholar 

  33. He, Y. L. et al. Catalytic manganese oxide nanostructures for the reverse water gas shift reaction. Nanoscale 11, 16677–16688 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Li, S. et al. Tuning the CO2 hydrogenation selectivity of rhodium single-atom catalysts on zirconium dioxide with alkali ions. Angew. Chem. Int. Ed. 135, e202218167 (2023).

    Article  Google Scholar 

  35. Li, H. L., Zhao, J. K., Luo, L. H., Du, J. J. & Zeng, J. Symmetry-breaking sites for activating linear carbon dioxide molecules. Acc. Chem. Res. 54, 1454–1464 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Vrijburg, W. L. et al. Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation. ACS Catal. 9, 7823–7839 (2019).

    Article  CAS  Google Scholar 

  37. Bobadilla, L. F., Santos, J. L., Ivanova, S., Odriozola, J. A. & Urakawa, A. Unravelling the role of oxygen vacancies in the mechanism of the reverse water-gas shift reaction by operando DRIFTS and ultraviolet–visible spectroscopy. ACS Catal. 8, 7455–7467 (2018).

    Article  CAS  Google Scholar 

  38. Song, X. et al. On the role of hydroxyl groups on Cu/Al2O3 in CO2 hydrogenation. ACS Catal. 12, 14162–14172 (2022).

    Article  CAS  Google Scholar 

  39. Mansour, H. & Iglesia, E. Mechanistic connections between CO2 and CO hydrogenation on dispersed ruthenium nanoparticles. J. Am. Chem. Soc. 143, 11582–11594 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Nelson, N. C., Nguyen, M. T., Glezakou, V. A., Rousseau, R. & Szanyi, J. Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis. Nat. Catal. 2, 916–924 (2019).

    Article  CAS  Google Scholar 

  41. Wang, F. et al. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J. Am. Chem. Soc. 138, 6298–6305 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, C. et al. The interplay between structure and product selectivity of CO2 hydrogenation. Angew. Chem. Int. Ed. 58, 11242–11247 (2019).

    Article  CAS  Google Scholar 

  43. Guo, Y. et al. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect. ACS Catal. 8, 6203–6215 (2018).

    Article  CAS  Google Scholar 

  44. Li, C. et al. Carbon-monoxide and carbon-dioxide adsorption on cerium oxide study by fourier-transform infrared-spectroscopy. 1. Formation of carbonate species on dehydroxylated CeO2 at room-temperature. J. Chem. Soc. Faraday Trans. 85, 929–943 (1989).

    Article  CAS  Google Scholar 

  45. Xiong, M. et al. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nat. Commun. 11, 4773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, S. O. et al. Rapid interchangeable hydrogen, hydride, and proton species at the interface of transition metal atom on oxide surface. J. Am. Chem. Soc. 143, 9105–9112 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Tang, X., Li, J., Sun, L. & Hao, J. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Appl. Catal. B 99, 156–162 (2010).

    Article  CAS  Google Scholar 

  48. Wang, C. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 141, 8482–8488 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Mahdavi-Shakib, A. et al. Kinetics of H2 adsorption at the metal–support interface of Au/TiO2 catalysts probed by broad background IR absorbance. Angew. Chem. Int. Ed. 60, 7735–7743 (2021).

    Article  CAS  Google Scholar 

  50. Zhang, Q. S. et al. Highly efficient hydrogenation of nitrobenzene to aniline over Pt/CeO2 catalysts: the shape effect of the support and key role of additional Ce3+ Sites. ACS Catal. 10, 10350–10363 (2020).

    Article  CAS  Google Scholar 

  51. Kang, H. et al. Understanding the complexity in bridging thermal and electrocatalytic methanation of CO2. Chem. Soc. Rev. 52, 3627–3662 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, H. Y. T., Tosoni, S. & Pacchioni, G. Hydrogen adsorption, dissociation, and spillover on Ru-10 clusters supported on anatase TiO2 and tetragonal ZrO2 (101) surfaces. ACS Catal. 5, 5486–5495 (2015).

    Article  CAS  Google Scholar 

  53. Dietz, L., Piccinin, S. & Maestri, M. Mechanistic insights into CO2 activation via reverse water-gas shift on metal surfaces. J. Phys. Chem. C. 119, 4959–4966 (2015).

    Article  CAS  Google Scholar 

  54. Ding, Y. S. et al. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method. Chem. Mater. 17, 5382–5389 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the NSFC of China (22172161 and 21972140), LiaoNing Revitalization Talents Program (XLYC1907053), the Dalian National Laboratory for Clean Energy (DNL202021) and the AI S&T Program of Yulin Branch, Dalian National Laboratory for Clean Energy, CAS (DNL-YLA202204). X.L. acknowledges support from the Youth Innovation Promotion Association CAS (2020179) and the National Natural Science Foundation of China (21972160). S.P. and G.C. acknowledge support from the CAS President’s International Fellowship Initiative (PIFI) programme and G.C. from the Alexander von Humboldt-Stiftung/Foundation (Humboldt Research Award). The authors thank C. Zeng from Hitachi High-Tech for his great help in atomic resolution ADF-STEM and EDS data acquisition with the Hitachi HF5000 microscope.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. conceived and supervised the project. H.K. performed the catalyst preparation, most of the characterizations and the catalytic tests. L.Z. and X.L. carried out the DFT calculations and wrote the related section. S.L., Y.N., B.Z. and Y.L. performed the electron microscopy experiments. S.Y. helped with the in situ Raman experiments. W.C., S.P. and G.C. provided helpful discussions. H.K., G.C. and Y.L. analysed the data and wrote the paper. All authors contributed to the discussion and manuscript preparation.

Corresponding authors

Correspondence to Xingchen Liu or Yuefeng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Atsushi Urakawa, Wei Zhang and Sergio Posada-Pérez for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–49, Notes 1–7, Tables 1 and 2, and references.

Supplementary Data 1

The atomic coordinates of the optimized computational models.

Source data

Source Data Fig. 1

Ex situ and in situ X-ray diffraction, Ti/Mn ratio based on XPS.

Source Data Fig. 2

Particle size statistics.

Source Data Fig. 3

Activity.

Source Data Fig. 4

Activity and reaction kinetics.

Source Data Fig. 5

In situ DRIFTS and temperature-programmed experiments.

Source Data Fig. 6

DFT calculation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Zhu, L., Li, S. et al. Generation of oxide surface patches promoting H-spillover in Ru/(TiOx)MnO catalysts enables CO2 reduction to CO. Nat Catal 6, 1062–1072 (2023). https://doi.org/10.1038/s41929-023-01040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01040-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing