Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metallaphotoredox-enabled aminocarboxylation of alkenes with CO2

Abstract

The conversion of CO2 to valuable chemicals is highly desirable for sustainable development. Among the various methods available, the difunctionalizing carboxylation of alkenes with CO2 emerges as an exceptionally efficient approach that facilitates the rapid construction of complex carboxylic acids and derivatives. However, existing systems have been limited to monocatalytic strategies and a few specific reaction types. Here we report a synergistic strategy to realize the aminocarboxylation of alkenes with CO2, providing efficient and practical synthetic access to valuable β-amino acids. The pivotal role of binaphthol as a photocatalyst in photoredox catalysis is demonstrated, enabling the single-electron activation of alkenes, generating radical anion intermediates. The remarkable aspect of this strategy lies in the efficient merger of photocatalysis and copper catalysis, enabling the rare orthogonal difunctionalization of alkene radical anions under redox-neutral conditions. Moreover, this strategy features mild conditions, high and unique selectivities, good functional group tolerance, facile product derivations and generality in realizing the hydroamination of alkenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for the 1,2-difunctionalizing carboxylation of alkenes with CO2.
Fig. 2: Screening the reaction conditions.
Fig. 3: Substrate scope of amines.
Fig. 4: Substrate scope of alkenes.
Fig. 5: Investigation of the mechanism.
Fig. 6: Synthetic applications and generality of this strategy.

Similar content being viewed by others

Data availability

Details about the materials and methods, experimental procedures, mechanistic studies, characterization data and NMR spectra are available in the Supplementary Information. Additional data are available from the corresponding author upon reasonable request.

References

  1. Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).

    Article  PubMed  Google Scholar 

  2. Grignard, B., Gennen, S., Jérôme, C., Kleij, A. W. & Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 48, 4466–4514 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Tortajada, A., Juliá-Hernández, F., Börjesson, M., Moragas, T. & Martin, R. Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed. 57, 15948–15982 (2018).

    Article  CAS  Google Scholar 

  4. Cao, Y., He, X., Wang, N., Li, H.-R. & He, L.-N. Photochemical and electrochemical carbon dioxide utilization with organic compounds. Chin. J. Chem. 36, 644–659 (2018).

    Article  CAS  Google Scholar 

  5. Yeung, C. S. Photoredox catalysis as a strategy for CO2 incorporation: direct access to carboxylic acids from a renewable feedstock. Angew. Chem. Int. Ed. 58, 5492–5502 (2019).

    Article  CAS  Google Scholar 

  6. Zhang, L., Li, Z., Takimoto, M. & Hou, Z. Carboxylation reactions with carbon dioxide using N-heterocyclic carbene-copper catalysts. Chem. Rec. 20, 494–512 (2020).

    Article  PubMed  Google Scholar 

  7. Cai, B., Cheo, H. W., Liu, T. & Wu, J. Light-promoted organic transformations utilizing carbon-based gas molecules as feedstocks. Angew. Chem. Int. Ed. 60, 18950–18980 (2021).

    Article  CAS  Google Scholar 

  8. Ye, J.-H., Ju, T., Huang, H., Liao, L.-L. & Yu, D.-G. Radical carboxylative cyclizations and carboxylations with CO2. Acc. Chem. Res. 54, 2518–2531 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, X.-F., Zhang, K., Tao, L., Lu, X.-B. & Zhang, W.-Z. Recent advances in electrochemical carboxylation reactions using carbon dioxide. Green. Chem. Eng. 3, 125–137 (2022).

    Article  Google Scholar 

  10. Zhang, Z. et al. Radical-type difunctionalization of alkenes with CO2. Acta Chim. Sin. 77, 783–793 (2019).

    Article  CAS  Google Scholar 

  11. Bertuzzi, G., Cerveri, A., Lombardi, L. & Bandini, M. Tandem functionalization–carboxylation reactions of π-systems with CO2. Chin. J. Chem. 39, 3116–3126 (2021).

    Article  CAS  Google Scholar 

  12. Butcher, T. W. et al. Regioselective copper-catalyzed boracarboxylation of vinyl arenes. Org. Lett. 18, 6428–6431 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, X. W. et al. Nickel-catalyzed asymmetric reductive carbo-carboxylation of alkenes with CO2. Angew. Chem. Int. Ed. 60, 14068–14075 (2021).

    Article  CAS  Google Scholar 

  14. Takahashi, K., Sakurazawa, Y., Iwai, A. & Iwasawa, N. Catalytic synthesis of a methylmalonate salt from ethylene and carbon dioxide through photoinduced activation and photoredox-catalyzed reduction of nickelalactones. ACS Catal. 12, 3776–3781 (2022).

    Article  CAS  Google Scholar 

  15. Yatham, V. R., Shen, Y. & Martin, R. Catalytic intermolecular dicarbofunctionalization of styrenes with CO2 and radical precursors. Angew. Chem. Int. Ed. 56, 10915–10919 (2017).

    Article  CAS  Google Scholar 

  16. Ye, J.-H. et al. Visible-light-driven iron-promoted thiocarboxylation of styrenes and acrylates with CO2. Angew. Chem. Int. Ed. 56, 15416–15420 (2017).

    Article  CAS  Google Scholar 

  17. Hou, J. et al. Visible-light-mediated metal-free difunctionalization of alkenes with CO2 and silanes or C(sp3)–H alkanes. Angew. Chem. Int. Ed. 57, 17220–17224 (2018).

    Article  CAS  Google Scholar 

  18. Fu, Q. et al. Transition metal-free phosphonocarboxylation of alkenes with carbon dioxide via visible-light photoredox catalysis. Nat. Commun. 10, 3592 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang, H., Gao, Y., Zhou, C. & Li, G. Visible-light-driven reductive carboarylation of styrenes with CO2 and aryl halides. J. Am. Chem. Soc. 142, 8122–8129 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Ju, T. et al. Dicarboxylation of alkenes, allenes and (hetero)arenes with CO2 via visible-light photoredox catalysis. Nat. Catal. 4, 304–311 (2021).

    Article  CAS  Google Scholar 

  21. Zhang, W. & Lin, S. Electroreductive carbofunctionalization of alkenes with alkyl bromides via a radical-polar crossover mechanism. J. Am. Chem. Soc. 142, 20661–20670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Milligan, G., Shimpukade, B., Ulven, T. & Hudson, B. D. Complex pharmacology of free fatty acid receptors. Chem. Rev. 117, 67–110 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Pawar, V. et al. Rational design, synthesis and SAR study of novel warfarin analogous of 4-hydroxy coumarin-beta-aryl propanoic acid derivatives as potent anti-inflammatory agents. J. Mol. Struct. 1254, 132300 (2022).

    Article  CAS  Google Scholar 

  24. Seo, H., Liu, A. & Jamison, T. F. Direct β-selective hydrocarboxylation of styrenes with CO2 enabled by continuous flow photoredox catalysis. J. Am. Chem. Soc. 139, 13969–13972 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Sheta, A. M. et al. Selective electrosynthetic hydrocarboxylation of α,β-unsaturated esters with carbon dioxide. Angew. Chem. Int. Ed. 60, 21832–21837 (2021).

    Article  CAS  Google Scholar 

  26. Hendy, C. M., Smith, G. C., Xu, Z., Lian, T. & Jui, N. T. Radical chain reduction via carbon dioxide radical anion (CO2). J. Am. Chem. Soc. 143, 8987–8992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alektiar, S. N. & Wickens, Z. K. Photoinduced hydrocarboxylation via thiol-catalyzed delivery of formate across activated alkenes. J. Am. Chem. Soc. 143, 13022–13028 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, Y. et al. Photoredox activation of formate salts: hydrocarboxylation of alkenes via carboxyl group transfer. ACS Catal. 11, 15004–15012 (2021).

    Article  CAS  Google Scholar 

  29. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  31. Zhang, G., Cheng, Y., Beller, M. & Chen, F. Direct carboxylation with carbon dioxide via cooperative photoredox and transition‐metal dual catalysis. Adv. Synth. Catal. 363, 1583–1596 (2021).

    Article  CAS  Google Scholar 

  32. Lu, F.-D., He, G.-F., Lu, L.-Q. & Xiao, W.-J. Metallaphotoredox catalysis for multicomponent coupling reactions. Green. Chem. 23, 5379–5393 (2021).

    Article  CAS  Google Scholar 

  33. Xiong, T. & Zhang, Q. New amination strategies based on nitrogen-centered radical chemistry. Chem. Soc. Rev. 45, 3069–3087 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, Y. & Xia, W. Recent advances in radical-based C–N bond formation via photo-/electrochemistry. Chem. Soc. Rev. 47, 2591–2608 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, H. & Studer, A. Intermolecular radical carboamination of alkenes. Chem. Soc. Rev. 49, 1790–1811 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Cabrele, C., Martinek, T. A., Reiser, O. & Berlicki, L. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J. Med. Chem. 57, 9718–9739 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, S. & Xi, C. Recent advances in nucleophile-triggered CO2-incorporated cyclization leading to heterocycles. Chem. Soc. Rev. 48, 382–404 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, L., Qi, C., Xiong, W. & Jiang, H. Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. Chin. J. Catal. 43, 1598–1617 (2022).

    Article  CAS  Google Scholar 

  39. Rulev, A. Y. Aza-Michael reaction: achievements and prospects. Russ. Chem. Rev. 80, 197–218 (2011).

    Article  CAS  Google Scholar 

  40. Luan, Z. H., Qu, J. P. & Kang, Y. B. Discovery of oxygen α-nucleophilic addition to α,β-unsaturated amides catalyzed by redox-neutral organic photoreductant. J. Am. Chem. Soc. 142, 20942–20947 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, B. et al. Enantioselective diversification of alkene radical anions. Preprint at https://doi.org/10.26434/chemrxiv-2022-qkd7j (2022).

  42. Senboku, H., Komatsu, H., Fujimura, Y. & Tokuda, M. Efficient electrochemical dicarboxylation of phenyl-substituted alkenes: synthesis of 1-phenylalkane-1,2-dicarboxylic acids. Synlett 3, 418–420 (2001).

    Article  Google Scholar 

  43. Czyz, M. L., Taylor, M. S., Horngren, T. H. & Polyzos, A. Reductive activation and hydrofunctionalization of olefins by multiphoton tandem photoredox catalysis. ACS Catal. 11, 5472–5480 (2021).

    Article  CAS  Google Scholar 

  44. Ran, C.-K. et al. Progress and challenges in dicarboxylation with CO2. Natl Sci. Open https://doi.org/10.1360/nso/20220024 (2023).

  45. Venditto, N. J., Liang, Y. S., El Mokadem, R. K. & Nicewicz, D. A. Ketone–olefin coupling of aliphatic and aromatic carbonyls catalyzed by excited-state acridine radicals. J. Am. Chem. Soc. 144, 11888–11896 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Louvel, D. et al. Tailoring the reactivity of the Langlois reagent and styrenes with cyanoarenes organophotocatalysts under visible-light. Adv. Synth. Catal. 364, 139–148 (2022).

    Article  CAS  Google Scholar 

  47. Li, Z.-L., Fang, G.-C., Gu, Q. S. & Liu, X. Y. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes. Chem. Soc. Rev. 49, 32–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, Z., Chen, P. & Liu, G. Copper-catalyzed radical relay in C(sp3)–H functionalization. Chem. Soc. Rev. 51, 1640–1658 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Golden, D. L., Suh, S. E. & Stahl, S. S. Radical C(sp3)–H functionalization and cross-coupling reactions. Nat. Rev. Chem. 6, 405–427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liang, Y., Zhang, X. & MacMillan, D. W. C. Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis. Nature 559, 83–88 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mao, R., Frey, A., Balon, J. & Hu, X. Decarboxylative C(sp3)–N cross-coupling via synergetic photoredox and copper catalysis. Nat. Catal. 1, 120–126 (2018).

    Article  CAS  Google Scholar 

  52. Chen, C., Peters, J. C. & Fu, G. C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 596, 250–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Górski, B., Barthelemy, A.-L., Douglas, J. J., Juliá, F. & Leonori, D. Copper-catalysed amination of alkyl iodides enabled by halogen-atom transfer. Nat. Catal. 4, 623–630 (2021).

    Article  Google Scholar 

  54. Bartolomei, B., Gentile, G., Rosso, C., Filippini, G. & Prato, M. Turning the light on phenols: new opportunities in organic synthesis. Chem. Eur. J. 27, 16062–16070 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Schmalzbauer, M. et al. Redox-neutral photocatalytic C–H carboxylation of arenes and styrenes with CO2. Chem 6, 2658–2672 (2020).

    Article  CAS  Google Scholar 

  56. Liu, C., Shen, N. & Shang, R. Photocatalytic defluoroalkylation and hydrodefluorination of trifluoromethyls using o-phosphinophenolate. Nat. Commun. 13, 354 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liang, K. et al. Deprotection of benzyl-derived groups via photochemically mesolytic cleavage of C–N and C–O bonds. Chem 9, 511–522 (2023).

    Article  CAS  Google Scholar 

  58. Lu, M.-Z. et al. Recent advances in alkenyl sp2 C–H and C–F bond functionalizations: scope, mechanism, and applications. Chem. Rev. 122, 17479–17646 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Lu, W. & Shen, Z. Direct synthesis of alkenylboronates from alkenes and pinacol diboron via copper catalysis. Org. Lett. 21, 142–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Hossain, A., Bhattacharyya, A. & Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science 364, eaav9713 (2019).

    Article  PubMed  Google Scholar 

  61. Zheng, Y.-W., Narobe, R., Donabauer, K., Yakubov, S. & König, B. Copper(II)-photocatalyzed N–H alkylation with alkanes. ACS Catal. 10, 8582–8589 (2020).

    Article  CAS  Google Scholar 

  62. Cho, H., Suematsu, H., Oyala, P. H., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism. J. Am. Chem. Soc. 144, 4550–4558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu, D. et al. Cu-catalyzed C(sp3)–N coupling and alkene carboamination enabled by ligand-promoted selective hydrazine transfer to alkyl radicals. ACS Catal. 12, 3269–3278 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support is provided by the National Natural Science Foundation of China (22225106; to D.-G.Y.), Fundamental Research Funds from Sichuan University (2020SCUNL102; to D.-G.Y.) and the Fundamental Research Funds for the Central Universities. We also thank X. Wang from the Analysis and Testing Center of Sichuan University as well as J. Li, Q. Zhang and D. Deng from the College of Chemistry at Sichuan University for compound testing.

Author information

Authors and Affiliations

Authors

Contributions

D.-G.Y., J.-H.Y. and J.-P.Y. conceived and designed the study. J.-P.Y., J.-H.Y., D.-G.Y. and L.Y. wrote the paper. J.-P.Y., J.-C.X., H.-T.L., X.-W.C., H.-X.S. and Y.D. performed the experiments and mechanistic studies. All authors contributed to the analysis and interpretation of the data.

Corresponding authors

Correspondence to Jian-Heng Ye or Da-Gang Yu.

Ethics declarations

Competing interests

The authors declare the following competing financial interest(s): a Chinese patent on this work has been applied with the number 202211731369.0 (D.-G.Y., J.-P.Y., J.-C.X., H.-T.L., H.-X.S., Y.D., X.-W.C. and J.-H.Y.).

Peer review

Peer review information

Nature Catalysis thanks Jie Wu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1 and 2, Figs. 1–16 and refs. 1–22.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, JP., Xu, JC., Luo, HT. et al. Metallaphotoredox-enabled aminocarboxylation of alkenes with CO2. Nat Catal 6, 959–968 (2023). https://doi.org/10.1038/s41929-023-01029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01029-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing