Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active-site isolation in intermetallics enables precise identification of elementary reaction kinetics during olefin hydrogenation

Abstract

Connecting active-site chemistry with observed macroscopic kinetic behaviour is required to rationally design active sites of heterogeneous catalysts. Isolated active sites limit co-adsorption complexities, which challenge reconciling elementary reaction mechanisms and rate constants to observed macroscopic kinetics. The Pd–Zn γ-brass intermetallic phase enables the controlled synthesis of Pd1 monomer and Pd3 trimer sites isolated in an inert Zn matrix. Here we utilize these isolated sites, combining experimental kinetic measurements, density functional theory (DFT) calculations and a fully coverage-enumerated microkinetic model (MKM) to provide detailed mechanistic understanding of elementary reaction chemistry for ethylene hydrogenation. With isolated sites reducing the complexity of co-adsorption coverage effects, remarkable agreement between experimental and DFT-MKM kinetics is reached. The acute temperature dependence of reaction orders, the site competition between C2 species and hydrogen, the degree of rate control of elementary reactions and the steady-state distribution of co-adsorption configurations are reconciled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimentally measured ethylene hydrogenation kinetics over Pd9Zn43.
Fig. 2: Complete ethylene hydrogenation reaction network on Pd3 trimer sites.
Fig. 3: Kinetic behaviour with respect to ethylene adsorption energy corrections.
Fig. 4: Microkinetic modelling results.
Fig. 5: Degree of rate control analysis and reaction flux analysis.
Fig. 6: Ethylene hydrogenation results on Pd10Zn42 γ-brass catalysts.

Similar content being viewed by others

Data availability

Data presented in the main figures of the manuscript and all structure files (in VASP CONTCAR format) are available at https://github.com/mjjanik/NatCatal2023. Source data are provided with this paper.

Code availability

Mathematical notebooks used to perform microkinetic models are available at https://github.com/mjjanik/NatCatal2023.

References

  1. Horiuti, I. & Polanyi, M. Exchange reactions of hydrogen on metallic catalysts. Trans. Faraday Soc. 30, 1164–1172 (1934).

    Article  Google Scholar 

  2. Rekoske, J. E., Cortright, R. D., Goddard, S. A., Sharma, S. B. & Dumesic, J. A. Microkinetic analysis of diverse experimental data for ethylene hydrogenation on platinum. J. Phys. Chem. 96, 1880–1888 (2002).

    Article  Google Scholar 

  3. Goddard, S. Deuterium tracing studies and microkinetic analysis of ethylene hydrogenation over platinum. J. Catal. 137, 186–198 (1992).

    Article  CAS  Google Scholar 

  4. Heard, C. J., Hu, C., Skoglundh, M., Creaser, D. & Grönbeck, H. Kinetic regimes in ethylene hydrogenation over transition-metal surfaces. ACS Catal. 6, 3277–3286 (2016).

    Article  CAS  Google Scholar 

  5. Cortright, R. D., Goddard, S. A., Rekoske, J. E. & Dumesic, J. A. Kinetic study of ethylene hydrogenation. J. Catal. 127, 342–353 (1991).

    Article  CAS  Google Scholar 

  6. Boudart, M. Two-step catalytic reactions. AIChE J. 18, 465–478 (1972).

    Article  CAS  Google Scholar 

  7. Grabow, L. C., Gokhale, A. A., Evans, S. T., Dumesic, J. A. & Mavrikakis, M. Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J. Phys. Chem. C 112, 4608–4617 (2008).

    Article  CAS  Google Scholar 

  8. Zhao, J., Zha, S., Mu, R., Zhao, Z.-J. & Gong, J. Coverage effect on the activity of the acetylene semihydrogenation over Pd–Sn catalysts: a density functional theory study. J. Phys. Chem. C 122, 6005–6013 (2018).

    Article  CAS  Google Scholar 

  9. Palermo, A. et al. Dialing in single-site reactivity of a supported calixarene-protected tetrairidium cluster catalyst. Chem. Sci. 8, 4951–4960 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuo, C.-T. et al. 18.1% single palladium atom catalysts on mesoporous covalent organic framework for gas phase hydrogenation of ethylene. Cell Rep. Phys. Sci. https://doi.org/10.1016/j.xcrp.2021.100495 (2021).

  11. Dasgupta, A. et al. Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nat. Chem. 14, 523–529 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Prinz, J. et al. Adsorption of small hydrocarbons on the three-fold PdGa surfaces: the road to selective hydrogenation. J. Am. Chem. Soc. 136, 11792–11798 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Cremer, P. S., Su, X., Shen, Y. R. & Somorjai, G. A. Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation. J. Am. Chem. Soc. 118, 2942–2949 (1996).

    Article  CAS  Google Scholar 

  14. Zaera, F. On the mechanism for the hydrogenation of olefins on transition-metal surfaces: the chemistry of ethylene on Pt(111). Langmuir 12, 88–94 (1996).

    Article  CAS  Google Scholar 

  15. Beebe, T. P. & Yates, J. T. An in situ infrared spectroscopic investigation of the role of ethylidyne in the ethylene hydrogenation reaction on palladium/alumina. J. Am. Chem. Soc. 108, 663–671 (2002).

    Article  Google Scholar 

  16. Cremer, P. S. & Somorjai, G. A. Surface science and catalysis of ethylene hydrogenation. J. Chem. Soc. Faraday Trans. 91, 3671–3677 (1995).

    Article  CAS  Google Scholar 

  17. Zaera, F. & Somorjai, G. A. Hydrogenation of ethylene over platinum (111) single-crystal surfaces. J. Am. Chem. Soc. 106, 2288–2293 (2002).

    Article  Google Scholar 

  18. Godbey, D., Zaera, F., Yeates, R. & Somorjai, G. A. Hydrogenation of chemisorbed ethylene on clean, hydrogen, and ethylidyne covered platinum (111) crystal surfaces. Surf. Sci. 167, 150–166 (1986).

    Article  CAS  Google Scholar 

  19. Moskaleva, L. V. et al. Ethylene conversion to ethylidyne over Pd(111): revisiting the mechanism with first-principles calculations. J. Phys. Chem. C 113, 2512–2520 (2009).

    Article  CAS  Google Scholar 

  20. Sutton, J. E., Guo, W., Katsoulakis, M. A. & Vlachos, D. G. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nat. Chem. 8, 331–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Wellendorff, J. et al. A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf. Sci. 640, 36–44 (2015).

    Article  CAS  Google Scholar 

  22. Matera, S., Schneider, W. F., Heyden, A. & Savara, A. Progress in accurate chemical kinetic modeling, simulations, and parameter estimation for heterogeneous catalysis. ACS Catal. 9, 6624–6647 (2019).

    Article  CAS  Google Scholar 

  23. Stegelmann, C., Andreasen, A. & Campbell, C. T. Degree of rate control: how much the energies of intermediates and transition states control rates. J. Am. Chem. Soc. 131, 8077–8082 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Campbell, C. T. The degree of rate control: a powerful tool for catalysis research. ACS Catal. 7, 2770–2779 (2017).

    Article  CAS  Google Scholar 

  25. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  26. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  27. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).

    Article  CAS  Google Scholar 

  29. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

  30. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  31. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  32. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  33. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Campbell, C. T. & Sellers, J. R. The entropies of adsorbed molecules. J. Am. Chem. Soc. 134, 18109–18115 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Bradley, A. J. & Thewlis, J. The structure of γ-brass. Proc. R. Soc. Lond. A 112, 678–692 (1997).

    Google Scholar 

  36. Edström, V.-A. et al. X-ray determination of the structure of the cubic gamma Pd,Zn phase. Acta Chem. Scand. 23, 279–285 (1969).

    Article  Google Scholar 

  37. Spanjers, C. S. et al. Determination of bulk and surface atomic arrangement in Ni–Zn γ-brass phase at different Ni to Zn ratios. Chem. Mater. 29, 504–512 (2016).

    Article  Google Scholar 

  38. Gourdon, O. et al. Atomic distributions in the γ-brass structure of the Cu–Zn system: a structural and theoretical study. Inorg. Chem. 46, 251–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS) Report LAUR 86-748 (Los Alamos National Laboratory, 2004).

Download references

Acknowledgements

This work is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Catalysis Division under award no. DE-SC0020147. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation under grant no. ACI-1548562.

Author information

Authors and Affiliations

Authors

Contributions

H.H. and A.N. carried out and analysed the DFT calculations, microkinetic models, developed genetic algorithms and performed degree of rate control analysis. G.C. and A.D. synthesized the materials, performed the materials characterization and measured reaction kinetics. H.H. and G.C. wrote the manuscript. A.N. and R.J.M. helped with editing the paper. M.J.J. and R.M.R. supervised the project and established the final version of the manuscript. All authors contributed to the manuscript and have approved the final version of the manuscript.

Corresponding authors

Correspondence to Robert M. Rioux or Michael J. Janik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Shinya Furukawa, Simon Beaumont and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–18, Figs. 1–18 and Table 1.

Source data

Source Data Fig. 1

Source data in Excel workbook.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Canning, G.A., Nguyen, A. et al. Active-site isolation in intermetallics enables precise identification of elementary reaction kinetics during olefin hydrogenation. Nat Catal 6, 596–605 (2023). https://doi.org/10.1038/s41929-023-00978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00978-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing