Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alkene 1,1-difunctionalizations via organometallic-radical relay

Abstract

Radical reactions play an important role in modern organic synthetic chemistry. The generation of carbon radicals from the homolytic cleavage of carbon–metal bonds has been widely studied as a fundamental step in organometallic chemistry. However, the implementation of this phenomenon in catalysed cascade reactions, that is, an organometallic-radical relay, is a highly challenging undertaking due to transient radicals generated from these thermodynamically disfavoured endergonic processes. Here we disclose a set of catalytic alkene 1,1-difunctionalization reactions conceptually based on an organometallic-radical relay. This strategy enables a diversity of sp3/sp2 fragments and aryl groups to be simultaneously introduced to the same carbon of both terminal and internal alkenes with outstanding chemo- and regioselectivity. This study provides a concept for the generation of functionalized benzylic radicals, which are difficult to access by classical protocols, from non-radical feedstock alkenes and arylboronic acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radical generation and alkene 1,1-bisfunctionalizations.
Fig. 2: Reaction discovery and scope of radical acceptors.
Fig. 3: Scope of alkenes.
Fig. 4: Substrate scope and synthetic applications.
Fig. 5: Mechanistic studies.
Fig. 6: DFT calculations.
Fig. 7: DFT calculations for alkene competition.

Similar content being viewed by others

Data availability

All information relating to optimization studies, experimental procedures, mechanistic studies, DFT calculations, NMR spectra and high-resolution mass spectrometry are available in the Supplementary Information. All other data are available from the corresponding authors upon request.

References

  1. Plesniak, M. P., Huang, H.-M. & Procter, D. J. Radical cascade reactions triggered by single electron transfer. Nat. Rev. Chem. 1, 0077 (2017).

    Article  Google Scholar 

  2. Jasperse, C. P., Curran, D. P. & Fevig, T. L. Radical reactions in natural product synthesis. Chem. Rev. 91, 1237–1286 (1991).

    Article  CAS  Google Scholar 

  3. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pitre, S. P., Weires, N. A. & Overman, L. E. Forging C(sp3)–C(sp3) bonds with carbon-centered radicals in the synthesis of complex molecules. J. Am. Chem. Soc. 141, 2800–2813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hammerich, O. & Speiser, B. Organic Electrochemistry, 5th edn (CRC Press, 2015).

  6. Stephenson, C. R. J., Yoon, T. P. & MacMillan, D. W. C. (eds) Visible Light Photocatalysis in Organic Chemistry (Wiley-VCH, 2018).

  7. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ravelli, D., Protti, S. & Fagnoni, M. Carbon–carbon bond forming reactions via photogenerated intermediates. Chem. Rev. 116, 9850–9913 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Malapit, C. A. et al. Advances on the merger of electrochemistry and transition metal catalysis for organic synthesis. Chem. Rev. 122, 3180–3218 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry (Oxford University Press, 2012).

  12. Morcillo, S. P. Radical-promoted C–C bond cleavage: a deconstructive approach for selective functionalization. Angew. Chem. Int. Ed. 58, 14044–14054 (2019).

    Article  CAS  Google Scholar 

  13. Sivaguru, P., Wang, Z., Zanoni, G. & Bi, X. Cleavage of carbon–carbon bonds by radical reactions. Chem. Soc. Rev. 48, 2615–2656 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Crespi, S. & Fagnoni, M. Generation of alkyl radicals: from the tyranny of tin to the photon democracy. Chem. Rev. 120, 9790–9833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heinrich, M. & Gansäuer, A. Radicals in Synthesis III (Springer, 2012).

  16. Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diccianni, J. B. & Diao, T. Mechanisms of nickel-catalyzed cross-coupling reactions. Trends Chem. 1, 830–844 (2019).

    Article  CAS  Google Scholar 

  18. Dreos, R. et al. Synthesis, characterization, and reactivity of a new mononuclear benzyl–cobalt complex containing mixed tridentate imino-oxime and diamine ligands. Organometallics 17, 2366–2369 (1998).

    Article  CAS  Google Scholar 

  19. MacLeod, K. C. et al. Masked radicals: iron complexes of trityl, benzophenone, and phenylacetylene. Organometallics 38, 4224–4232 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Verma, R. et al. Recent trends in photocatalytic enantioselective reactions. Top. Curr. Chem. 380, 48 (2022).

    Article  CAS  Google Scholar 

  21. Huang, C. Y., Li, J. & Li, C. J. Photocatalytic C(sp3) radical generation via C–H, C–C, and C–X bond cleavage. Chem. Sci. 13, 5465–5504 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu, J., Wang, Q. & Wang, M. Multicomponent Reactions in Organic Synthesis (Wiley-VCH, 2015).

  24. Wilson, M. R. & Taylor, R. E. Strained alkenes in natural product synthesis. Angew. Chem. Int. Ed. 52, 4078–4087 (2013).

    Article  CAS  Google Scholar 

  25. Vougioukalakis, G. C. & Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Luo, M. J., Xiao, Q. & Li, J. H. Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chem. Soc. Rev. 51, 7206–7237 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y., Wu, D., Cheng, H. G. & Yin, G. Difunctionalization of alkenes involving metal migration. Angew. Chem. Int. Ed. 59, 7990–8003 (2020).

    Article  CAS  Google Scholar 

  29. Yang, S., Chen, Y. & Ding, Z. Recent progress of 1,1-difunctionalization of olefins. Org. Biomol. Chem. 18, 6983–7001 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Y. et al. Modular access to substituted cyclohexanes with kinetic stereocontrol. Science 376, 749–753 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, W., Ding, C. & Yin, G. Catalyst-controlled enantioselective 1,1-arylboration of unactivated olefins. Nat. Catal. 3, 951–958 (2020).

    Article  CAS  Google Scholar 

  33. Ding, C., Ren, Y., Sun, C., Long, J. & Yin, G. Regio- and stereoselective alkylboration of endocyclic olefins enabled by nickel catalysis. J. Am. Chem. Soc. 143, 20027–20034 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Petracca, R. et al. Chemoselective synthesis of N-terminal cysteinyl thioesters via β,γ-C,S thiol-Michael addition. Org. Lett. 21, 3281–3285 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Dadova, J., Galan, S. R. & Davis, B. G. Synthesis of modified proteins via functionalization of dehydroalanine. Curr. Opin. Chem. Biol. 46, 71–81 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Corpas, J., Kim-Lee, S. H., Mauleon, P., Arrayas, R. G. & Carretero, J. C. Beyond classical sulfone chemistry: metal- and photocatalytic approaches for C–S bond functionalization of sulfones. Chem. Soc. Rev. 51, 6774–6823 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Li, S. & Shu, W. Recent advances in radical enabled selective Csp3–F bond activation of multifluorinated compounds. Chem. Commun. 58, 1066–1077 (2022).

    Article  CAS  Google Scholar 

  38. Zhu, C. et al. Migratory functionalization of unactivated alkyl bromides for construction of all-carbon quaternary centers via transposed tert-C-radicals. Nat. Commun. 11, 4860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yue, W. J., Day, C. S. & Martin, R. Site-selective defluorinative sp3 C–H alkylation of secondary amides. J. Am. Chem. Soc. 143, 6395–6400 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, F., Xu, X., He, Y., Huang, G. & Zhu, S. NiH-catalyzed migratory defluorinative olefin cross-coupling: trifluoromethyl-substituted alkenes as acceptor olefins to form gem-difluoroalkenes. Angew. Chem. Int. Ed. 59, 5398–5402 (2020).

    Article  CAS  Google Scholar 

  41. Leriche, C., He, X., Chang, C.-W. T. & Liu, H.-W. Reversal of the apparent regiospecificity of NAD(P)H-dependent hydride transfer: the properties of the difluoromethylene group, a carbonyl mimic. J. Am. Chem. Soc. 125, 6348–6349 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Magueur, G., Crousse, B., Ourévitch, M., Bonnet-Delpon, D. & Bégué, J.-P. Fluoro-artemisinins: when a gem-difluoroethylene replaces a carbonyl group. J. Fluor. Chem. 127, 637–642 (2006).

    Article  CAS  Google Scholar 

  43. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Li, Y. et al. Rhodium-catalyzed benzylic addition reactions of alkylarenes to Michael acceptors. Angew. Chem. Int. Ed. 61, e202207917 (2022).

    Article  CAS  Google Scholar 

  45. Lo, J. C. et al. Fe-catalyzed C–C bond construction from olefins via radicals. J. Am. Chem. Soc. 139, 2484–2503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rakshit, A., Dhara, H. N., Sahoo, A. K. & Patel, B. K. The renaissance of organo nitriles in organic synthesis. Chem. Asian J. 17, e202200792 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Xu, Y., Zhang, M. & Oestreich, M. Photochemical, nickel-catalyzed C(sp3)–C(sp3) reductive cross-coupling of α-silylated alkyl electrophiles and allylic sulfones. ACS Catal. 12, 10546–10550 (2022).

    Article  CAS  Google Scholar 

  48. Patra, T., Bellotti, P., Strieth-Kalthoff, F. & Glorius, F. Photosensitized intermolecular carboimination of alkenes through the persistent radical effect. Angew. Chem. Int. Ed. 59, 3172–3177 (2020).

    Article  CAS  Google Scholar 

  49. Julia-Hernandez, F., Moragas, T., Cornella, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–88 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Zheng, S., Wang, W. & Yuan, W. Remote and proximal hydroaminoalkylation of alkenes enabled by photoredox/nickel dual catalysis. J. Am. Chem. Soc. 144, 17776–17782 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Sun, C., Li, Y. & Yin, G. Practical synthesis of chiral allylboronates by asymmetric 1,1-difunctionalization of terminal alkenes. Angew. Chem. Int. Ed. 61, e202209076 (2022).

    Article  CAS  Google Scholar 

  52. Derosa, J., Apolinar, O., Kang, T., Tran, V. T. & Engle, K. M. Recent developments in nickel-catalyzed intermolecular dicarbofunctionalization of alkenes. Chem. Sci. 11, 4287–4296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wickham, L. M. & Giri, R. Transition metal (Ni, Cu, Pd)-catalyzed alkene dicarbofunctionalization reactions. Acc. Chem. Res. 54, 3415–3437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kang, T. et al. Nickel-catalyzed 1,2-carboamination of alkenyl alcohols. J. Am. Chem. Soc. 143, 13962–13970 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Ohno, K. et al. Evaluation of styrene oligomers eluted from polystyrene for estrogenicity in estrogen receptor binding assay, reporter gene assay, and uterotrophic assay. Food Chem. Toxicol. 41, 131–141 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Ellis, G. A., Wyche, T. P., Fry, C. G., Braun, D. R. & Bugni, T. S. Solwaric acids A and B, antibacterial aromatic acids from a marine Solwaraspora sp. Mar. Drugs 12, 1013–1022 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fujita, T., Fuchibe, K. & Ichikawa, J. Transition-metal-mediated and -catalyzed C–F bond activation by fluorine elimination. Angew. Chem. Int. Ed. 58, 390–402 (2019).

    Article  CAS  Google Scholar 

  58. Yao, C., Wang, S., Norton, J. & Hammond, M. Catalyzing the hydrodefluorination of CF3-substituted alkenes by PhSiH3. H· transfer from a nickel hydride. J. Am. Chem. Soc. 142, 4793–4799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lo, J. C., Gui, J., Yabe, Y., Pan, C. M. & Baran, P. S. Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 516, 343–348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Campbell, M. W., Yuan, M., Polites, V. C., Gutierrez, O. & Molander, G. A. Photochemical C–H activation enables nickel-catalyzed olefin dicarbofunctionalization. J. Am. Chem. Soc. 143, 3901–3910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, C. S., Zhang, B. B., Zhong, L., Chen, X. Y. & Wang, Z. X. DFT insight into asymmetric alkyl–alkyl bond formation via nickel-catalysed enantioconvergent reductive coupling of racemic electrophiles with olefins. Chem. Sci. 13, 3728–3739 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The National Nature Science Foundation of China (22122107), the Fundamental Research Funds for Central Universities (2042022kf0026) and the Shanghai Committee of Science and Technology (grant number 21DZ1100100) are acknowledged for financial support. Y. Tong (Wuhan University) is kindly acknowledged for HRMS analysis. The numerical calculations in this paper were performed on the supercomputing system of the Super-computing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

G.Y. designed the project and directed the work. D.W., W.K., Y.B. and D.Z. performed all the synthetic experiments. Y.L. performed all the DFT calculations. G.Y. and D.W. wrote the manuscript.

Corresponding authors

Correspondence to Yuqiang Li or Guoyin Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Mingbin Yuan and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and References.

Supplementary Data 1

DFT coordinates for optimized structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Kong, W., Bao, Y. et al. Alkene 1,1-difunctionalizations via organometallic-radical relay. Nat Catal 6, 1030–1041 (2023). https://doi.org/10.1038/s41929-023-01032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01032-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing