Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoenzymatic enantioselective intermolecular radical hydroamination

Abstract

Since the discovery of Hofmann–Löffler–Freytag reaction more than 130 years ago, both the structure and reactivity of nitrogen-centred radicals have been widely studied. Nevertheless, catalytic enantioselective intermolecular radical hydroamination remains a challenge due to the existence of side reactions, the short lifetime of nitrogen-centred radicals and lack of understanding of the fundamental catalytic steps. In the laboratory, nitrogen-centred radicals are produced with radical initiators, photocatalysts or electrocatalysts. In contrast, their generation and reaction are unknown in nature. Here we report a pure biocatalytic system for the photoenzymatic production of nitrogen-centred radicals and enantioselective intermolecular radical hydroaminations by successfully repurposing an ene-reductase through directed evolution. These reactions progress efficiently at room temperature under visible light without any external photocatalysts and exhibit excellent enantioselectivities. A detailed mechanistic study reveals that the enantioselectivity originates from the radical-addition step while the reactivity originates from the ultrafast photoinduced electron transfer from reduced flavin mononucleotide to nitrogen-containing substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic enantioselective intermolecular radical hydroaminations.
Fig. 2: Reaction development.
Fig. 3: Substrate scope.
Fig. 4: Mechanistic studies.

Data availability

All data are available in the main text, the Supplementary information or from the authors on reasonable request.

References

  1. Nugent, T. C. Chiral Amine Synthesis: Methods, Developments and Applications (John Wiley & Sons, 2010).

  2. Hartwig, J. F. & Stanley, L. M. Mechanistically driven development of iridium catalysts for asymmetric allylic substitution. Acc. Chem. Res. 43, 1461–1475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, R. Y. & Buchwald, S. L. CuH-catalyzed olefin functionalization: from hydroamination to carbonyl addition. Acc. Chem. Res. 53, 1229–1243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. MacMillan, D. W. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Mutti, F. G., Knaus, T., Scrutton, N. S., Breuer, M. & Turner, N. J. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science 349, 1525–1529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seayad, J. & List, B. Asymmetric organocatalysis. Org. Biomol. Chem. 3, 719–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Cecere, G., Konig, C. M., Alleva, J. L. & MacMillan, D. W. Enantioselective direct α-amination of aldehydes via a photoredox mechanism: a strategy for asymmetric amine fragment coupling. J. Am. Chem. Soc. 135, 11521–11524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, Z. et al. Enantioselective catalytic β-amination through proton-coupled electron transfer followed by stereocontrolled radical–radical coupling. Chem. Sci. 8, 5757–5763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, J.-R., Hu, X.-Q., Lu, L.-Q. & Xiao, W.-J. Visible light photoredox-controlled reactions of N-radicals and radical ions. Chem. Soc. Rev. 45, 2044–2056 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Choi, G. J. et al. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chu, J. C. & Rovis, T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature 539, 272–275 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pratley, C., Fenner, S. & Murphy, J. A. Nitrogen-centered radicals in functionalization of sp2 systems: generation, reactivity, and applications in synthesis. Chem. Rev. 122, 8181–8260 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Xiong, T. & Zhang, Q. New amination strategies based on nitrogen-centered radical chemistry. Chem. Soc. Rev. 45, 3069–3087 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Gentry, E. C. et al. Enantioselective synthesis of pyrroloindolines via noncovalent stabilization of indole radical cations and applications to the synthesis of alkaloid natural products. J. Am. Chem. Soc. 140, 3394–3402 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roos, C. B., Demaerel, J., Graff, D. E. & Knowles, R. R. Enantioselective hydroamination of alkenes with sulfonamides enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 142, 5974–5979 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ye, Y. et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat. Chem. 15, 206–212 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Frey, P. A., Hegeman, A. D. & Reed, G. H. Free radical mechanisms in enzymology. Chem. Rev. 106, 3302–3316 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Que, L. & Tolman, W. B. Biologically inspired oxidation catalysis. Nature 455, 333–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, P.-Z., Chen, J.-R. & Xiao, W.-J. Hantzsch esters: an emerging versatile class of reagents in photoredox catalyzed organic synthesis. Org. Biomol. Chem. 17, 6936–6951 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Bloomer, B. J., Clark, D. S. & Hartwig, J. F. Progress, challenges, and opportunities with artificial metalloenzymes in biosynthesis. Biochemistry 62, 221–228 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Miller, D. C., Athavale, S. V. & Arnold, F. H. Combining chemistry and protein engineering for new-to-nature biocatalysis. Nat. Synth. 1, 18–23 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Harrison, W., Huang, X. & Zhao, H. Photobiocatalysis for abiological transformations. Acc. Chem. Res. 55, 1087–1096 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Biegasiewicz, K. F., Cooper, S. J., Emmanuel, M. A., Miller, D. C. & Hyster, T. K. Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nat. Chem. 10, 770–775 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat. Catal. 5, 586–593 (2022).

    Article  CAS  Google Scholar 

  29. Huang, X. et al. Enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Davies, J., Morcillo, S. P., Douglas, J. J. & Leonori, D. Hydroxylamine derivatives as nitrogen‐radical precursors in visible‐light photochemistry. Eur. J. Chem. 24, 12154–12163 (2018).

    Article  CAS  Google Scholar 

  31. Ganley, J. M., Murray, P. R. D. & Knowles, R. R. Photocatalytic generation of aminium radical cations for C–N bond formation. ACS Catal. 10, 11712–11738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kudisch, B. et al. Active-site environmental factors customize the photophysics of photoenzymatic old yellow enzymes. J. Phys. Chem. B 124, 11236–11249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sandoval, B. A. et al. Photoenzymatic reductions enabled by direct excitation of flavin-dependent ‘ene’-reductases. J. Am. Chem. Soc. 143, 1735–1739 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Core Facilities at the Carl R. Woese Institute for Genomic Biology, at which the majority of the experiments in this project were performed. We thank the School of Chemical Sciences NMR Laboratory for performing NMR experiments at varying temperatures. We thank X. Li (OSU), M. Li (UIUC) and G. Jiang (UIUC) for helpful discussions. We thank T. Yu (UIUC) for designing the primers. This work was funded by the DOE Center for Advanced Bioenergy and Bioproducts Innovation (US Department of Energy, Office of Science, Office of Biological and Environmental Research under award no. DE-SC0018420 to H.Z.), the National Natural Science Foundation of China (award no. 22122305 to B.W.) and the National Institute of Health (grant no. GM144047 to D.Z.). NMR data were collected at the Carl R. Woese Institute for Genomic Biology Core on a 600 MHz NMR funded by the National Institute of Health (grant no. S10-RR028833 to H.Z.). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. coordinated the project. Z.Z. and H.Z. conceived the project and designed the experiments. Z.Z. performed most of the experiments. J.F. and B.W. performed computational studies. C.Y. and D.Z. performed optical studies. H.C. designed the mutants. W.H. contributed to scope investigation. Z.Z., B.W, C.Y. and H.Z. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Dongping Zhong, Binju Wang or Huimin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Debabrata Maiti, Marc Garcia-Borràs, Nicholas Turner, and Frank Hollmann for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Tables 1–8, Methods and references.

Reporting Summary

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Feng, J., Yang, C. et al. Photoenzymatic enantioselective intermolecular radical hydroamination. Nat Catal 6, 687–694 (2023). https://doi.org/10.1038/s41929-023-00994-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00994-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing